Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,433)

Search Parameters:
Keywords = bi-layered

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5388 KiB  
Article
Numerical and Experimental Evaluation of Axial Load Transfer in Deep Foundations Within Stratified Cohesive Soils
by Şahin Çaglar Tuna
Buildings 2025, 15(15), 2723; https://doi.org/10.3390/buildings15152723 (registering DOI) - 1 Aug 2025
Abstract
This study presents a numerical and experimental evaluation of axial load transfer mechanisms in deep foundations constructed in stratified cohesive soils in İzmir, Türkiye. A full-scale bi-directional static load test equipped with strain gauges was conducted on a barrette pile to investigate depth-dependent [...] Read more.
This study presents a numerical and experimental evaluation of axial load transfer mechanisms in deep foundations constructed in stratified cohesive soils in İzmir, Türkiye. A full-scale bi-directional static load test equipped with strain gauges was conducted on a barrette pile to investigate depth-dependent mobilization of shaft resistance. A finite element model was developed and calibrated using field-observed load–settlement and strain data to replicate the pile–soil interaction and deformation behavior. The analysis revealed a shaft-dominated load transfer behavior, with progressive mobilization concentrated in intermediate-depth cohesive layers. Sensitivity analysis identified the undrained stiffness (Eu) as the most influential parameter governing pile settlement. A strong polynomial correlation was established between calibrated Eu values and SPT N60, offering a practical tool for preliminary design. Additionally, strain energy distribution was evaluated as a supplementary metric, enhancing the interpretation of mobilization zones beyond conventional stress-based methods. The integrated approach provides valuable insights for performance-based foundation design in layered cohesive ground, supporting the development of site-calibrated numerical models informed by full-scale testing data. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 4215 KiB  
Article
Influence of Membrane Composition on the Passive Membrane Penetration of Industrially Relevant NSO-Heterocycles
by Zsófia Borbála Rózsa, Tamás Horváth, Béla Viskolcz and Milán Szőri
Int. J. Mol. Sci. 2025, 26(15), 7427; https://doi.org/10.3390/ijms26157427 (registering DOI) - 1 Aug 2025
Abstract
This study investigates how phospholipid headgroups influence passive membrane penetration and structural impact of four nitrogen-, sulfur-, and oxygen-containing heterocycles (NSO-HETs)—N-methyl-2-pyrrolidone (PIR), 1,4-dioxane (DIOX), oxane (OXA), and phenol (PHE). Using all-atom molecular dynamics simulations combined with Accelerated Weight Histogram free energy calculations, the [...] Read more.
This study investigates how phospholipid headgroups influence passive membrane penetration and structural impact of four nitrogen-, sulfur-, and oxygen-containing heterocycles (NSO-HETs)—N-methyl-2-pyrrolidone (PIR), 1,4-dioxane (DIOX), oxane (OXA), and phenol (PHE). Using all-atom molecular dynamics simulations combined with Accelerated Weight Histogram free energy calculations, the passive transport of NSO-HETs across DPPC, DPPE, DPPA, and DPPG bilayers was characterized. DPPG showed the highest membrane affinity, increasing permeability (logPmemb/bulk) by 27–64% compared to DPPE, associated with the lowest permeability and tightest lipid packing. Free energy barriers are also decreased in DPPG relative to DPPE; PIR’s central barrier dropped from 19.2 kJ/mol (DPPE) to 16.6 kJ/mol (DPPG), while DIOX’s barrier decreased from 7.2 to 5.2 kJ/mol. OXA exhibited the lowest central barriers (1.2–2.2 kJ/mol) and uniquely accumulated at higher concentrations in the bilayer center than in bulk water, with free energy ranging from −3.4 to −5.9 kJ/mol. PHE and OXA caused significant bilayer thinning (up to 11%) and reduced lipid tail order, especially in DPPE and DPPA. Concentration effects were most pronounced in DPPE, where high solute loading disrupted lipid order and altered free energy profiles. These results highlight the crucial role of headgroup identity in modulating NSO-HET membrane permeability and structural changes. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

