Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (352)

Search Parameters:
Keywords = bio-based biodegradable polymers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
58 pages, 1897 KiB  
Review
Fabrication and Application of Bio-Based Natural Polymer Coating/Film for Food Preservation: A Review
by Nosipho P. Mbonambi, Jerry O. Adeyemi, Faith Seke and Olaniyi A. Fawole
Processes 2025, 13(8), 2436; https://doi.org/10.3390/pr13082436 (registering DOI) - 1 Aug 2025
Abstract
Food waste has emerged as a critical worldwide concern, resulting in environmental deterioration and economic detriment. Bio-based natural polymer coatings and films have emerged as a sustainable solution to food preservation challenges, particularly in reducing postharvest losses and extending shelf life. Compared to [...] Read more.
Food waste has emerged as a critical worldwide concern, resulting in environmental deterioration and economic detriment. Bio-based natural polymer coatings and films have emerged as a sustainable solution to food preservation challenges, particularly in reducing postharvest losses and extending shelf life. Compared to their synthetic counterparts, these polymers, such as chitosan, starch, cellulose, proteins, and alginate, are derived from renewable sources that are biodegradable, safe, and functional. Within this context, this review examines the various bio-based natural polymer coatings and films as biodegradable, edible alternatives to conventional packaging solutions. It examines the different fabrication methods, like solution casting, electrospinning, and spray coating, and incorporates antimicrobial agents to enhance performance. Emphasis is placed on their mechanical, barrier, and antimicrobial properties, their application in preserving fresh produce, how they promote food safety and environmental sustainability, and accompanying limitations. This review highlights the importance of bio-based natural polymer coatings and films as a promising, eco-friendly solution to enhancing food quality, safety, and shelf life while addressing global sustainability challenges. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

17 pages, 624 KiB  
Communication
Clarifying the Taxonomy of Plastics and Bioplastics: Toward a ‘Zero-Trace Plastic’ (ZTP) Material Framework
by Benjamin Gazeau, Atiq Zaman, Henrique Pacini and Mubarak Ahmad Khan
Sustainability 2025, 17(15), 6763; https://doi.org/10.3390/su17156763 - 24 Jul 2025
Viewed by 492
Abstract
The lack of precise definitions in plastics-related terminology continues to hinder the development of coherent sustainability strategies across the materials value chain. This communication revisits current definitions of plastics, polymers, and bioplastics, distinguishing between source (bio-based vs. fossil-based), structure (synthetic vs. natural polymer), [...] Read more.
The lack of precise definitions in plastics-related terminology continues to hinder the development of coherent sustainability strategies across the materials value chain. This communication revisits current definitions of plastics, polymers, and bioplastics, distinguishing between source (bio-based vs. fossil-based), structure (synthetic vs. natural polymer), and degradation behaviour (persistent vs. compostable or biodegradable). It critiques ambiguous classifications promoted in policy and marketing discourse. It introduces the concept of “Zero-Trace Plastic” (ZTP) to refer to materials that are non-plastic substitutes intended for versatile plastic-like uses while guaranteeing no trace of synthetic plastics in their composition and no contribution to pollution across their lifecycle. The ZTPframework prioritises complete mineralisation without plastic or microplastics or chemical residues under real-world conditions. ZTP is proposed not as a replacement for existing biodegradability standards, but it helps distinguish between plastic and non-plastic biopolymers and works as a complementary benchmark for biodegradability that aligns with and extends them by incorporating environmental specificity and system-wide traceability. The paper proposes a harmonised terminology matrix and calls for coordinated efforts by international agencies and standardisation institutes, national bodies and industries to avoid using misleading terminologies like bioplastics, often used for greenwashing and to enhance circular material strategies. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

