SGLT2 Inhibitors and Curcumin Co-loaded Liposomal Formulations as Synergistic Delivery Systems for Heart Failure Therapy
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of APIs-LPs/PVP-APIs-LPs
2.2.1. Preparation of Blank LPs
2.2.2. Preparation of APIs-LPs
2.2.3. Preparation of PVP-APIs-LPs
2.3. Characterization of LPs
2.3.1. The Physical Parameters
2.3.2. Scanning Transmission Electron Microscopy (STEM)
2.3.3. X-Ray Diffraction (XRD)
2.3.4. The Encapsulation Efficiency (EE)
2.3.4.1. HPLC Method
2.3.4.2. Encapsulation Efficiency (EE) of APIs into Liposomal Matrix
2.4. Stability of LPs
2.4.1. Storage
2.4.2. Osmotic Stress
2.4.3. Freeze-Drying Stress
2.5. Thermal Analysis
2.5.1. Thermogravimetry (TG)/Differential Thermal Analysis (DTA)
2.5.2. Differential Scanning Calorimetry (DSC)
2.6. In Vitro Release Study
2.7. Data Analysis
3. Results and Discussion
3.1. Characterization of APIs-LPs
3.1.1. The Physical Parameters
3.1.2. Scanning Transmission Electron Microscopy (STEM)
3.1.3. X-Ray Diffraction (XRD)
3.1.4. The Encapsulation Efficiency (EE)
3.2. Stability of LPs
3.2.1. Storage
3.2.2. Osmotic Stress
3.2.3. Freeze-Drying Stress
3.3. Thermal Analysis
3.3.1. Thermogravimetry (TG)/Differential Thermal Analysis (DTA)
3.3.2. Differential Scanning Calorimetry (DSC)
3.4. In Vitro Release Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shahim, B.; Kapelios, C.J.; Savarese, G.; Lund, L.H. Global Public Health Burden of Heart Failure: An Updated Review. Card. Fail. Rev. 2023, 9, e11. [Google Scholar] [CrossRef]
- Profire, B.Ș.; Lupașcu, F.G.; Szilagyi, A.; Costăchescu, I.; Tamba, B.I.; Profire, L.; Căruntu, I.D.; Giușcă, S.E.; Timofte, A.; Stătescu, C.; et al. Characterisation and validation of an isoproterenol-induced heart failure mouse model. Farmacia 2025, 73, 121–129. [Google Scholar] [CrossRef]
- Hosny, N.M. Insights into the Lipophilicity of Four Commonly Prescribed Antidiabetic Drugs and Their Simultaneous Analysis Using a Simple TLC-Spectrodensitometric Method: Application to Fixed-Dose Combination Tablets and Human Plasma. J. Chromatogr. B 2022, 1206, 123341. [Google Scholar] [CrossRef]
- Arow, M.; Waldman, M.; Yadin, D.; Nudelman, V.; Shainberg, A.; Abraham, N.; Freimark, D.; Kornowski, R.; Aravot, D.; Hochhauser, E.; et al. Sodium–Glucose Cotransporter 2 Inhibitor Dapagliflozin Attenuates Diabetic Cardiomyopathy. Cardiovasc. Diabetol. 2020, 19, 7. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, 895–1032. [Google Scholar] [CrossRef]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Bohm, M.; Brunner, H.P. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef]
- Zafar, A. Development of Oral Lipid Based Nano-Formulation of Dapagliflozin: Optimization, in Vitro Characterization and Ex Vivo Intestinal Permeation Study. J. Oleo Sci. 2020, 69, 1389–1401. [Google Scholar] [CrossRef]
- Khan, K.U.; Minhas, M.U.; Badshah, S.F.; Suhail, M.; Ahmad, A.; Ijaz, S. Overview of Nanoparticulate Strategies for Solubility Enhancement of Poorly Soluble Drugs. Life Sci. 2022, 291, 120301. [Google Scholar] [CrossRef]
- Nsairat, N.; Khater, D.; Sayed, U.; Odeh, A.; Bawab, A.I.; Alshaer, W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022, 8, e09394. [Google Scholar] [CrossRef]
- Agrawal, S.S.; Baliga, V.; Londhe, V.Y. Liposomal Formulations: A Recent Update. Pharmaceutics 2024, 30, 36. [Google Scholar] [CrossRef]