15 pages, 2324 KiB  
Article
Influence of Aluminum Alloy Substrate Temperature on Microstructure and Corrosion Resistance of Cr/Ti Bilayer Coatings
by Yuqi Wang, Tao He, Xiangyang Du, Alexey Vereschaka, Catherine Sotova, Yang Ding, Kang Chen, Jian Li and Peiyu He
Coatings 2025, 15(8), 891; https://doi.org/10.3390/coatings15080891 (registering DOI) - 1 Aug 2025
Abstract
Cr/Ti bilayer coatings were deposited on 7050 aluminum alloy via magnetron sputtering at substrate temperatures of room temperature (RT), 150 °C, and 300 °C to investigate temperature effects on microstructure, hardness, and corrosion resistance. All coatings exhibited Cr(110) and Ti(002) phases. Temperature significantly [...] Read more.
Cr/Ti bilayer coatings were deposited on 7050 aluminum alloy via magnetron sputtering at substrate temperatures of room temperature (RT), 150 °C, and 300 °C to investigate temperature effects on microstructure, hardness, and corrosion resistance. All coatings exhibited Cr(110) and Ti(002) phases. Temperature significantly modulated corrosion resistance by altering pore density, grain boundary density, and passivation film composition. Increasing temperature from RT to 150 °C raised corrosion rates primarily due to increased pore density. Further increasing to 300 °C reduced corrosion rates mainly through decreased grain boundary density, while passivation film composition changes altered electrochemical reaction kinetics. Substrate-coating interface defect density primarily influenced hardness with minimal effect on corrosion. Consequently, the RT-deposited coating, despite lower hardness, demonstrated optimal corrosion resistance: polarization resistance (7.17 × 104 Ω·cm2), charge transfer resistance (12,400 Ω·cm2), and corrosion current density (2.47 × 10−7 A/cm2), the latter being two orders of magnitude lower than the substrate. Full article
(This article belongs to the Special Issue Innovative Coatings for Corrosion Protection of Alloy Surfaces)
Show Figures

Figure 1

12 pages, 2497 KiB  
Article
Atomistic-Level Structural Insight into Vespa Venom (Ves a 1) and Lipid Membrane Through the View of Molecular Dynamics Simulation
by Nawanwat Chainuwong Pattaranggoon, Withan Teajaroen, Sakda Daduang, Supot Hannongbua, Thanyada Rungrotmongkol and Varomyalin Tipmanee
Toxins 2025, 17(8), 387; https://doi.org/10.3390/toxins17080387 (registering DOI) - 31 Jul 2025
Abstract
This study used all-atom molecular dynamics simulations to investigate the structural dynamics of Ves a 1, a phospholipase from Vespa affinis venom, and its interactions within a lipid membrane environment, both alone and in the presence of the inhibitor voxilaprevir. Simulations conducted over [...] Read more.
This study used all-atom molecular dynamics simulations to investigate the structural dynamics of Ves a 1, a phospholipase from Vespa affinis venom, and its interactions within a lipid membrane environment, both alone and in the presence of the inhibitor voxilaprevir. Simulations conducted over 1 µs for triplicate runs demonstrated system stability and convergence of structural properties. Our findings reveal that Ves a 1 engages in dynamic interactions with the lipid bilayer, involving key regions such as its lids, catalytic triad, and auxiliary site. The presence of voxilaprevir was observed to subtly alter these membrane interaction patterns and influence the enzyme’s catalytic area, reflecting the inhibitor’s impact within its physiological context. These results emphasize the crucial role of the lipid bilayer in shaping enzyme function and highlight voxilaprevir as a promising candidate for further inhibitor development, offering vital insights for rational drug design targeting membrane-associated proteins. Full article
(This article belongs to the Special Issue Venoms and Drugs)
Show Figures

