Antimicrobial Metabolites Isolated from Some Marine Bacteria Associated with Callyspongia crassa Sponge of the Red Sea
Abstract
1. Introduction
2. Materials and Methods
2.1. Sponge Sample Collection
2.2. Isolation of Marine Bacteria Associated with Sponges
2.3. Antimicrobial Activity of Isolated Marine Bacteria
2.4. Antioxidant Properties of Sponge-Associated Bacterial Extracts with Antimicrobial Activity
2.5. Bacterial DNA Extraction and 16S rDNA Gene Analysis
2.6. GC–MS Analysis of Bacterial Extracts with Antimicrobial Activity
2.7. Cytotoxicity of the Bacterial Extracts with Antimicrobial Activity
2.8. Statistical Analysis
3. Results
3.1. Isolation of Bacteria from Sponge Samples
3.2. Antibacterial and Antifungal Activity of Marine Bacteria
3.3. Antioxidant Activity of Crude Extracts of Active Marine Bacteria
3.4. Identification of Active Bacteria Associated with the Sponge
3.5. Cytotoxicity of the Bacterial Extracts with Antimicrobial Activity
3.6. Identification of Bioactive Secondary Metabolites Using GC–MS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naddaf, M. 40 million deaths by 2050: Toll of drug-resistant infections to rise by 70%. Nature 2024, 633, 747–748. [Google Scholar] [CrossRef] [PubMed]
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; Wool, E.E.; Aguilar, G.R.; Mestrovic, T.; Smith, G.; Han, C.; et al. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef] [PubMed]
- Stincone, P.; Brandelli, A. Marine bacteria as source of antimicrobial compounds. Crit. Rev. Biotechnol. 2020, 40, 306–319. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.R.A.; Kavlekar, D.P.; LokaBharathi, P.A. Marine drugs from sponge-microbe association—A review. Mar. Drugs 2010, 8, 1417–1468. [Google Scholar] [CrossRef] [PubMed]
- Indraningrat, A.A.G.; Smidt, H.; Sipkema, D. Bioprospecting sponge-associated microbes for antimicrobial compounds. Mar. Drugs 2016, 14, 87. [Google Scholar] [CrossRef]
- Helber, S.B.; Hoeijmakers, D.J.; Muhando, C.A.; Rohde, S.; Schupp, P.J. Sponge chemical defenses are a possible mechanism for increasing sponge abundance on reefs in Zanzibar. PLoS ONE 2018, 13, e0197617. [Google Scholar] [CrossRef]
- Devkar, H.U.; Thakur, N.L.; Kaur, P. Marine-derived antimicrobial molecules from the sponges and their associated bacteria. Can. J. Microbiol. 2022, 69, 1–16. [Google Scholar] [CrossRef]
- Mehbub, M.F.; Yang, Q.; Cheng, Y.; Franco, C.M.M.; Zhang, W. Marine sponge-derived natural products: Trends and opportunities for the decade of 2011–2020. Front. Mar. Sci. 2024, 11, 1462825. [Google Scholar] [CrossRef]
- Karimi, E.; Keller-Costa, T.; Slaby, B.M.; Cox, C.J.; da Rocha, U.N.; Hentschel, U.; Costa, R. Genomic blueprints of sponge-prokaryote symbiosis are shared by low abundant and cultivatable Alphaproteobacteria. Sci. Rep. 2019, 9, 1999. [Google Scholar] [CrossRef]
- Bibi, F.; Faheem, M.; IAzhar, E.; Yasir, M.; AAlvi, S.; AKamal, M.; INaseer, M. Bacteria from marine sponges: A source of new drugs. Curr. Drug Metab. 2017, 18, 11–15. [Google Scholar] [CrossRef]
