Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,176)

Search Parameters:
Keywords = binding inhibition assay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 5588 KiB  
Article
Anti-Viral Activity of Conessine Against Influenza A Virus
by Won-Kyung Cho and Jin Yeul Ma
Int. J. Mol. Sci. 2025, 26(15), 7572; https://doi.org/10.3390/ijms26157572 (registering DOI) - 5 Aug 2025
Abstract
Conessine is a steroidal alkaloid found in many plants. The pharmacological efficacies of conessine on various ailments, including antiviral effects against Zika, Herpes, and Coronavirus, were reported. However, the effect of conessine on the influenza virus was still unknown. In this study, conessine [...] Read more.
Conessine is a steroidal alkaloid found in many plants. The pharmacological efficacies of conessine on various ailments, including antiviral effects against Zika, Herpes, and Coronavirus, were reported. However, the effect of conessine on the influenza virus was still unknown. In this study, conessine exhibited a strong inhibitory effect against influenza A virus (IAV) infection. We examined the effect of conessine on IAV using green fluorescent protein (GFP)-expressing Influenza A/PR8/34 and wild-type A/PR8/34. The fluorescence-activated cell sorting, fluorescence microscopy, cytopathic effect analysis, and plaque assay demonstrated that conessine significantly inhibits IAV infection. Consistently, immunofluorescence results showed that conessine strongly reduces the expression of IAV proteins. The time-of-drug-addition assay revealed that conessine could affect the viral attachment and entry into the cells upon IAV infection. Further, conessine eradicated the virus before binding to the cells in the early stage of viral infection. Our results suggest that conessine has strong anti-viral efficacy against IAV infection and could be developed as an anti-influenza viral agent. Full article
Show Figures

Figure 1

16 pages, 4455 KiB  
Article
Effect of Alpha2-Plasmin Inhibitor C-Terminal Heterogeneity on Clot Lysis and Clot Structure
by Réka Bogáti, Barbara Baráth, Dóra Pituk, Rita Orbán-Kálmándi, Péter Szűcs, Zoltán Hegyi, Zsuzsanna Bereczky, Zsuzsa Bagoly and Éva Katona
Biomolecules 2025, 15(8), 1127; https://doi.org/10.3390/biom15081127 - 5 Aug 2025
Abstract
Alpha2-plasmin inhibitor (α2PI) has a heterogeneous structure due to proteolytic cleavages in the circulation. The C-terminally cleaved form loses the plasminogen binding site and is, therefore, a slow plasmin inhibitor (NPB-α2PI). As FXIII primarily crosslinks the plasminogen-binding intact form (PB-α2PI) to fibrin, the [...] Read more.
Alpha2-plasmin inhibitor (α2PI) has a heterogeneous structure due to proteolytic cleavages in the circulation. The C-terminally cleaved form loses the plasminogen binding site and is, therefore, a slow plasmin inhibitor (NPB-α2PI). As FXIII primarily crosslinks the plasminogen-binding intact form (PB-α2PI) to fibrin, the effect of NPB-α2PI on fibrinolysis has been less studied. Herein, we investigated the effect of C-terminal truncation. Total-, PB-, and NPB-α2PI antigen levels and α2PI incorporation were measured by ELISAs from samples of 80 healthy individuals. Clot lysis parameters of the same subjects were investigated using an in vitro clot lysis assay. α2PI incorporation into the clot was demonstrated by Western blotting. Clot lysis and clot structure were also analyzed using an α2PI-deficient plasma substituted with recombinant PB- and NPB-α2PI. Both plasma and clot-bound levels of total- and NPB-α2PI showed a significant positive correlation with clot lysis parameters. NPB-α2PI was detected in the clot due to non-covalent binding. Regardless of the type of binding, both forms affected the clot structure by increasing the thickness of the fibrin fibers and reducing the pore size. In conclusion, we found that NPB-α2PI can bind non-covalently to fibrin, and this binding contributes to changes in clot structure and inhibition of fibrinolysis. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