Figure 1

21 pages, 719 KiB  
Review
Intra-Arterial Administration of Stem Cells and Exosomes for Central Nervous System Disease
by Taishi Honda, Masahito Kawabori and Miki Fujimura
Int. J. Mol. Sci. 2025, 26(15), 7405; https://doi.org/10.3390/ijms26157405 (registering DOI) - 31 Jul 2025
Abstract
Central nervous system (CNS) disorders present significant therapeutic challenges due to the limited regenerative capacity of neural tissues, resulting in long-term disability for many patients. Consequently, the development of novel therapeutic strategies is urgently warranted. Stem cell therapies show considerable potential for mitigating [...] Read more.
Central nervous system (CNS) disorders present significant therapeutic challenges due to the limited regenerative capacity of neural tissues, resulting in long-term disability for many patients. Consequently, the development of novel therapeutic strategies is urgently warranted. Stem cell therapies show considerable potential for mitigating brain damage and restoring neural connectivity, owing to their multifaceted properties, including anti-apoptotic, anti-inflammatory, neurogenic, and vasculogenic effects. Recent research has also identified exosomes—small vesicles enclosed by a lipid bilayer, secreted by stem cells—as a key mechanism underlying the therapeutic effects of stem cell therapies, and given their enhanced stability and superior blood–brain barrier permeability compared to the stem cells themselves, exosomes have emerged as a promising alternative treatment for CNS disorders. A key challenge in the application of both stem cell and exosome-based therapies for CNS diseases is the method of delivery. Currently, several routes are being investigated, including intracerebral, intrathecal, intravenous, intranasal, and intra-arterial administration. Intracerebral injection can deliver a substantial quantity of stem cells directly to the brain, but it carries the potential risk of inducing additional brain injury. Conversely, intravenous transplantation is minimally invasive but results in limited delivery of cells and exosomes to the brain, which may compromise the therapeutic efficacy. With advancements in catheter technology, intra-arterial administration of stem cells and exosomes has garnered increasing attention as a promising delivery strategy. This approach offers the advantage of delivering a significant number of stem cells and exosomes to the brain while minimizing the risk of additional brain damage. However, the investigation into the therapeutic potential of intra-arterial transplantation for CNS injury is still in its early stages. In this comprehensive review, we aim to summarize both basic and clinical research exploring the intra-arterial administration of stem cells and exosomes for the treatment of CNS diseases. Additionally, we will elucidate the underlying therapeutic mechanisms and provide insights into the future potential of this approach. Full article
(This article belongs to the Special Issue Stem Cells Research: Advancing Science and Medicine)
Show Figures

Graphical abstract

15 pages, 10795 KiB  
Article
DigiHortiRobot: An AI-Driven Digital Twin Architecture for Hydroponic Greenhouse Horticulture with Dual-Arm Robotic Automation
by Roemi Fernández, Eduardo Navas, Daniel Rodríguez-Nieto, Alain Antonio Rodríguez-González and Luis Emmi
Future Internet 2025, 17(8), 347; https://doi.org/10.3390/fi17080347 (registering DOI) - 31 Jul 2025
Viewed by 40
Abstract
The integration of digital twin technology with robotic automation holds significant promise for advancing sustainable horticulture in controlled environment agriculture. This article presents DigiHortiRobot, a novel AI-driven digital twin architecture tailored for hydroponic greenhouse systems. The proposed framework integrates real-time sensing, predictive modeling, [...] Read more.
The integration of digital twin technology with robotic automation holds significant promise for advancing sustainable horticulture in controlled environment agriculture. This article presents DigiHortiRobot, a novel AI-driven digital twin architecture tailored for hydroponic greenhouse systems. The proposed framework integrates real-time sensing, predictive modeling, task planning, and dual-arm robotic execution within a modular, IoT-enabled infrastructure. DigiHortiRobot is structured into three progressive implementation phases: (i) monitoring and data acquisition through a multimodal perception system; (ii) decision support and virtual simulation for scenario analysis and intervention planning; and (iii) autonomous execution with feedback-based model refinement. The Physical Layer encompasses crops, infrastructure, and a mobile dual-arm robot; the virtual layer incorporates semantic modeling and simulation environments; and the synchronization layer enables continuous bi-directional communication via a nine-tier IoT architecture inspired by FIWARE standards. A robot task assignment algorithm is introduced to support operational autonomy while maintaining human oversight. The system is designed to optimize horticultural workflows such as seeding and harvesting while allowing farmers to interact remotely through cloud-based interfaces. Compared to previous digital agriculture approaches, DigiHortiRobot enables closed-loop coordination among perception, simulation, and action, supporting real-time task adaptation in dynamic environments. Experimental validation in a hydroponic greenhouse confirmed robust performance in both seeding and harvesting operations, achieving over 90% accuracy in localizing target elements and successfully executing planned tasks. The platform thus provides a strong foundation for future research in predictive control, semantic environment modeling, and scalable deployment of autonomous systems for high-value crop production. Full article
(This article belongs to the Special Issue Advances in Smart Environments and Digital Twin Technologies)
Show Figures