30 pages, 2013 KiB  
Review
Biopolymers in Biotechnology and Tissue Engineering: A Comprehensive Review
by Maciej Grabowski, Dominika Gmyrek, Maria Żurawska and Anna Trusek
Macromol 2025, 5(3), 34; https://doi.org/10.3390/macromol5030034 - 21 Jul 2025
Viewed by 713
Abstract
Since the mid-19th century, researchers have explored the potential of bio-based polymeric materials for diverse applications, with particular promise in medicine. This review provides a focused and detailed examination of natural and synthetic biopolymers relevant to tissue engineering and biomedical applications. It emphasizes [...] Read more.
Since the mid-19th century, researchers have explored the potential of bio-based polymeric materials for diverse applications, with particular promise in medicine. This review provides a focused and detailed examination of natural and synthetic biopolymers relevant to tissue engineering and biomedical applications. It emphasizes the structural diversity, functional characteristics, and processing strategies of major classes of biopolymers, including polysaccharides (e.g., hyaluronic acid, alginate, chitosan, bacterial cellulose) and proteins (e.g., collagen, silk fibroin, albumin), as well as synthetic biodegradable polymers such as polycaprolactone, polylactic acid, and polyhydroxybutyrate. The central aim of this manuscript is to elucidate how intrinsic properties—such as molecular weight, crystallinity, water retention, and bioactivity—affect the performance of biopolymers in biomedical contexts, particularly in drug delivery, wound healing, and scaffold-based tissue regeneration. This review also highlights recent advancements in polymer functionalization, composite formation, and fabrication techniques (e.g., electrospinning, bioprinting), which have expanded the application potential of these materials. By offering a comparative analysis of structure–property–function relationships across a diverse range of biopolymers, this review provides a comprehensive reference for selecting and engineering materials tailored to specific biomedical challenges. It also identifies key limitations, such as production scalability and mechanical performance, and suggests future directions for developing clinically viable and environmentally sustainable biomaterial platforms. Full article
Show Figures

Figure 1

31 pages, 1834 KiB  
Review
A Review of Polylactic Acid (PLA) and Poly(3-hydroxybutyrate) (PHB) as Bio-Sourced Polymers for Membrane Production Applications
by Lacrimioara Senila, Eniko Kovacs and Marin Senila
Membranes 2025, 15(7), 210; https://doi.org/10.3390/membranes15070210 - 14 Jul 2025
Viewed by 754
Abstract
In recent years, membranes have found extensive applications, primarily in wastewater purification and food packaging. However, petroleum-based membranes can be detrimental to the environment. For this reason, extensive studies are being conducted to identify environmentally friendly substitutes for the materials used in membrane [...] Read more.
In recent years, membranes have found extensive applications, primarily in wastewater purification and food packaging. However, petroleum-based membranes can be detrimental to the environment. For this reason, extensive studies are being conducted to identify environmentally friendly substitutes for the materials used in membrane composition. Among these materials, polylactic acid (PLA) and poly(3-hydroxybutyrate) (PHB) are two bio-sourced and biodegradable polymers that can be derived from lignocellulosic waste. These polymers also possess suitable characteristics, such as thermal resistance and mechanical strength, which make them potential candidates for replacing conventional plastics. This study provides an overview of recent advances in the production of PLA and PHB, with a focus on their extraction from lignocellulosic biomass, as well as the recent applications of these two biodegradable polymers as sustainable materials in membrane manufacturing. The advantages and limitations of membranes produced from these materials are also summarized. Lastly, an analysis of future trends is provided concerning new sources, production possibilities, and potential applications in water treatment (mainly for metal ions separation), gas separation, oil–water separation, medical applications, drug release control, and food packaging. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