20 pages, 1773 KiB  
Article
Make Acetylcholine Great Again! Australian Skinks Evolved Multiple Neurotoxin-Proof Nicotinic Acetylcholine Receptors in Defiance of Snake Venom
by Uthpala Chandrasekara, Marco Mancuso, Glenn Shea, Lee Jones, Jacek Kwiatkowski, Dane Trembath, Abhinandan Chowdhury, Terry Bertozzi, Michael G. Gardner, Conrad J. Hoskin, Christina N. Zdenek and Bryan G. Fry
Int. J. Mol. Sci. 2025, 26(15), 7510; https://doi.org/10.3390/ijms26157510 (registering DOI) - 4 Aug 2025
Abstract
Many vertebrates have evolved resistance to snake venom as a result of coevolutionary chemical arms races. In Australian skinks (family Scincidae), who often encounter venomous elapid snakes, the frequency, diversity, and molecular basis of venom resistance have been unexplored. This study investigated the [...] Read more.
Many vertebrates have evolved resistance to snake venom as a result of coevolutionary chemical arms races. In Australian skinks (family Scincidae), who often encounter venomous elapid snakes, the frequency, diversity, and molecular basis of venom resistance have been unexplored. This study investigated the evolution of neurotoxin resistance in Australian skinks, focusing on mutations in the muscle nicotinic acetylcholine receptor (nAChR) α1 subunit’s orthosteric site that prevent pathophysiological binding by α-neurotoxins. We sampled a broad taxonomic range of Australian skinks and sequenced the nAChR α1 subunit gene. Key resistance-conferring mutations at the toxin-binding site (N-glycosylation motifs, proline substitutions, arginine insertions, changes in the electrochemical state of the receptor, and novel cysteines) were identified and mapped onto the skink organismal phylogeny. Comparisons with other venom-resistant taxa (amphibians, mammals, and reptiles) were performed, and structural modelling and binding assays were used to evaluate the impact of these mutations. Multiple independent origins of α-neurotoxin resistance were found across diverse skink lineages. Thirteen lineages evolved at least one resistance motif and twelve additional motifs evolved within these lineages, for a total of twenty-five times of α-neurotoxic venoms resistance. These changes sterically or electrostatically inhibit neurotoxin binding. Convergent mutations at the orthosteric site include the introduction of N-linked glycosylation sites previously known from animals as diverse as cobras and mongooses. However, an arginine (R) substitution at position 187 was also shown to have evolved on multiple occasions in Australian skinks, a modification previously shown to be responsible for the Honey Badger’s iconic resistance to cobra venom. Functional testing confirmed this mode of resistance in skinks. Our findings reveal that venom resistance has evolved extensively and convergently in Australian skinks through repeated molecular adaptations of the nAChR in response to the enormous selection pressure exerted by elapid snakes subsequent to their arrival and continent-wide dispersal in Australia. These toxicological findings highlight a remarkable example of convergent evolution across vertebrates and provide insight into the adaptive significance of toxin resistance in snake–lizard ecological interactions. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

22 pages, 11874 KiB  
Article
Bactericidal Activities of Nanoemulsion Containing Piper betle L. Leaf and Hydroxychavicol Against Avian Pathogenic Escherichia coli and Modelling Simulation of Hydroxychavicol Against Bacterial Cell Division Proteins
by Kunchaphorn Ratchasong, Phirabhat Saengsawang, Gorawit Yusakul, Fonthip Makkliang, Hemanth Kumar Lakhanapuram, Phitchayapak Wintachai, Thotsapol Thomrongsuwannakij, Ozioma Forstinus Nwabor, Veerasak Punyapornwithaya, Chonticha Romyasamit and Watcharapong Mitsuwan
Antibiotics 2025, 14(8), 788; https://doi.org/10.3390/antibiotics14080788 (registering DOI) - 3 Aug 2025
Viewed by 64
Abstract
Background: Avian pathogenic Escherichia coli (APEC) is a leading cause of colibacillosis in poultry. Piper betle L. is a medicinal plant rich in bioactive compounds including hydroxychavicol that possess potent antibacterial activity. This study aimed to investigate the efficacy of a P. [...] Read more.
Background: Avian pathogenic Escherichia coli (APEC) is a leading cause of colibacillosis in poultry. Piper betle L. is a medicinal plant rich in bioactive compounds including hydroxychavicol that possess potent antibacterial activity. This study aimed to investigate the efficacy of a P. betle L. leaf nanoemulsion (NEPE) and hydroxychavicol against multidrug-resistant APEC isolates. Methods: In vitro and in silico analysis of NEPE and hydroxychavicol against APEC were determined. Results: The nanoemulsion exhibited potent antibacterial activity, with MIC and MBC values of 0.06–0.25% v/v and 0.125–0.25% v/v, respectively. The MIC and MBC values of hydroxychavicol against isolates ranged from 0.25 to 1.0 mg/mL. A time–kill assays revealed rapid bactericidal effects of both compounds, achieving a ≥3-log reduction within 4 h at 4 × MIC. Scanning electron microscopy demonstrated that APEC cells treated with hydroxychavicol exhibited filamentous cells with incomplete septa. Molecular docking and dynamics simulations of hydroxychavicol against APEC cell division proteins were investigated. According to the binding energy, hydroxychavicol exhibited the highest affinity with ZapE, FtsW, FtsX, FtsZ, and FtsA, respectively. However, the FtsA protein showed the least protein conformational change throughout the 5000 ns simulation, reflecting a highly stable conformation. Conclusions: These confirm the potential stability of protein and ligand, as supported by molecular dynamics simulation. The results suggested the potential of NEPE and hydroxychavicol, which may have promising antibacterial potential that can be used to inhibit APEC growth. Full article
(This article belongs to the Special Issue Antimicrobial Extracts and Compounds Derived from Plants)
Show Figures