- Liu, T.; Wu, S.; Zhang, R.; Wang, D.; Chen, J.; Zhao, J. Diversity and antimicrobial potential of Actinobacteria isolated from diverse marine sponges along the Beibu Gulf of the South China Sea. FEMS Microbiol. Ecol. 2019, 95, fiz089. [Google Scholar] [CrossRef] [PubMed]
- Gavriilidou, A.; Mackenzie, T.A.; Sánchez, P.; Tormo, J.R.; Ingham, C.; Smidt, H.; Sipkema, D. Bioactivity screening and gene-trait matching across marine sponge-associated bacteria. Mar. Drugs 2021, 19, 75. [Google Scholar] [CrossRef]
- Almeida, J.F.; Marques, M.; Oliveira, V.; Egas, C.; Mil-Homens, D.; Viana, R.; Cleary, D.F.; Huang, Y.M.; Fialho, A.M.; Teixeira, M.C.; et al. Marine sponge and octocoral-associated bacteria show versatile secondary metabolite biosynthesis potential and antimicrobial activities against human pathogens. Mar. Drugs 2022, 21, 34. [Google Scholar] [CrossRef] [PubMed]
- Anteneh, Y.S.; Yang, Q.; Brown, M.H.; Franco, C.M. Antimicrobial activities of marine sponge-associated bacteria. Microorganisms 2021, 9, 171. [Google Scholar] [CrossRef]
- Kim, J.A.; Choi, S.S.; Lim, J.K.; Kim, E.S. Unlocking marine treasures: Isolation and mining strategies of natural products from sponge-associated bacteria. Nat. Prod. Rep. 2025. [Google Scholar] [CrossRef]
- Bibi, F.; Yasir, M.; Al-Sofyani, A.; Naseer, M.I.; Azhar, E.I. Antimicrobial activity of bacteria from marine sponge Suberea mollis and bioactive metabolites of Vibrio sp. EA348. Saudi J. Biol. Sci. 2020, 27, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Artizzu, N.; Bonsignore, L.; Cottiglia, F.; Loy, G. Studies on the diuretic and antimicrobial activity of Cynodon dactylon essential oil. Fitoterapia 1996, 67, 174–176. [Google Scholar]
- Fahmy, N.M.; Abdel-Tawab, A.M. Isolation and characterization of marine sponge–associated Streptomyces sp. NMF6 strain producing secondary metabolite (s) possessing antimicrobial, antioxidant, anticancer, and antiviral activities. J. Genet. Eng. Biotechnol. 2021, 19, 1–14. [Google Scholar]
- Truong, D.-H.; Nguyen, D.H.; Ta, N.T.A.; Bui, A.V.; Do, T.H.; Nguyen, H.C. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J. Food Qual. 2019, 2019, 78294. [Google Scholar]
- Azcárate-Peril, M.A.; Raya, R.R. Methods for plasmid and genomic DNA isolation from lactobacilli. In Food Microbiology Protocols; Humana Press: Totowa, NJ, USA, 2001; pp. 135–139. [Google Scholar]
- Anantha, P.S.; Deventhiran, M.; Saravanan, P.; Anand, D.; Rajarajan, S. A comparative GC-MS analysis of bacterial secondary metabolites of Pseudomonas species. Pharma Innov. 2016, 5 Pt B, 84. [Google Scholar]
- Vijayan, V.; Jasmin, C.; Anas, A.; Parakkaparambil Kuttan, S.; Vinothkumar, S.; Perunninakulath Subrayan, P.; Nair, S. Sponge-associated bacteria produce non-cytotoxic melanin which protects animal cells from photo-toxicity. Appl. Biochem. Biotechnol. 2017, 183, 396–411. [Google Scholar] [CrossRef]
- Dat, T.T.; Cuc, N.T.; Cuong, P.V.; Smidt, H.; Sipkema, D. Diversity and Antimicrobial Activity of Vietnamese Sponge-Associated Bacteria. Mar. Drugs 2021, 19, 353. [Google Scholar] [CrossRef] [PubMed]