20 pages, 3330 KiB  
Article
Impact of Multiple Mechanical Recycling Cycles via Semi-Industrial Twin-Screw Extrusion on the Properties of Polybutylene Succinate (PBS)
by Vito Gigante, Laura Aliotta, Luigi Botta, Irene Bavasso, Alessandro Guzzini, Serena Gabrielli, Fabrizio Sarasini, Jacopo Tirillò and Andrea Lazzeri
Polymers 2025, 17(14), 1918; https://doi.org/10.3390/polym17141918 - 11 Jul 2025
Viewed by 488
Abstract
This study investigates the effects of repeated mechanical recycling on the structural, thermal, mechanical, and aesthetic properties of poly(butylene succinate) (PBS), a commercially available bio-based and biodegradable aliphatic polyester. PBS production scraps were subjected to five consecutive recycling cycles through semi-industrial extrusion compounding [...] Read more.
This study investigates the effects of repeated mechanical recycling on the structural, thermal, mechanical, and aesthetic properties of poly(butylene succinate) (PBS), a commercially available bio-based and biodegradable aliphatic polyester. PBS production scraps were subjected to five consecutive recycling cycles through semi-industrial extrusion compounding followed by injection molding to simulate realistic mechanical reprocessing conditions. Melt mass-flow rate (MFR) analysis revealed a progressive increase in melt fluidity. Initially, the trend of viscosity followed the melt flow rate; however, increasing the reprocessing number (up to 5) resulted in a partial recovery of viscosity, which was caused by chain branching mechanisms. The phenomenon was also confirmed by data of molecular weight evaluation. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) confirmed the thermal stability of the polymer, with minimal shifts in glass transition, crystallization, and degradation temperatures during the reprocessing cycles. Tensile tests revealed a slight reduction in strength and stiffness, but an increase in elongation at break, indicating improved ductility. Impact resistance declined moderately from 8.7 to 7.3 kJ/m2 upon reprocessing; however, it exhibited a pronounced reduction to 1.8 kJ/m2 at −50 °C, reflecting brittle behavior under sub-ambient conditions. Despite these variations, PBS maintained excellent color stability (ΔE < 1), ensuring aesthetic consistency while retaining good mechanical and thermal properties. Full article
Show Figures

Figure 1

20 pages, 9160 KiB  
Article
Plasticized Starch/Gelatin Blends with Humidity-Activated Shape-Memory Behavior
by Victor Oliver-Cuenca, Ana Muñoz-Menzinger, Marina P. Arrieta, Daniel López and Laura Peponi
Polymers 2025, 17(13), 1763; https://doi.org/10.3390/polym17131763 - 26 Jun 2025
Viewed by 323
Abstract
Biodegradable and bio-based polymers, such as starch and gelatin, are emerging as an important alternative to the use of conventional polymers. In this work, different proportions (1/1, 1/1.5, 1/2, and 1/2.5) of these bio-based polymers will be investigated, with the primary objective of [...] Read more.
Biodegradable and bio-based polymers, such as starch and gelatin, are emerging as an important alternative to the use of conventional polymers. In this work, different proportions (1/1, 1/1.5, 1/2, and 1/2.5) of these bio-based polymers will be investigated, with the primary objective of considering their strong moisture dependence as an advantage instead of a problem, as commonly considered. For this interesting challenge, the humidity-activated shape memory effect has been studied in both neat and plasticized starch. Additionally, for the first time, to the best of our knowledge, the shape-memory behavior activated by humidity in gelatin, as well as in starch/gelatin blends, is reported. In all cases, starch, gelatin, and their plasticized blends show excellent values in terms of strain fixity ratio, obtaining values of about 100% in all cases, and strain recovery ratio, with values higher than 90% for the samples studied. Moreover, considering their potential application as food packaging, mechanical response, wettability, water permeability, water uptake rate, and roughness is also studied in this work, taking into account the effect of the different amounts of gelatin on the final behavior of the materials. Full article
(This article belongs to the Special Issue Organic-Inorganic Hybrid Materials, 4th Edition)
Show Figures