Figure 1

15 pages, 1470 KiB  
Article
Coffea arabica Extracts and Metabolites with Potential Inhibitory Activity of the Major Enzymes in Bothrops asper Venom
by Erika Páez, Yeisson Galvis-Pérez, Jaime Andrés Pereañez, Lina María Preciado and Isabel Cristina Henao-Castañeda
Pharmaceuticals 2025, 18(8), 1151; https://doi.org/10.3390/ph18081151 - 1 Aug 2025
Viewed by 123
Abstract
Background/Objectives: Most snakebite incidents in Latin America are caused by species of the Bothrops genus. Their venom induces severe local effects, against which antivenom therapy has limited efficacy. Metabolites derived from Coffea arabica have demonstrated anti-inflammatory and anticoagulant properties, suggesting their potential [...] Read more.
Background/Objectives: Most snakebite incidents in Latin America are caused by species of the Bothrops genus. Their venom induces severe local effects, against which antivenom therapy has limited efficacy. Metabolites derived from Coffea arabica have demonstrated anti-inflammatory and anticoagulant properties, suggesting their potential as therapeutic agents to inhibit the local effects induced by B. asper venom. Methods: Three enzymatic assays were performed: inhibition of the procoagulant and amidolytic activities of snake venom serine proteinases (SVSPs); inhibition of the proteolytic activity of snake venom metalloproteinases (SVMPs); and inhibition of the catalytic activity of snake venom phospholipases A2 (PLA2s). Additionally, molecular docking studies were conducted to propose potential inhibitory mechanisms of the metabolites chlorogenic acid, caffeine, and caffeic acid. Results: Green and roasted coffee extracts partially inhibited the enzymatic activity of SVSPs and SVMPs. Notably, the green coffee extract, at a 1:20 ratio, effectively inhibited PLA2 activity. Among the individual metabolites tested, partial inhibition of SVSP and PLA2 activities was observed, whereas no significant inhibition of SVMP proteolytic activity was detected. Chlorogenic acid was the most effective metabolite, significantly prolonging plasma coagulation time and achieving up to 82% inhibition at a concentration of 62.5 μM. Molecular docking analysis revealed interactions between chlorogenic acid and key active site residues of SVSP and PLA2 enzymes from B. asper venom. Conclusions: The roasted coffee extract demonstrated the highest inhibitory effect on venom toxins, potentially due to the formation of bioactive compounds during the Maillard reaction. Molecular modeling suggests that the tested inhibitors may bind to and occupy the substrate-binding clefts of the target enzymes. These findings support further in vivo research to explore the use of plant-derived polyphenols as adjuvant therapies in the treatment of snakebite envenoming. Full article
Show Figures