- Anand, T.P.; Bhat, A.W.; Shouche, Y.S.; Roy, U.; Siddharth, J.; Sarma, S.P. Antimicrobial activity of marine bacteria associated with sponges from the waters off the coast of South East India. Microbiol. Res. 2006, 161, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Haber, M.; Ilan, M. Diversity and antibacterial activity of bacteria cultured from Mediterranean Axinella spp. sponges. J. Appl. Microbiol. 2014, 116, 519–532. [Google Scholar] [CrossRef]
- Santos, O.C.S.; Pontes, P.V.M.L.; Santos, J.F.M.; Muricy, G.; Giambiagi-deMarval, M.; Laport, M.S. Isolation, characterization and phylogeny of sponge-associated bacteria with antimicrobial activities from Brazil. Res. Microbiol. 2010, 161, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, D.; Bibiana, A.S.; Vijayakumar, A.; Santhosh, R.S.; Dhevendaran, K.; Nithyanand, P. Antioxidant Activity of Bacteria Associated with the Marine Sponge Tedaniaanhelans. Indian J. Microbiol. 2015, 55, 13–18. [Google Scholar] [CrossRef]
- Cheng, C.; Othman, E.M.; Reimer, A.; Grüne, M.; Kozjak-Pavlovic, V.; Stopper, H.; Hentschel, U.; Abdelmohsen, U.R. Ageloline A, new antioxidant and antichlamydial quinolone from the marine sponge-derived bacterium Streptomyces sp. SBT345. Tetrahedron Lett. 2016, 57, 2786–2789. [Google Scholar] [CrossRef]
- Hamed, A.A.; Ghareeb, M.A.; Kelany, A.K.; Abdelraof, M.; Kabary, H.A.; Soliman, N.R.; Elawady, M.E. Induction of antimicrobial, antioxidant metabolites production by co-cultivation of two red-sea-sponge-associated Aspergillus sp. CO2 and Bacillus sp. COBZ21. BMC Biotechnol. 2024, 24, 3. [Google Scholar] [CrossRef]
- Riyanti Balansa, W.; Liu, Y.; Sharma, A.; Mihajlovic, S.; Hartwig, C.; Leis, B.; Rieuwpassa, F.J.; Ijong, F.G.; Wägele, H.; König, G.M.; et al. Selection of sponge-associated bacteria with high potential for the production of antibacterial compounds. Sci. Rep. 2020, 10, 19614. [Google Scholar] [CrossRef]
- Hentschel, U.; Schmid, M.; Wagner, M.; Fieseler, L.; Gernert, C.; Hacker, J. Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol. Ecol. 2001, 35, 305–312. [Google Scholar] [CrossRef]
- Chakraborty, K.; Thilakan, B.; Raola, V.K. Previously undescribed antibacterial polyketides from heterotrophic Bacillus amyloliquefaciens associated with seaweed Padina gymnospora. Appl. Biochem. Biotechnol. 2018, 184, 716–732. [Google Scholar] [CrossRef]
- Bultel-Poncé, V.; Debitus, C.; Berge, J.-P.; Cerceau, C.; Guyot, M. Metabolites from the sponge-associated bacterium Micrococcus luteus. J. Mar. Biotechnol. 1998, 6, 233–236. [Google Scholar]
- Eltamany, E.E.; Abdelmohsen, U.R.; Ibrahim, A.K.; Hassanean, H.A.; Hentschel, U.; Ahmed, S.A. New antibacterial xanthone from the marine sponge-derived Micrococcus sp. EG45. Bioorganic Med. Chem. Lett. 2014, 24, 4939–4942. [Google Scholar] [CrossRef] [PubMed]
- Al-Dhabi, N.A.; Ghilan, A.-K.M.; Esmail, G.A.; Arasu, M.V.; Duraipandiyan, V.; Ponmurugan, K. Bioactivity assessment of the Saudi Arabian Marine Streptomyces sp. Al-Dhabi-90, metabolic profiling and its in vitro inhibitory property against multidrug resistant and extended-spectrum beta-lactamase clinical bacterial pathogens. J. Infect. Public Health 2019, 12, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Naragani, K.; Mangamuri, U.; Muvva, V.; Poda, S.; Munaganti, R.K. Antimicrobial potential of Streptomyces cheonanensis VUK-a from mangrove origin. Int. J. Pharm. Pharm. Sci 2016, 8, 53–57. [Google Scholar]