Figure 1

20 pages, 5045 KiB  
Article
Sustainable Production and Antioxidant Activity of Bacterial Xanthan Gum
by Ilona Jonuškienė, Erika Davicijonaitė, Monika Vaškevičiūtė, Ihsan Kala, Rima Stankevičienė, Kristina Kantminienė and Ingrida Tumosienė
Molecules 2025, 30(13), 2734; https://doi.org/10.3390/molecules30132734 - 25 Jun 2025
Viewed by 469
Abstract
One of the world’s most sustainable solutions is to replace fossil-based polymers with biopolymers. The production of xanthan gum can be optimized using various renewable and cost-effective raw materials, which is a key focus in industrial biotechnology. Xanthan gum is a bioengineered thickening, [...] Read more.
One of the world’s most sustainable solutions is to replace fossil-based polymers with biopolymers. The production of xanthan gum can be optimized using various renewable and cost-effective raw materials, which is a key focus in industrial biotechnology. Xanthan gum is a bioengineered thickening, stabilizing, and emulsifying agent. It has unique properties for use in many industries (food, biotechnology, petrochemicals, agricultural, cosmetics, wastewater treatment) and medical applications. It is tasteless, environmentally safe, non-toxic, and biodegradable. The biotechnological production of xanthan gum depends on several factors: bacterial strain development, culture medium preparation, carbon sources, fermentation parameters and modes, pH, temperature, recovery, purification, and quality control regulations. Bio-innovative strategies have been developed to optimize the production of xanthan gum. A variety of carbon and nitrogen sources, as well as alternative renewable sources, have been used in the production of xanthan gum. The aim of the present study was to optimize the xanthan gum yield using Xanthomonas campestris bacteria and different carbon (D-glucose, D-sorbitol, lactose, sucrose, D-mannitol, D-fructose, erythritol, coconut palm sugar, L-arabinose, unrefined cane sugar), various nitrogen (bacterial peptone, casein peptone, L-glutamic acid, L-arginine, L-methionine, L-tryptophan, malt extract, meat extract, L-phenylalanine, soy peptone) and alternative carbon (orange peels, tangerine peels, lemon peels, avocado peels, melon peels, apple peels, cellulose, xylose, xylitol) sources. The xanthan gum samples were analyzed using antioxidant methods. Our study showed that using L-glutamic acid as the carbon source for 72 h of bacterial fermentation of Xanthomonas campestris resulted in the highest xanthan gum yield: 32.34 g/L. However, using renewable resources, we achieved a very high concentration of xanthan gum in just 24 h of fermentation. According to the reducing power and DPPH methods, the highest antioxidant activities were measured for xanthan gum whose biosynthesis was based on renewable resources. Xanthan gum structures have been verified by FT-IR and 1H NMR analysis. The sustainable biotechnology study has the advantage of increasing the sustainable production of xanthan gum by using renewable alternative resources compared to other production processes. Xanthan gum continues to be a valuable biopolymer with a wide range of industrial applications while promoting environmentally friendly production practices. Full article
(This article belongs to the Special Issue Natural Products with Pharmaceutical Activities)
Show Figures

Figure 1

58 pages, 9226 KiB  
Review
Biocompatible Glues: Recent Progress and Emerging Frontiers in Surgical Adhesion
by Marine Boursier, Yves Bayon, Claire Negrell, Julien Pinaud and Sylvain Caillol
Polymers 2025, 17(13), 1749; https://doi.org/10.3390/polym17131749 - 24 Jun 2025
Viewed by 772
Abstract
Surgical adhesives and glues have gained significant attention in the medical field due to their potential to replace traditional sutures and staples in various surgical applications. This review explores the evolution of biocompatible adhesives, focusing on their chemical composition, mechanical properties, and biocompatibility. [...] Read more.
Surgical adhesives and glues have gained significant attention in the medical field due to their potential to replace traditional sutures and staples in various surgical applications. This review explores the evolution of biocompatible adhesives, focusing on their chemical composition, mechanical properties, and biocompatibility. We discuss the key challenges in developing these materials, including their adhesive strength, degradation rate, and tissue compatibility. The article also delves into regulatory frameworks governing their use in clinical settings and highlights the ongoing innovations aimed at enhancing their performance and safety. Finally, the review examines the current trends in the development of next-generation surgical adhesives, with an emphasis on environmentally friendly and bioresorbable options. The importance of multidisciplinary collaboration in advancing these materials for clinical use is also underscored. Full article
(This article belongs to the Collection Selected Papers from "CNRS")
Show Figures