Graphical abstract

35 pages, 10887 KiB  
Article
Heteroaryl-Capped Hydroxamic Acid Derivatives with Varied Linkers: Synthesis and Anticancer Evaluation with Various Apoptosis Analyses in Breast Cancer Cells, Including Docking, Simulation, DFT, and ADMET Studies
by Ekta Shirbhate, Biplob Koch, Vaibhav Singh, Akanksha Dubey, Haya Khader Ahmad Yasin and Harish Rajak
Pharmaceuticals 2025, 18(8), 1148; https://doi.org/10.3390/ph18081148 - 1 Aug 2025
Viewed by 104
Abstract
Background/Objectives: Cancer suffers from unresolved therapeutic challenges owing to the lack of targeted therapies and heightened recurrence risk. This study aimed to investigate the new series of hydroxamate by structurally modifying the pharmacophore of vorinostat. Methods: The present work involves the synthesis of [...] Read more.
Background/Objectives: Cancer suffers from unresolved therapeutic challenges owing to the lack of targeted therapies and heightened recurrence risk. This study aimed to investigate the new series of hydroxamate by structurally modifying the pharmacophore of vorinostat. Methods: The present work involves the synthesis of 15 differently substituted 2H-1,2,3-triazole-based hydroxamide analogs by employing triazole ring as a cap with varied linker fragments. The compounds were evaluated for their anticancer effect, especially their anti-breast cancer response. Molecular docking and molecular dynamics simulations were conducted to examine binding interactions. Results: Results indicated that among all synthesized hybrids, the molecule VI(i) inhibits the growth of MCF-7 and A-549 cells (GI50 < 10 μg/mL) in an antiproliferative assay. Compound VI(i) was also tested for cytotoxic activity by employing an MTT assay against A549, MCF-7, and MDA-MB-231 cell lines, and the findings indicate its potent anticancer response, especially against MCF-7 cells with IC50 of 60 µg/mL. However, it experiences minimal toxicity towards the normal cell line (HEK-293). Mechanistic studies revealed a dual-pathway activation: first, apoptosis (17.18% of early and 10.22% of late apoptotic cells by annexin V/PI analysis); second, cell cycle arrest at the S and G2/M phases. It also promotes ROS generation in a concentration-dependent manner. The HDAC–inhibitory assay, extended in silico molecular docking, and MD simulation experiments further validated its significant binding affinity towards HDAC 1 and 6 isoforms. DFT and ADMET screening further support the biological proclivity of the title compounds. The notable biological contribution of VI(i) highlights it as a potential candidate, especially against breast cancer cells. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

19 pages, 2892 KiB  
Review
Roles of Type 10 17β-Hydroxysteroid Dehydrogenase in Health and Disease
by Xue-Ying He, Janusz Frackowiak and Song-Yu Yang
J. Pers. Med. 2025, 15(8), 346; https://doi.org/10.3390/jpm15080346 - 1 Aug 2025
Viewed by 143
Abstract
Type 10 17β-hydroxysteroid dehydrogenase (17β-HSD10) is the HSD17B10 gene product. It plays an appreciable part in the carcinogenesis and pathogenesis of neurodegeneration, such as Alzheimer’s disease and infantile neurodegeneration. This mitochondrial, homo-tetrameric protein is a central hub in various metabolic pathways, e.g., branched-chain [...] Read more.
Type 10 17β-hydroxysteroid dehydrogenase (17β-HSD10) is the HSD17B10 gene product. It plays an appreciable part in the carcinogenesis and pathogenesis of neurodegeneration, such as Alzheimer’s disease and infantile neurodegeneration. This mitochondrial, homo-tetrameric protein is a central hub in various metabolic pathways, e.g., branched-chain amino acid degradation and neurosteroid metabolism. It can bind to other proteins carrying out diverse physiological functions, e.g., tRNA maturation. It has also previously been proposed to be an Aβ-binding alcohol dehydrogenase (ABAD) or endoplasmic reticulum-associated Aβ-binding protein (ERAB), although those reports are controversial due to data analyses. For example, the reported km value of some substrate of ABAD/ERAB was five times higher than its natural solubility in the assay employed to measure km. Regarding any reported “one-site competitive inhibition” of ABAD/ERAB by Aβ, the ki value estimations were likely impacted by non-physiological concentrations of 2-octanol at high concentrations of vehicle DMSO and, therefore, are likely artefactual. Certain data associated with ABAD/ERAB were found not reproducible, and multiple experimental approaches were undertaken under non-physiological conditions. In contrast, 17β-HSD10 studies prompted a conclusion that Aβ inhibited 17β-HSD10 activity, thus harming brain cells, replacing a prior supposition that “ABAD” mediates Aβ neurotoxicity. Furthermore, it is critical to find answers to the question as to why elevated levels of 17β-HSD10, in addition to Aβ and phosphorylated Tau, are present in the brains of AD patients and mouse AD models. Addressing this question will likely prompt better approaches to develop treatments for Alzheimer’s disease. Full article
Show Figures