Figure 1

9 pages, 1953 KiB  
Article
Planar Hall Effect and Magnetoresistance Effect in Pt/Tm3Fe5O12 Bilayers at Low Temperature
by Yukuai Liu, Jingming Liang, Zhiyong Xu, Jiahui Li, Junhao Ruan, Sheung Mei Ng, Chuanwei Huang and Chi Wah Leung
Electronics 2025, 14(15), 3060; https://doi.org/10.3390/electronics14153060 (registering DOI) - 31 Jul 2025
Viewed by 63
Abstract
Spin transport behaviors in heavy metal/ferromagnetic insulator (HM/FI) bilayers have attracted considerable attention due to various novel phenomena and applications in spintronic devices. Herein, we investigate the planar Hall effect (PHE) in Pt/Tm3Fe5O12 (Pt/TmIG) heterostructures at low temperatures; [...] Read more.
Spin transport behaviors in heavy metal/ferromagnetic insulator (HM/FI) bilayers have attracted considerable attention due to various novel phenomena and applications in spintronic devices. Herein, we investigate the planar Hall effect (PHE) in Pt/Tm3Fe5O12 (Pt/TmIG) heterostructures at low temperatures; moment switching in the ferrimagnetic insulator TmIG is detected by using electrical measurements. Double switching hysteresis PHE curves are found in Pt/TmIG bilayers, closely related to the magnetic moment of Tm3+ ions, which makes a key contribution to the total magnetic moment of TmIG film at low temperature. More importantly, a magnetoresistance (MR) curve with double switching is found, which has not been reported in this simple HM/FI bilayer, and the sign of this MR effect is sensitive to the angle between the magnetic field and current directions. Our findings of these effects in this HM/rare earth iron garnet (HM/REIG) bilayer provide insights into tuning the spin transport properties of HM/REIG by changing the rare earth. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

24 pages, 2145 KiB  
Review
A New Perspective on Regenerative Medicine: Plant-Derived Extracellular Vesicles
by Yuan Zuo, Jinying Zhang, Bo Sun, Xinxing Wang, Ruiying Wang, Shuo Tian and Mingsan Miao
Biomolecules 2025, 15(8), 1095; https://doi.org/10.3390/biom15081095 - 28 Jul 2025
Viewed by 424
Abstract
Plant-derived extracellular vesicles (PDEVs) are nanoscale, phospholipid bilayer-enclosed vesicles secreted by living cells through cytokinesis under physiological and pathological conditions. Owing to their high biocompatibility and stability, PDEVs have attracted considerable interest in regenerative medicine applications. They can exhibit the capacity to enhance [...] Read more.
Plant-derived extracellular vesicles (PDEVs) are nanoscale, phospholipid bilayer-enclosed vesicles secreted by living cells through cytokinesis under physiological and pathological conditions. Owing to their high biocompatibility and stability, PDEVs have attracted considerable interest in regenerative medicine applications. They can exhibit the capacity to enhance cellular proliferation, migration, and multi-lineage differentiation through immunomodulation, anti-inflammation effects, antioxidative protection, and tissue regeneration mechanisms. Given their abundant availability, favorable safety profile, and low immunogenicity risks, PDEVs have been successfully employed in therapeutic interventions for skeletal muscle disorders, cardiovascular diseases, neurodegenerative conditions, and tissue regeneration applications. This review mainly provides a comprehensive overview of PDEVs, systematically examining their biological properties, standardized isolation and characterization methodologies, preservation techniques, and current applications in regenerative medicine. Furthermore, we critically discuss future research directions and clinical translation potential, aiming to facilitate the advancement of PDEV-based therapeutic strategies. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