Graphical abstract

35 pages, 450 KiB  
Review
An Overview of Biopolymer-Based Graphene Nanocomposites for Biotechnological Applications
by Roya Binaymotlagh, Laura Chronopoulou and Cleofe Palocci
Materials 2025, 18(13), 2978; https://doi.org/10.3390/ma18132978 - 23 Jun 2025
Viewed by 422
Abstract
Bio-nanocomposites represent an advanced class of materials that combine the unique properties of nanomaterials with biopolymers, enhancing mechanical, electrical and thermal properties while ensuring biodegradability, biocompatibility and sustainability. These materials are gaining increasing attention, particularly in biomedical applications, due to their ability to [...] Read more.
Bio-nanocomposites represent an advanced class of materials that combine the unique properties of nanomaterials with biopolymers, enhancing mechanical, electrical and thermal properties while ensuring biodegradability, biocompatibility and sustainability. These materials are gaining increasing attention, particularly in biomedical applications, due to their ability to interact with biological systems in ways that conventional materials cannot. Graphene and graphene oxide (GO), two of the most well-known nanocarbon-based materials, have garnered substantial interest in bio-nanocomposite research because of their extraordinary properties such as high surface area, excellent electrical conductivity, mechanical strength and biocompatibility. The integration of graphene-based nanomaterials within biopolymers, such as polysaccharides and proteins, forms a new class of bio-nanocomposites that can be tailored for a wide range of biological applications. This review explores the synthesis methods, properties and biotechnological applications of graphene-based bio-nanocomposites, with a particular focus on polysaccharide-based and protein-based composites. Emphasis is placed on the biotechnological potential of these materials, including drug delivery, tissue engineering, wound healing, antimicrobial activities and industrial food applications. Additionally, biodegradable polymers such as polylactic acid, hyaluronic acid and polyethylene glycol, which play a crucial role in biotechnological applications, will be discussed. Full article
(This article belongs to the Special Issue Emerging Trends and Innovations in Engineered Nanomaterials)
22 pages, 2850 KiB  
Systematic Review
Polymer-Free Versus Biodegradable Polymer Drug-Eluting Stents in Coronary Artery Disease: Updated Systematic Review and Meta-Analysis of Clinical, Angiographic, and OCT Outcomes
by Marcello Marchetta, Stefano Sasso, Vincenzo Paragliola, Andrea Giovanni Parato, Diego De Angelis, Giulio Russo, Giovanni Albano, Daniela Benedetto, Federico Moretti, Francesco Valenti, Gianluca Massaro, Gaetano Chiricolo, Manfredi Tesauro and Giuseppe Massimo Sangiorgi
Biomedicines 2025, 13(6), 1470; https://doi.org/10.3390/biomedicines13061470 - 14 Jun 2025
Cited by 1 | Viewed by 565
Abstract
Background/Objectives: Polymer-free drug-eluting stents (PF-DESs) aim to mitigate long-term adverse effects associated with polymer-based platforms. However, clinical comparisons with biodegradable polymer DESs (BP-DESs) remain limited. The objective of this review is to assess the efficacy and safety of PF-DESs versus thin-struts (<100 [...] Read more.
Background/Objectives: Polymer-free drug-eluting stents (PF-DESs) aim to mitigate long-term adverse effects associated with polymer-based platforms. However, clinical comparisons with biodegradable polymer DESs (BP-DESs) remain limited. The objective of this review is to assess the efficacy and safety of PF-DESs versus thin-struts (<100 μm) BP-DESs in patients undergoing percutaneous coronary intervention (PCI). Methods: We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) comparing PF-DESs and BP-DESs in adults undergoing PCI. PubMed, Embase, and CENTRAL were searched up to 1 February 2025. A random-effects model was used to calculate pooled risk ratios (RR) or mean differences (MD) with 95% confidence intervals (CI). Outcomes included myocardial infarction (MI), all-cause and cardiac death, target lesion revascularization (TLR), stent thrombosis, and angiographic/OCT parameters. Subgroup and sensitivity analyses were conducted for outcomes with high heterogeneity (I2 > 50%). Results: Nine RCTs (n = 9597) were included. At 12 months, no significant differences were found between PF-DESs and BP-DESs for TLR (RR 1.51; 95% CI: 0.83–2.75), MI, or stent thrombosis. At 24 months, MI and all-cause death were similar between groups. A subgroup analysis showed lower cardiac death with the BioFreedom stent (RR 0.57; 95% CI: 0.35–0.90), not observed in non-BioFreedom devices. No significant differences were detected in angiographic or OCT outcomes, though heterogeneity was high. Conclusions: PF-DESs and BP-DESs demonstrated comparable clinical performance. The observed benefit in cardiac death with BioFreedom may reflect device-specific effects and merits further investigation. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Graphical abstract