- Selvin, J.; Shanmughapriya, S.; Gandhimathi, R.; Kiran, G.S.; Ravji, T.R.; Natarajaseenivasan, K.; Hema, T.A. Optimization and production of novel antimicrobial agents from sponge associated marine actinomycetes Nocardiopsis dassonvillei MAD08. Appl. Microbiol. Biotechnol. 2009, 83, 435–445. [Google Scholar] [CrossRef]
- Palaniappan, S.; Panchanathan, M.; Packiyaraj, V.; Kannan, S.; Shanmugam, S.; Subramaniam, P.; Balasubramanian, T. Antibacterial and brine shrimp lethality effect of marine actinobacterium Streptomyces sp. CAS72 against human pathogenic bacteria. Asian Pac. J. Trop. Dis. 2013, 3, 286–293. [Google Scholar] [CrossRef]
- Dhinakaran, D.I.; Prasad, D.R.D.; Gohila, R.; Lipton, P. Screening of marine sponge-associated bacteria from Echinodictyum gorgonoides and its bioactivity. Afr. J. Biotechnol. 2012, 11, 15469–15476. [Google Scholar]
Antimicrobial Activity | |||||||
---|---|---|---|---|---|---|---|
Bacteria | Yeast | Filamentous Fungus | |||||
Sample No | S. aureus a | MRSA b | E. coli c | P. aeruginosa d | K. pneumonia e | C. albicans f | A. flavus g |
AN1 | - | - | - | - | - | - | - |
AN2 | - | - | - | - | - | - | - |
AN3 | ++++ | ++++ | ++++ | ++++ | ++++ | +++ | ++++ |
AN4 | - | - | - | - | - | - | - |
AN5 | - | - | - | - | - | - | - |
AN6 | +++ | +++ | +++ | +++ | +++ | ++ | ++ |
AN7 | - | - | - | - | - | - | - |
AN8 | - | - | - | - | - | - | - |
AN9 | - | - | - | - | - | - | - |
AN10 | ++ | ++ | ++ | ++ | ++ | ++ | - |
AN11 | - | - | - | - | - | - | - |
AN12 | - | - | - | - | - | - | - |
AN13 | ++++ | ++++ | ++++ | ++++ | ++++ | +++ | ++++ |
AN14 | - | - | - | - | - | - | - |
AN15 | - | - | - | - | - | - | - |
AN16 | - | - | - | - | - | - | - |
AN17 | + | - | - | - | - | + | - |
AN18 | - | - | - | - | + | - | - |
AN19 | - | - | ++ | - | + | - | - |
AN20 | - | - | - | - | - | - | - |
AN21 | - | - | - | - | - | + | - |
AN22 | - | - | - | - | - | - | - |
Antioxidant Activity of Effective Bacterial Strains | |||
---|---|---|---|
Extract Concentration | AN3 | AN6 | AN10 |
100 mg/mL | 73.5% | 61% | ND |
50 mg/mL | 70.75% | 17.5% | ND |
25 mg/mL | 53.75% | 10% | ND |
Marine Bacterial Extract Concentration | AN3 | AN6 | AN10 | ||||||
---|---|---|---|---|---|---|---|---|---|
No. of Larvae Taken | No. of Larvae Killed | LC50 (mg/mL) | No. of Larvae Taken | No. of Larvae Killed | LC50 (mg/mL) | No. of Larvae Taken | No. of Larvae Killed | LC50 (mg/mL) | |
100 | 10 | 6 | 83 | 10 | 10 | 55 | 10 | 4 | >100 |
50 | 10 | 3 | >50 | 10 | 5 | 50 | 10 | 2 | >50 |
25 | 10 | 2 | >25 | 10 | 4 | >25 | 10 | 1 | >25 |
No. | Bacteria Extract | Compound | Properties | Retention Time | Molecular Weight | Formula |
---|---|---|---|---|---|---|
1 | AN3 | 1-Octadecanesulphonyl chloride | Antifungal | 16.925 | 368.0 | C18H37ClO2S |
2 | 2,4,1-Benzoxazin-1-one, 3-trifluoromethyl-8-nitro- | - | 17.419 | 268.1 | C14H11ClF3NO2 | |
3 | Tetradecane, 2,6,10-trimethyl- | - | 17.85 | 226.45 | C17H36 | |
4 | Cyclopropane, 1,1-dichloro-2,2-dimethyl-3-(2-methylpropyl)- | Antibacterial | 18.127 | 180.05 | C9H16Cl2 | |
5 | Tetradecane | Antibacterial | 17.635 | 198.39 | C8H16 | |