Figure 1

13 pages, 1186 KiB  
Article
Targeting the Cell Wall Salvage Pathway: Dual-Enzyme Inhibition of AmgK and MurU as a Strategy Against Antibiotic Resistance
by Hwa Young Kim, Seri Jo, Mi-Sun Kim and Dong Hae Shin
Int. J. Mol. Sci. 2025, 26(15), 7368; https://doi.org/10.3390/ijms26157368 - 30 Jul 2025
Viewed by 195
Abstract
The rise of multidrug-resistant Pseudomonas aeruginosa underscores the need for novel therapeutic targets beyond conventional peptidoglycan biosynthesis. Some bacterial strains bypass MurA inhibition by fosfomycin via a cell wall salvage pathway. This study targeted P. aeruginosa AmgK (PaAmgK) and MurU ( [...] Read more.
The rise of multidrug-resistant Pseudomonas aeruginosa underscores the need for novel therapeutic targets beyond conventional peptidoglycan biosynthesis. Some bacterial strains bypass MurA inhibition by fosfomycin via a cell wall salvage pathway. This study targeted P. aeruginosa AmgK (PaAmgK) and MurU (PaMurU) to identify inhibitors that could complement fosfomycin therapy. A malachite-green-based dual-enzyme assay enabled efficient activity measurements and high-throughput chemical screening. Screening 232 compounds identified Congo red and CTAB as potent PaMurU inhibitors. A targeted mass spectrometric analysis confirmed the selective inhibition of PaMurU relative to that of PaAmgK. Molecular docking simulations indicate that Congo red preferentially interacts with PaMurU through electrostatic contacts, primarily involving the residues Arg28 and Arg202. The binding of Congo red to PaMurU was corroborated further using SUPR-differential scanning fluorimetry (SUPR-DSF), which revealed ligand-induced thermal destabilization. Ongoing X-ray crystallographic studies, in conjunction with site-directed mutagenesis and enzyme kinetic analyses, aim to elucidate the binding mode at an atomic resolution. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

24 pages, 5906 KiB  
Article
In Silico Mining of the Streptome Database for Hunting Putative Candidates to Allosterically Inhibit the Dengue Virus (Serotype 2) RdRp
by Alaa H. M. Abdelrahman, Gamal A. H. Mekhemer, Peter A. Sidhom, Tarad Abalkhail, Shahzeb Khan and Mahmoud A. A. Ibrahim
Pharmaceuticals 2025, 18(8), 1135; https://doi.org/10.3390/ph18081135 - 30 Jul 2025
Viewed by 358
Abstract
Background/Objectives: In the last few decades, the dengue virus, a prevalent flavivirus, has demonstrated various epidemiological, economic, and health impacts around the world. Dengue virus serotype 2 (DENV2) plays a vital role in dengue-associated mortality. The RNA-dependent RNA polymerase (RdRp) of DENV2 is [...] Read more.
Background/Objectives: In the last few decades, the dengue virus, a prevalent flavivirus, has demonstrated various epidemiological, economic, and health impacts around the world. Dengue virus serotype 2 (DENV2) plays a vital role in dengue-associated mortality. The RNA-dependent RNA polymerase (RdRp) of DENV2 is a charming druggable target owing to its crucial function in viral reproduction. In recent years, streptomycetes natural products (NPs) have attracted considerable attention as a potential source of antiviral drugs. Methods: Seeking prospective inhibitors that inhibit the DENV2 RdRp allosteric site, in silico mining of the Streptome database was executed. AutoDock4.2.6 software performance in predicting docking poses of the inspected inhibitors was initially conducted according to existing experimental data. Upon the assessed docking parameters, the Streptome database was virtually screened against DENV2 RdRp allosteric site. The streptomycetes NPs with docking scores less than the positive control (68T; calc. −35.6 kJ.mol−1) were advanced for molecular dynamics simulations (MDS), and their binding affinities were computed by employing the MM/GBSA approach. Results: SDB9818 and SDB4806 unveiled superior inhibitor activities against DENV2 RdRp upon MM/GBSA//300 ns MDS than 68T with ΔGbinding values of −246.4, −242.3, and −150.6 kJ.mol−1, respectively. A great consistency was found in both the energetic and structural analyses of the identified inhibitors within the DENV2 RdRp allosteric site. Furthermore, the physicochemical characteristics of the identified inhibitors demonstrated good oral bioavailability. Eventually, quantum mechanical computations were carried out to evaluate the chemical reactivity of the identified inhibitors. Conclusions: As determined by in silico computations, the identified streptomycetes NPs may act as DENV2 RdRp allosteric inhibitors and mandate further experimental assays. Full article
Show Figures