14 pages, 2838 KiB  
Article
Blends of Sustainable Polymers and Waste Soy Biomass
by Shawn Martey, Brooklyn Hayden, Kalsoom Jan, Kerry Candlen, Jo Ann Ratto, Robina Hogan and Wan-Ting Chen
Sustainability 2025, 17(11), 5122; https://doi.org/10.3390/su17115122 - 3 Jun 2025
Viewed by 429
Abstract
Sustainable polymers have attracted interest due to their ability to biodegrade under specific conditions in soil, compost, and the marine environment; however, they have comparatively lower mechanical properties, limiting their widespread use. This study explores the effect of incorporating waste soy biomass into [...] Read more.
Sustainable polymers have attracted interest due to their ability to biodegrade under specific conditions in soil, compost, and the marine environment; however, they have comparatively lower mechanical properties, limiting their widespread use. This study explores the effect of incorporating waste soy biomass into sustainable polymers (including biodegradable and biobased) on the thermal and mechanical properties of the resultant blends. The dispersion of the waste soy biomass in the polymer matrix is also investigated in relation to particle size (17 µm vs. 1000 µm). Fine waste soy biomass did not significantly affect the melting temperature of the polymers (polyhydroxyalkanoates, polybutylene adipate terephthalate, polybutylene adipate terephthalate/poly(lactic) acid, and biobased linear low-density polyethylene) used in this study, but their enthalpy of fusion decreased after soy was melt-blended with the polymers. The tensile modulus of the polymers filled with fine waste soy biomass powder (17 µm) was enhanced when melt-blended as compared to unfilled polymers. Additionally, it was found that fine waste soy powder (17 µm) increased the tensile modulus of the polymer blends without significantly affecting processability, while coarse waste soy meal (1000 µm) generally reduced elongation at break due to poor dispersion and stress concentration; however, this effect was less pronounced in PHA blends, where improved compatibility was observed. Full article
Show Figures