31 pages, 7303 KiB  
Review
Membrane-Targeting Antivirals
by Maxim S. Krasilnikov, Vladislav S. Denisov, Vladimir A. Korshun, Alexey V. Ustinov and Vera A. Alferova
Int. J. Mol. Sci. 2025, 26(15), 7276; https://doi.org/10.3390/ijms26157276 - 28 Jul 2025
Viewed by 198
Abstract
The vast majority of viruses causing human and animal diseases are enveloped—their virions contain an outer lipid bilayer originating from a host cell. Small molecule antivirals targeting the lipid bilayer cover the broadest spectrum of viruses. In this context, we consider the chemical [...] Read more.
The vast majority of viruses causing human and animal diseases are enveloped—their virions contain an outer lipid bilayer originating from a host cell. Small molecule antivirals targeting the lipid bilayer cover the broadest spectrum of viruses. In this context, we consider the chemical nature and mechanisms of action of membrane-targeting antivirals. They can affect virions by (1) physically modulating membrane properties to inhibit fusion of the viral envelope with the cell membrane, (2) physically affecting envelope lipids and proteins leading to membrane damage, pore formation and lysis, (3) causing photochemical damage of unsaturated membrane lipids resulting in integrity loss and fusion arrest. Other membrane-active compounds can target host cell membranes involved in virion’s maturation, coating, and egress (endoplasmic reticulum, Golgi apparatus, and outer membrane) affecting these last stages of viral reproduction. Both virion- and host-targeting membrane-active molecules are promising concepts for broad-spectrum antivirals. A panel of approved antivirals would be a superior weapon to respond to and control emerging disease outbreaks caused by new viral strains and variants. Full article
Show Figures

Figure 1

15 pages, 2921 KiB  
Article
Enhanced Photoelectrochemical Performance of BiVO4 Photoanodes Co-Modified with Borate and NiFeOx
by Siqiang Cheng, Yun Cheng, Taoyun Zhou, Shilin Li, Dong Xie and Xinyu Li
Micromachines 2025, 16(8), 866; https://doi.org/10.3390/mi16080866 - 27 Jul 2025
Viewed by 211
Abstract
Despite significant progress in photoelectrochemical (PEC) water splitting, high fabrication costs and limited efficiency of photoanodes hinder practical applications. Bismuth vanadate (BiVO4), with its low cost, non-toxicity, and suitable band structure, is a promising photoanode material but suffers from poor charge [...] Read more.
Despite significant progress in photoelectrochemical (PEC) water splitting, high fabrication costs and limited efficiency of photoanodes hinder practical applications. Bismuth vanadate (BiVO4), with its low cost, non-toxicity, and suitable band structure, is a promising photoanode material but suffers from poor charge transport, sluggish surface kinetics, and photocorrosion. In this study, porous monoclinic BiVO4 films are fabricated via a simplified successive ionic layer adsorption and reaction (SILAR) method, followed by borate treatment and PEC deposition of NiFeOx. The resulting B/BiVO4/NiFeOx photoanode exhibits a significantly enhanced photocurrent density of 2.45 mA cm−2 at 1.23 V vs. RHE—5.3 times higher than pristine BiVO4. It also achieves an ABPE of 0.77% and a charge transfer efficiency of 79.5%. These results demonstrate that dual surface modification via borate and NiFeOx is a cost-effective strategy to improve BiVO4-based PEC water splitting performance. This work provides a promising pathway for the scalable development of efficient and economically viable photoanodes for solar hydrogen production. Full article
(This article belongs to the Special Issue Advancing Energy Storage Techniques: Chemistry, Materials and Devices)
Show Figures