Graphical abstract

14 pages, 1634 KiB  
Article
Zinc Ions Inactivate Influenza Virus Hemagglutinin and Prevent Receptor Binding
by Ahn Young Jeong, Vikram Gopal and Aartjan J. W. te Velthuis
Biomedicines 2025, 13(8), 1843; https://doi.org/10.3390/biomedicines13081843 - 29 Jul 2025
Viewed by 347
Abstract
Background: Influenza A viruses (IAV) cause seasonal flu and occasional pandemics. In addition, the potential for the emergence of new strains presents unknown challenges for public health. Face masks and other personal protective equipment (PPE) can act as barriers that prevent the spread [...] Read more.
Background: Influenza A viruses (IAV) cause seasonal flu and occasional pandemics. In addition, the potential for the emergence of new strains presents unknown challenges for public health. Face masks and other personal protective equipment (PPE) can act as barriers that prevent the spread of these viruses. Metal ions embedded into PPE have been demonstrated to inactivate respiratory viruses, but the underlying mechanism of inactivation and potential for resistance is presently not well understood. Methods: In this study, we used hemagglutination assays to quantify the effect of zinc ions on IAV sialic acid receptor binding. We varied the zinc concentration, incubation time, incubation temperature, and passaged IAV in the presence of zinc ions to investigate if resistance to zinc ions could evolve. Results: We found that zinc ions impact the ability of IAV particles to hemagglutinate and observed inhibition within 1 min of exposure. Maximum inhibition was achieved within 1 h and sustained for at least 24 h in a concentration-dependent manner. Inhibition was also temperature-dependent, and optimal above room temperature. Serial passaging of IAV in the presence of zinc ions did not result in resistance. Conclusions: e conclude that zinc ions prevent IAV hemagglutination in a concentration and temperature-dependent manner for at least 24 h. Overall, these findings are in line with previous observations indicating that zinc-embedded materials can inactivate the IAV hemagglutinin and SARS-CoV-2 spike proteins, and they support work toward developing robust, passive, self-cleaning antiviral barriers in PPE. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Figure 1

16 pages, 7397 KiB  
Article
Astragaloside IV Ameliorates Cerebral Ischemic-Reperfusion Injury via Improving Mitochondrial Function and Inhibiting Neuronal Apoptosis
by Tongtong He, Xiaohong Zhou, Xiaorong Wang, Yanmeng Zhao, Zhenyi Liu, Ping Gao, Weijuan Gao and Xiaofei Jin
Curr. Issues Mol. Biol. 2025, 47(8), 597; https://doi.org/10.3390/cimb47080597 - 29 Jul 2025
Viewed by 311
Abstract
Cerebral ischemic-reperfusion injury (CIRI) involves mitochondrial dysfunction, with mitophagy playing a key role. Astragaloside IV (AS-IV) shows neuroprotective potential; however, its mechanisms related to mitochondrial function and apoptosis remain unclear. Methods: Using a rat MCAO/R model, we evaluated the AS-IV’s effects via neurological [...] Read more.
Cerebral ischemic-reperfusion injury (CIRI) involves mitochondrial dysfunction, with mitophagy playing a key role. Astragaloside IV (AS-IV) shows neuroprotective potential; however, its mechanisms related to mitochondrial function and apoptosis remain unclear. Methods: Using a rat MCAO/R model, we evaluated the AS-IV’s effects via neurological scores, TTC staining, and histopathology. Molecular assays and docking were used to analyze mitophagy (PINK1, Parkin, p62, ROS, Bcl-2, and BAX) and apoptosis markers. Results: AS-IV improved neurological function, reduced infarct volume, and alleviated neuronal/mitochondrial damage. It upregulated PINK1/Parkin, decreased p62, and modulated Bcl-2/Bax. Docking confirmed AS-IV binds PINK1/Parkin with high affinity. Conclusions: AS-IV protects against CIRI by regulating the PINK1/Parkin pathway, improving mitochondrial function, and inhibiting neuronal apoptosis, providing an experimental basis for the clinical use Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Graphical abstract