Graphical abstract

24 pages, 4592 KiB  
Article
Enhancing the Performance of PLA Nonwoven Fabrics Through Plasma Treatments for Superior Active-Molecule Retention
by Norma Mallegni, Serena Coiai, Francesca Cicogna, Luca Panariello, Caterina Cristallini, Stefano Caporali and Elisa Passaglia
Polymers 2025, 17(11), 1482; https://doi.org/10.3390/polym17111482 - 27 May 2025
Viewed by 680
Abstract
Polylactic acid (PLA) is a promising biobased polymer celebrated for its biocompatibility, biodegradability, and advantageous mechanical properties. However, its inherent hydrophobicity and lack of hydrophilic functional groups restrict its application in advanced uses, such as nonwoven fabrics (NWFs) for masks, diapers, and biomedical [...] Read more.
Polylactic acid (PLA) is a promising biobased polymer celebrated for its biocompatibility, biodegradability, and advantageous mechanical properties. However, its inherent hydrophobicity and lack of hydrophilic functional groups restrict its application in advanced uses, such as nonwoven fabrics (NWFs) for masks, diapers, and biomedical products. This study explores the application of cold plasma treatments to modify the surface of PLA-based NWFs using oxygen and oxygen–argon gas mixtures. We varied power levels and exposure times to optimize surface activation. The samples treated with plasma under different conditions were analyzed to understand the impact of these treatments on the surface functionalization, morphology, and thermal properties of PLA_NWF. Additionally, as a proof of concept, the plasma-treated samples were dip-coated in green tea extract, which is rich in (-)-epigallocatechin gallate (EGCG), a natural antioxidant. The findings demonstrate that plasma treatment significantly enhances the adhesion and functionality of the active ingredient, thereby paving the way for innovative sustainable applications of surface-activated PLA-NWFs in the biomedical and cosmetic sectors or food preservation. Full article
(This article belongs to the Special Issue Structure, Characterization and Application of Bio-Based Polymers)
Show Figures

Graphical abstract

30 pages, 13935 KiB  
Article
Bio-Based Polyhydroxyalkanoate (PHA) Blends for 3D Printing: Rheological, Mechanical, Biocompatibility, and Biodegradation Properties
by Michal Ďurfina, Nafiseh Babaei, Zuzana Vanovčanová, Jozef Feranc, Vojtech Horváth, Ida Vašková, Ján Kruželák, Katarína Tomanová and Roderik Plavec
Polymers 2025, 17(11), 1477; https://doi.org/10.3390/polym17111477 - 26 May 2025
Viewed by 959
Abstract
This study develops highly flexible, biodegradable polymer blends using bio-based polyhydroxyalkanoate (PHA) polymers for Fused Deposition Modeling (FDM) 3D printing. A Design of Experiment (DoE) approach optimized blend compositions by varying crystallinity levels of three PHAs, processed via twin-screw extrusion. Rheological analysis revealed [...] Read more.
This study develops highly flexible, biodegradable polymer blends using bio-based polyhydroxyalkanoate (PHA) polymers for Fused Deposition Modeling (FDM) 3D printing. A Design of Experiment (DoE) approach optimized blend compositions by varying crystallinity levels of three PHAs, processed via twin-screw extrusion. Rheological analysis revealed that PHA blends exhibited 30–50% lower viscosity than PLA at low shear rates, ensuring improved processability. Tensile testing confirmed favorable mechanical properties, with elongation at break exceeding 2000%, significantly surpassing PLA (29%). Differential scanning calorimetry (DSC) indicated partial miscibility and crystallinity reductions of up to 50%, influencing printability. Optimized 3D printing parameters demonstrated minimal warping for blends with crystallinity below 18%, ensuring high-dimensional stability. During home composting tests, PHA blends showed significant degradation within two months, whereas PLA remained intact. Scanning electron microscopy (SEM) confirmed microbial degradation. Cytotoxicity tests demonstrated that the blends were non-toxic, supporting applications in tissue engineering. These findings highlight the potential of PHA-based blends as sustainable, high-performance materials for biomedical, packaging, and environmental applications. Full article
Show Figures