Figure 1

24 pages, 3976 KiB  
Article
SGLT2 Inhibitors and Curcumin Co-loaded Liposomal Formulations as Synergistic Delivery Systems for Heart Failure Therapy
by Bianca-Ștefania Profire, Florentina Geanina Lupașcu, Alexandru Sava, Ioana-Andreea Turin-Moleavin, Dana Bejan, Cristian Stătescu, Victorița Șorodoc, Radu-Andy Sascău, Laurențiu Șorodoc, Mariana Pinteala and Lenuța Profire
Pharmaceutics 2025, 17(8), 969; https://doi.org/10.3390/pharmaceutics17080969 - 26 Jul 2025
Viewed by 412
Abstract
Background/Objectives: As novel synergistic strategy for heart failure (HF), this study explores the formulation and characterization of liposomal systems co-loaded with SGLT2 inhibitors (dapagliflozin—DAPA and empagliflozin—EMPA) and curcumin (Cur). Methods: To enhance liposomal membrane stability and achieve sustained, controlled drug release, [...] Read more.
Background/Objectives: As novel synergistic strategy for heart failure (HF), this study explores the formulation and characterization of liposomal systems co-loaded with SGLT2 inhibitors (dapagliflozin—DAPA and empagliflozin—EMPA) and curcumin (Cur). Methods: To enhance liposomal membrane stability and achieve sustained, controlled drug release, oleanolic acid (OA) was incorporated into the lipid bilayer, while the liposomal surface was coated with polyvinylpyrrolidone (PVP). Results: The resulting liposomes exhibited favorable physico-chemical properties (particle size ~170 nm, low PDI, negative zeta potential), high encapsulation efficiencies (up to 97%), and spherical morphology as confirmed by STEM. XRD and DSC analyses indicated successful API incorporation and amorphization within the lipid matrix, while PVP coating provided slight improvements in thermal stability. Trehalose proved to be an effective cryoprotectant, preserving liposome integrity after freeze-drying. In vitro release studies demonstrated sustained and delayed drug release, especially in PVP-coated and OA-containing formulations. Conclusions: All these findings highlight the promise of PVP-coated, OA-stabilized liposomal formulations co-loaded with SGLT2 inhibitors and Cur as biocompatible, multifunctional platforms for targeted HF therapy. Full article
Show Figures

Graphical abstract

24 pages, 1580 KiB  
Article
Liposome-Based Encapsulation of Extract from Wild Thyme (Thymus serpyllum L.) Tea Processing Residues for Delivery of Polyphenols
by Aleksandra A. Jovanović, Bojana Balanč, Predrag M. Petrović, Natalija Čutović, Smilja B. Marković, Verica B. Djordjević and Branko M. Bugarski
Foods 2025, 14(15), 2626; https://doi.org/10.3390/foods14152626 - 26 Jul 2025
Viewed by 290
Abstract
This study developed phospholipid-based liposomes loaded with extract from wild thyme (Thymus serpyllum L.) tea processing residues to enhance polyphenol stability and delivery. Liposomes were prepared with phospholipids alone or combined with 10–30 mol% cholesterol or β-sitosterol. The effect of different lipid [...] Read more.
This study developed phospholipid-based liposomes loaded with extract from wild thyme (Thymus serpyllum L.) tea processing residues to enhance polyphenol stability and delivery. Liposomes were prepared with phospholipids alone or combined with 10–30 mol% cholesterol or β-sitosterol. The effect of different lipid compositions on encapsulation efficiency (EE), particle size, polydispersity index (PDI), zeta potential, stability, thermal properties, diffusion coefficient, and diffusion resistance of the liposomes was investigated. Liposomes with 10 mol% sterols (either cholesterol or β-sitosterol) exhibited the highest EE of polyphenols, while increasing sterol content to 30 mol% resulted in decreased EE. Particle size and PDI increased with sterol content, while liposomes prepared without sterols showed the smallest vesicle size. Encapsulation of the extract led to smaller liposomal diameters and slight increases in PDI values. Zeta potential measurements revealed that sterol incorporation enhanced the surface charge and stability of liposomes, with β-sitosterol showing the most pronounced effect. Stability testing demonstrated minimal changes in size, PDI, and zeta potential during storage. UV irradiation and lyophilization processes did not cause significant polyphenol leakage, although lyophilization slightly increased particle size and PDI. Differential scanning calorimetry revealed that polyphenols and sterols modified the lipid membrane transitions, indicating interactions between extract components and the liposomal bilayer. FT-IR spectra confirmed successful integration of the extract into the liposomes, while UV exposure did not significantly alter the spectral features. Thiobarbituric acid reactive substances (TBARS) assay demonstrated the extract’s efficacy in mitigating lipid peroxidation under UV-induced oxidative stress. In contrast, liposomes enriched with sterols showed enhanced peroxidation. Polyphenol diffusion studies showed that encapsulation significantly delayed release, particularly in sterol-containing liposomes. Release assays in simulated gastric and intestinal fluids confirmed controlled, pH-dependent polyphenol delivery, with slightly better retention in β-sitosterol-enriched systems. These findings support the use of β-sitosterol- and cholesterol-enriched liposomes as stable carriers for polyphenolic compounds from wild thyme extract, as bioactive antioxidants, for food and nutraceutical applications. Full article
(This article belongs to the Special Issue Encapsulation and Delivery Systems in the Food Industry)
Show Figures