30 pages, 3370 KiB  
Article
Rivastigmine Templates with Antioxidant Motifs—A Medicinal Chemist’s Toolbox Towards New Multipotent AD Drugs
by Inês Dias, Marlène Emmanuel, Paul Vogt, Catarina Guerreiro-Oliveira, Inês Melo-Marques, Sandra M. Cardoso, Rita C. Guedes, Sílvia Chaves and M. Amélia Santos
Antioxidants 2025, 14(8), 921; https://doi.org/10.3390/antiox14080921 (registering DOI) - 28 Jul 2025
Viewed by 226
Abstract
A series of rivastigmine hybrids, incorporating rivastigmine fragments (RIV) and a set of different antioxidant scaffolds, were designed, synthesized, and evaluated as multifunctional agents for the potential therapy of Alzheimer’s disease (AD). In vitro bioactivity assays indicated that some compounds have very good [...] Read more.
A series of rivastigmine hybrids, incorporating rivastigmine fragments (RIV) and a set of different antioxidant scaffolds, were designed, synthesized, and evaluated as multifunctional agents for the potential therapy of Alzheimer’s disease (AD). In vitro bioactivity assays indicated that some compounds have very good antioxidant (radical-scavenging) activity. The compounds also displayed good inhibitory activity against cholinesterases, though the bigger-sized hybrids showed higher inhibitory ability for butyrylcholinesterase (BChE) than for acetylcholinesterase (AChE), due to the larger active site cavity of BChE. All the hybrids exhibited an inhibition capacity for self-induced amyloid-β (Aβ1–42) aggregation. Furthermore, cell assays demonstrated that some compounds showed capacity for rescuing neuroblastoma cells from toxicity induced by reactive oxygen species (ROS). Among these RIV hybrids, the best in vitro multifunctional capacity was found for the caffeic acid derivatives enclosing catechol moieties (4AY5, 4AY6), though the Trolox derivatives (4AY2, 4BY2) presented the best cell neuroprotective activity against oxidative damage. Molecular-docking studies provided structural insights into the binding modes of RIV-based hybrids to the cholinesterases, revealing key interaction patterns despite some lack of correlation with inhibitory potency. Overall, the balanced multifunctional profiles of these hybrids render them potentially promising candidates for treating AD, thus deserving further investigation. Full article
(This article belongs to the Special Issue Oxidative Stress as a Therapeutic Target of Alzheimer’s Disease)
Show Figures

Figure 1

18 pages, 14539 KiB  
Article
Immunoinformatics Design and Identification of B-Cell Epitopes from Vespa affinis PLA1 Allergen
by Sophida Sukprasert, Siriporn Nonkhwao, Thitijchaya Thanwiset, Walter Keller and Sakda Daduang
Toxins 2025, 17(8), 373; https://doi.org/10.3390/toxins17080373 - 28 Jul 2025
Viewed by 279
Abstract
Phospholipase A1 (Ves a 1), a major toxin from Vespa affinis venom, poses significant risks to allergic individuals. Nevertheless, the epitope determinants of Ves a 1 have not been characterized. Thus, identifying its linear B-cell epitopes is crucial for understanding envenomation mechanisms. In [...] Read more.
Phospholipase A1 (Ves a 1), a major toxin from Vespa affinis venom, poses significant risks to allergic individuals. Nevertheless, the epitope determinants of Ves a 1 have not been characterized. Thus, identifying its linear B-cell epitopes is crucial for understanding envenomation mechanisms. In this study, we predicted and identified B-cell epitopes EP5 and EP6 as potential candidates. EP5 formed an α-helix at the active site of Ves a 1, whereas EP6 adopted an extended loop conformation. Both synthetic peptides were synthesized and evaluated for their inhibitory effects using immune-inhibitory assays with polyclonal antibodies (pAbs) targeting both native (nVes a 1) and recombinant (rVes a 1) forms. The Ves a 1 polyclonal antibodies (pAb-nVes a 1 and pAb-Ves a 1) were produced, and their specificity binding to Ves a 1 was confirmed by Western blot. Next, ELISA inhibition assays showed that EP5 and EP6 significantly blocked pAb binding to both nVes a 1 and rVes a 1. Dot blot and Western blot assays supported these findings, particularly with stronger inhibition toward rVes a 1. Furthermore, enzymatic assays indicated that nVes a 1 and rVes a 1 retained phospholipase activity. Immunoinformatics docking showed that EP5 and EP6 specifically bind to a single-chain variable fragment antibody (scFv) targeting Naja naja PLA2. Molecular analysis revealed similar amino acid interactions to the template, suggesting effective paratope–epitope binding. These results support the potential of EP5 and EP6 for future diagnosis and therapy of V. affinis venom allergy. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