Figure 1

35 pages, 2642 KiB  
Review
Targeted Acidogenic Fermentation of Waste Streams for the Selective Production of Volatile Fatty Acids as Bioplastic Precursors
by Dolores Hidalgo, Lidia Garrote, Francisco Infante, Jesús M. Martín-Marroquín, Enrique Pérez-Zapatero and Francisco Corona
Appl. Sci. 2025, 15(11), 5923; https://doi.org/10.3390/app15115923 - 24 May 2025
Viewed by 610
Abstract
The sustainable production of bioplastics is increasingly important for reducing reliance on fossil fuels and addressing environmental challenges. The acidogenic fermentation of waste streams offers a promising pathway for generating key bioplastic precursors, such as volatile fatty acids, which can be used to [...] Read more.
The sustainable production of bioplastics is increasingly important for reducing reliance on fossil fuels and addressing environmental challenges. The acidogenic fermentation of waste streams offers a promising pathway for generating key bioplastic precursors, such as volatile fatty acids, which can be used to produce polymers like polyhydroxyalkanoates. This review explores the potential of various waste streams, including agricultural residues, industrial by-products, and food waste, as substrates for acidogenic fermentation, aligning with circular economy principles by reducing waste and environmental impact. A key feature of this review is its focus on targeted acidogenic fermentation, which optimizes process conditions to maximize the production of specific acids based on waste characteristics. The analysis emphasizes how the chemical composition and biodegradability of waste streams influence the selection of microbial consortia and metabolic pathways, determining the yield and composition of the products generated. The review also highlights the adaptability of acidogenic fermentation to heterogeneous and variable waste streams, underlining its potential as a scalable and sustainable solution for bioplastic precursor production. By tailoring process parameters such as pH and hydraulic retention time to the specific characteristics of the substrate, targeted acidogenic fermentation can effectively transform waste into high-value intermediates. Finally, challenges related to the scalability and economic feasibility of these processes are discussed, along with opportunities for integrating acidogenic fermentation with complementary waste valorization technologies to advance the bio-based economy. The findings underscore the critical role of waste streams in enabling the sustainable and efficient generation of bioplastic precursors, contributing to a circular economy framework. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

23 pages, 2454 KiB  
Article
Rheological Behavior and Mechanical Performance of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Natural Rubber Blends Modified with Coffee Oil Epoxide for Sustainable Packaging Applications
by Rinky Ghosh, Xiaoying Zhao and Yael Vodovotz
Polymers 2025, 17(10), 1324; https://doi.org/10.3390/polym17101324 - 13 May 2025
Viewed by 636
Abstract
The inherent brittleness of bio-based poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) significantly restricts its industrial applications despite its industrial compostability. Blending with elastomeric polymers addresses mechanical limitations; however, interfacial incompatibility compromises miscibility as our previous work established. Herein, we investigate coffee oil epoxide (COE) as a bio-based [...] Read more.
The inherent brittleness of bio-based poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) significantly restricts its industrial applications despite its industrial compostability. Blending with elastomeric polymers addresses mechanical limitations; however, interfacial incompatibility compromises miscibility as our previous work established. Herein, we investigate coffee oil epoxide (COE) as a bio-based plasticizer for PHBV/natural rubber (NR) blends in sustainable packaging applications. COE, derived from spent coffee grounds, was incorporated into PHBV/NR/peroxide/coagent composites via twin-screw extrusion. FTIR spectroscopy with chemometric analysis confirmed successful COE incorporation (intensified CH2 stretching: 2847, 2920 cm−1; reduced crystallinity), with PCA and PLS-DA accounting for 67.9% and 54.4% of spectral variance. COE incorporation improved optical properties (7.73% increased lightness; 21.9% reduced yellowness). Rheological characterization through Cole–Cole and Han plots demonstrated enhanced phase compatibility in the PHBV/NR/COE blends. Mechanical testing showed characteristic reductions in flexural properties: strength decreased by 16.5% and modulus by 36.8%. Dynamic mechanical analysis revealed PHBV/NR/COE blends exhibited a single relaxation transition at 32 °C versus distinct glass transition temperatures in PHBV/NR blends. Tan δ deconvolution confirmed the transformation from bimodal distribution to a single broadened peak, indicating enhanced interfacial interactions and improved miscibility. These findings demonstrated COE’s potential as a sustainable additive for biodegradable PHBV-based packaging while valorizing food waste. Full article
(This article belongs to the Special Issue Biodegradable Polymers in Sustainable and Biomedical Applications)
Show Figures

Figure 1

Back to TopTop