Figure 1

10 pages, 1873 KiB  
Article
Stacking Order-Dependent Electronic and Optical Properties of h-BP/Borophosphene Van Der Waals Heterostructures
by Kejing Ren, Quan Zhang, Shengli Zhang and Yang Zhang
Nanomaterials 2025, 15(15), 1155; https://doi.org/10.3390/nano15151155 - 25 Jul 2025
Viewed by 163
Abstract
Van der Waals (vdW) heterostructures, typically composed of two-dimensional (2D) atomic layers, have attracted significant attention over the past few decades. Their performance is closely dependent on their composition and interlayer interactions. In this study, we constructed four types of 2D hexagonal BP [...] Read more.
Van der Waals (vdW) heterostructures, typically composed of two-dimensional (2D) atomic layers, have attracted significant attention over the past few decades. Their performance is closely dependent on their composition and interlayer interactions. In this study, we constructed four types of 2D hexagonal BP monolayer (h-BP)/borophosphene vdW heterostructures with different stacking orders: (i) B-B stacking, (ii) P-P stacking, (iii) moire-I, and (iv) moire-II. Their structural stability and their electronic and optical properties were explored by using first-principles calculations. The results show that h-BP/borophosphene heterostructures can maintain their configurations with good structural stability and minimal lattice mismatch. All vdW heterostructures exhibit semiconducting characteristics, and their band gaps are highly dependent on interlayer stacking orders. Due to the regular atomic arrangement and enhanced interlayer dipole interactions, the B-B stacking bilayer opens a relatively large band gap of 0.157 eV, while the moire-II bilayer exhibits a very small band gap of 0.045 eV because of its irregular atom arrangements. By calculating the complex dielectric function, optical absorption spectra of B-B and P-P stacking bilayers were discussed. This study suggests that h-BP/borophosphene heterostructures have desirable optical properties, broadening the potential applications of the constituent monolayers. Full article
Show Figures