16 pages, 2545 KiB  
Article
Combined Pharmacological Conditioning of Endothelial Cells for Improved Vascular Graft Endothelialization
by Zhiyao Lu, Xuqian Zhou, Xiaowen Liu, Chunyan Liu, Junfeng Zhang and Lei Dong
Int. J. Mol. Sci. 2025, 26(15), 7183; https://doi.org/10.3390/ijms26157183 - 25 Jul 2025
Viewed by 153
Abstract
The development of functional endothelial monolayers on synthetic vascular grafts remains challenging, particularly for small-diameter vessels (<6 mm) prone to thrombosis. Here, we present a pharmacological strategy combining 8-(4-chlorophenylthio) adenosine 3′,5′-cyclic monophosphate sodium salt (pCPT-cAMP, a tight junction promoter) with nitric oxide/cGMP pathway [...] Read more.
The development of functional endothelial monolayers on synthetic vascular grafts remains challenging, particularly for small-diameter vessels (<6 mm) prone to thrombosis. Here, we present a pharmacological strategy combining 8-(4-chlorophenylthio) adenosine 3′,5′-cyclic monophosphate sodium salt (pCPT-cAMP, a tight junction promoter) with nitric oxide/cGMP pathway agonists 3-morpholinosydnonimine (SIN-1), captopril, and sildenafil) to enhance endothelialization. In human umbilical vein endothelial cells (HUVECs), this four-agent cocktail induced a flat, extended phenotype with a 3-fold increased cell area and 57.5% fewer cells required for surface coverage compared to controls. Immunofluorescence analysis revealed enhanced ZO-1 expression and continuous tight junction formation, while sustained nitric oxide (NO) production (3.9-fold increase) and restored prostacyclin (PGI2) secretion demonstrated preserved endothelial functionality. Anticoagulation assays confirmed a significant reduction in thrombus formation (p < 0.01) via dual inhibition of platelet activation and thrombin binding. These findings establish a synergistic drug combination that promotes rapid endothelialization while maintaining antithrombogenic activity, offering a promising solution for small-diameter vascular grafts. Further studies should validate long-term stability and translational potential in preclinical models. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

29 pages, 23179 KiB  
Article
Oligodendrocyte-Specific STAT5B Overexpression Ameliorates Myelin Impairment in Experimental Models of Parkinson’s Disease
by Yibo Li, Zhaowen Su, Jitong Zhai, Qing Liu, Hongfang Wang, Jiaxin Hao, Xiaofeng Tian, Jiamin Gao, Dandan Geng and Lei Wang
Cells 2025, 14(15), 1145; https://doi.org/10.3390/cells14151145 - 25 Jul 2025
Viewed by 472
Abstract
Background: Parkinson’s disease (PD) involves progressive dopaminergic neuron degeneration and motor deficits. Oligodendrocyte dysfunction contributes to PD pathogenesis through impaired myelination. Methods: Single-nucleus RNA sequencing (snRNA-seq) of PD mice revealed compromised oligodendrocyte differentiation and STAT5B downregulation. Pseudotemporal trajectory analysis via Monocle2 demonstrated impaired [...] Read more.
Background: Parkinson’s disease (PD) involves progressive dopaminergic neuron degeneration and motor deficits. Oligodendrocyte dysfunction contributes to PD pathogenesis through impaired myelination. Methods: Single-nucleus RNA sequencing (snRNA-seq) of PD mice revealed compromised oligodendrocyte differentiation and STAT5B downregulation. Pseudotemporal trajectory analysis via Monocle2 demonstrated impaired oligodendrocyte maturation in PD oligodendrocytes, correlating with reduced myelin-related gene expression (Sox10, Plp1, Mbp, Mog, Mag, Mobp). DoRothEA-predicted regulon activity identified STAT5B as a key transcriptional regulator. Results: Oligodendrocyte-specific STAT5B activation improved myelin integrity, as validated by Luxol Fast Blue staining and transmission electron microscopy; attenuated dopaminergic neuron loss; and improved motor function. Mechanistically, STAT5B binds the MBP promoter to drive transcription, a finding confirmed by the luciferase assay, while the DNMT3A-mediated hypermethylation of the STAT5B promoter epigenetically silences its expression, as verified by MethylTarget sequencing and methylation-specific PCR. Conclusions: DNMT3A inhibited the expression of STAT5B by affecting its methylation, which reduced the transcription of MBP, caused oligodendrocyte myelin damage, and eventually led to dopamine neuron damage and motor dysfunction in an MPTP-induced mouse model. This DNMT3A-STAT5B-MBP axis underlies PD-associated myelin damage, connecting epigenetic dysregulation with oligodendrocyte dysfunction and subsequent PD pathogenesis. Full article
Show Figures

Graphical abstract

Back to TopTop