6 | Isopropyl acetate | - | 6.505 | 102.13 | C5H10O2 | |
7 | 1-Diisopropylsilyloxy-10-undecene | - | 18.35 | 270.5 | C16H36OSi2 | |
8 | Phenol, 3,5-bis(1,1-dimethylethyl)- | Antimicrobial | 24.766 | 206.32 | C14H22O | |
9 | AN6 | Isopropyl acetate | - | 5.403 | 102.13 | C5H10O2 |
10 | Propanoic acid, ethyl ester | Antimicrobial | 6.896 | 102.1 | C3H6O2 | |
11 | trans-3,4-Dimethyl-2-hexene | - | 7.063 | 112.2 | C8H16 | |
12 | 2,4-Dimethyl-1-hexene | - | 7.39 | 112.2 | C8H16 | |
13 | 2-Hexene, 2,5-dimethyl- | - | 7.733 | 112.21 | C8H16 | |
14 | 3,4-Dimethyl-2-hexene | - | 8.108 | 112.21 | C8H16 | |
15 | Cyclopropane, 1,1-dichloro-2,2-dimethyl-3-(2-methylpropyl)- | Antibacterial | 17.633 | 180.05 | C9H16Cl2 | |
16 | 1-Diisopropylsilyloxy-10-undecene | - | 18.045 | 270.5 | C16H36OSi2 | |
17 | Phenol, 3,5-bis(1,1-dimethylethyl)- | Antimicrobial | 6.896 | 206.32 | C14H22O | |
18 | AN10 | Propanoic Acid, ethyl ester | Antimicrobial | 6.881 | 102.13 | C3H6O2 |
19 | 2-Hexene, 2,5-dimethyl- | - | 7.723 | 112.21 | C8H16 | |
20 | 5-Ethyl-5-methylheptadecane | - | 17.575 | 268.53 | C22H46 | |
21 | 1-Octadecanesulphonyl chloride | Antifungal | 17.648 | 368.0 | C18H37ClO2S | |
22 | 2,4,1-Benzoxazin-1-one, 3-trifluoromethyl-8-nitro- | - | 18.064 | 268.1 | C14H11ClF3NO2 | |
23 | Tetradecane | Antibacterial | 18.229 | 198.39 | C14H30 | |
24 | Butane, 2-(2,2-dichloro-1,3-dimethylcyclopropyl)- | - | 18.473 | 178.0 | C9H16Cl2 | |
25 | Cyclopropanecarboxylic acid, 1-(2-propenyl)-, 1,1-dimethylethyl ester | - | 19.15 | 170.2 | C11H18O2 | |
26 | Hexadecane | Antibacterial | 19.272 | 226.44 | C16H34 | |
27 | Tetradecane, 2,6,10-trimethyl- | - | 19.725 | 226.45 | C17H36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alahmari, A.N.; Hassoubah, S.A.; Alaidaroos, B.A.; Al-Hejin, A.M.; Bataweel, N.M.; Farsi, R.M.; Algothmi, K.M.; Alshammari, N.M.; Ashour, A.T.K. Antimicrobial Metabolites Isolated from Some Marine Bacteria Associated with Callyspongia crassa Sponge of the Red Sea. Microorganisms 2025, 13, 1552. https://doi.org/10.3390/microorganisms13071552
Alahmari AN, Hassoubah SA, Alaidaroos BA, Al-Hejin AM, Bataweel NM, Farsi RM, Algothmi KM, Alshammari NM, Ashour ATK. Antimicrobial Metabolites Isolated from Some Marine Bacteria Associated with Callyspongia crassa Sponge of the Red Sea. Microorganisms. 2025; 13(7):1552. https://doi.org/10.3390/microorganisms13071552
Chicago/Turabian StyleAlahmari, Amal N., Shahira A. Hassoubah, Bothaina A. Alaidaroos, Ahmed M. Al-Hejin, Noor M. Bataweel, Reem M. Farsi, Khloud M. Algothmi, Naheda M. Alshammari, and Amal T. K. Ashour. 2025. "Antimicrobial Metabolites Isolated from Some Marine Bacteria Associated with Callyspongia crassa Sponge of the Red Sea" Microorganisms 13, no. 7: 1552. https://doi.org/10.3390/microorganisms13071552
APA StyleAlahmari, A. N., Hassoubah, S. A., Alaidaroos, B. A., Al-Hejin, A. M., Bataweel, N. M., Farsi, R. M., Algothmi, K. M., Alshammari, N. M., & Ashour, A. T. K. (2025). Antimicrobial Metabolites Isolated from Some Marine Bacteria Associated with Callyspongia crassa Sponge of the Red Sea. Microorganisms, 13(7), 1552. https://doi.org/10.3390/microorganisms13071552