Figure 1

25 pages, 19515 KiB  
Article
Towards Efficient SAR Ship Detection: Multi-Level Feature Fusion and Lightweight Network Design
by Wei Xu, Zengyuan Guo, Pingping Huang, Weixian Tan and Zhiqi Gao
Remote Sens. 2025, 17(15), 2588; https://doi.org/10.3390/rs17152588 - 24 Jul 2025
Viewed by 339
Abstract
Synthetic Aperture Radar (SAR) provides all-weather, all-time imaging capabilities, enabling reliable maritime ship detection under challenging weather and lighting conditions. However, most high-precision detection models rely on complex architectures and large-scale parameters, limiting their applicability to resource-constrained platforms such as satellite-based systems, where [...] Read more.
Synthetic Aperture Radar (SAR) provides all-weather, all-time imaging capabilities, enabling reliable maritime ship detection under challenging weather and lighting conditions. However, most high-precision detection models rely on complex architectures and large-scale parameters, limiting their applicability to resource-constrained platforms such as satellite-based systems, where model size, computational load, and power consumption are tightly restricted. Thus, guided by the principles of lightweight design, robustness, and energy efficiency optimization, this study proposes a three-stage collaborative multi-level feature fusion framework to reduce model complexity without compromising detection performance. Firstly, the backbone network integrates depthwise separable convolutions and a Convolutional Block Attention Module (CBAM) to suppress background clutter and extract effective features. Building upon this, a cross-layer feature interaction mechanism is introduced via the Multi-Scale Coordinated Fusion (MSCF) and Bi-EMA Enhanced Fusion (Bi-EF) modules to strengthen joint spatial-channel perception. To further enhance the detection capability, Efficient Feature Learning (EFL) modules are embedded in the neck to improve feature representation. Experiments on the Synthetic Aperture Radar (SAR) Ship Detection Dataset (SSDD) show that this method, with only 1.6 M parameters, achieves a mean average precision (mAP) of 98.35% in complex scenarios, including inshore and offshore environments. It balances the difficult problem of being unable to simultaneously consider accuracy and hardware resource requirements in traditional methods, providing a new technical path for real-time SAR ship detection on satellite platforms. Full article
Show Figures

Figure 1

17 pages, 3346 KiB  
Article
Phytoconstituent Detection, Antioxidant, and Antimicrobial Potentials of Moringa oleifera Lam. Hexane Extract Against Selected WHO ESKAPE Pathogens
by Kokoette Bassey and Malebelo Mabowe
Horticulturae 2025, 11(8), 869; https://doi.org/10.3390/horticulturae11080869 - 23 Jul 2025
Viewed by 385
Abstract
The holistic use of Moringa oleifera Lam. seeds is not as popular amongst rural South Africans. This study screened for the phytochemicals, antimicrobial, and antioxidant potentials as well identifying the compounds in the oils of South African Moringa seed oils using cost-effective thin [...] Read more.
The holistic use of Moringa oleifera Lam. seeds is not as popular amongst rural South Africans. This study screened for the phytochemicals, antimicrobial, and antioxidant potentials as well identifying the compounds in the oils of South African Moringa seed oils using cost-effective thin layer chromatography bioautography and dot blot assays, because fewer studies have been conducted using seed samples from this country. The results obtained indicated that the best oil extract yield (24.04%) was obtained for hexane from 60.10 g of powdered seeds. The yield of the other extracts ranged from 6.2 to 9.5%. Positive test results were obtained for terpenoids, steroids, alkaloids, flavonoids, phenols, and tannins, with potentially good antioxidant properties for scavenging free radicals from 2,2-diphenyl-1-picrylhydrazyl (DPPH) and good antimicrobial activity against Acinetobacter baumannii (BAA 747), Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 27853), and Pseudomonas aeruginosa (ATCC 27853), with the best zone of inhibition of 314.2 mm2 obtained for oil extracted with hexane, followed by dichloromethane, methanol, and acetone oil extracts, respectively. The best minimum inhibitory concentration (MIC) of 0.032 mg/mL against P. aeruginosa was recorded for the hexane oil, compared with ciprofloxacin, which had an MIC of 0.0039 mg/mL against the same pathogen. The identification of the in-oil compounds proposed to mitigate inhibitory activity against the test microbes was carried out through GC-MS analysis matching our results with the GC-MS library. These compounds included ursane-3,16-diol, azetidin-2-one, 1-benzyl-4à-methyl, dibutyl phthalate, 4-methyl-2,4-bis(p-hydroxyphenyl)pent-1-ene, 1H-pyrrole-2,5-dione, 3-ethyl-4-methyl, octopamine rhodoxanthin, 29,30-dinorgammacerane-3,22-diol, 21,21-dimethy, cholan-24-oic acid, 3,7-dioxo, and benzyl alcohol. These are in addition to the stability-indicating marker compounds like oleic acid (54.9%), 9-Octadecenoic acid (z)-, methyl ester (23.3%), n-hexadecanoic acid (9.68%), among others observed over a five year period. Full article
Show Figures

Figure 1

Back to TopTop