- Zhao, J.; Mao, S. Chapter Three—Tuning the Membrane Fluidity of Liposomes for Desirable in Vivo Fate with Enhanced Drug Delivery. In Advances in Biomembranes and Lipid Self-Assembly; Iglič, A., Rappolt, M., García-Sáez, A.J., Eds.; Academic Press: New York, NY, USA, 2021; Volume 34, pp. 67–106. [Google Scholar] [CrossRef]
- Song, F.; Yang, G.; Wang, Y.; Tian, S. Effect of Phospholipids on Membrane Characteristics and Storage Stability of Liposomes. Innov. Food Sci. Emerg. Technol. 2022, 81, 103155. [Google Scholar] [CrossRef]
- Kaddah, S.; Khreich, N.; Kaddah, F.; Charcosset, C.; Greige-Gerges, H. Pentacyclic Triterpenes Modulate Liposome Membrane Fluidity and Permeability Depending on Membrane Cholesterol Content. Int. J. Pharm. 2021, 610, 121232. [Google Scholar] [CrossRef]
- Abboud, R.; Charcosset, C.; Greige-Gerges, H. Tetra- and Penta-Cyclic Triterpenes Interaction with Lipid Bilayer Membrane: A Structural Comparative Study. J. Membr. Biol. 2016, 249, 327–338. [Google Scholar] [CrossRef]
- Ren, K.; Cao, X.; Zheng, L.; Liu, S.; Li, L.; Cheng, L.; Tian, T.; Tong, X.; Wang, H.; Jiang, L. Liposomes decorated with β-conglycinin and glycinin: Construction, structure and in vitro digestive stability. Int. J. Biol. Macromol. 2024, 269, 131900. [Google Scholar] [CrossRef]
- Liu, K.; Zhu, Y.; Gao, W.; Han, X.; Zhang, Q.; Zhao, Y.; Zu, Y. Resveratrol Alleviates Heart Failure by Activating Foxo3a to Counteract Oxidative Stress and Apoptosis. Biomed. Pharmacother. 2024, 181, 117716. [Google Scholar] [CrossRef]
- Pol, A.; Gilst, W.H.; Voors, A.A.; Meer, P. Treating oxidative stress in heart failure: Past, present and future. Eur. J. Heart Fail. 2019, 21, 425–435. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, D.; Zhu, L.; Gan, Q.; Le, X. Temperature-Dependent Structure Stability and in Vitro Release of Chitosan-Coated Curcumin Liposome. Food Res. Int. 2015, 74, 97–105. [Google Scholar] [CrossRef]
- Huang, J.; Fang, Z.; Bai, C.; Mo, Y.; Liu, D.; Yang, B.; Jia, X.; Feng, L. Novel Nano-Encapsulated Limonene: Utilization of Drug-in-Cyclodextrin-in-Liposome Formulation to Improve the Stability and Enhance the Antioxidant Activity. Int. J. Pharm. 2024, 653, 123914. [Google Scholar] [CrossRef]
- Grant, R.; Rappold, B.A. Development and Validation of Small Molecule Analytes by Liquid Chromatography-Tandem Mass Spectrometry. In Principles and Applications of Clinical Mass Spectrometr; Elsevier: Amsterdam, The Netherlands, 2018; pp. 115–179. ISBN 978-0-12-816063-3. [Google Scholar]
- Bender, L.; Preis, E.; Engelhardt, K.H.; Amin, M.U.; Ayoub, A.M.; Librizzi, D.; Roschenko, V.; Schulze, J.; Yousefi, B.H.; Schaefer, J.; et al. In Vitro and in Ovo Photodynamic Efficacy of Nebulized Curcumin-Loaded Tetraether Lipid Liposomes Prepared by DC as Stable Drug Delivery System. Eur. J. Pharm. Sci. 2024, 196, 106748. [Google Scholar] [CrossRef]
- Keservani, R.; Sharma, A.K.; Jain, S. Effect of different process variables on the preparation of baclofen niosomes. IJUPLS 2011, 1, 301–310. [Google Scholar]
- Cheng, Z.; Wang, J.; Bian, Y.; Tan, M.; Chen, Y.; Wang, Y.; Li, B. Oral Polysaccharide-Coated Liposome-Modified Double-Layered Nanoparticles Containing Anthocyanins: Preparation, Characterization, Biocompatibility and Evaluation of Lipid-Lowering Activity in Vitro. Food Chem. 2024, 439, 138166. [Google Scholar] [CrossRef]
- Liu, A.; Chai, X.; Zhu, S.; Chin, P.; He, M.; Xu, Y.-J.; Liu, Y. Effects of N-Succinyl-Chitosan Coating on Properties of Astaxanthin-Loaded PEG-Liposomes: Environmental Stability, Antioxidant/Antibacterial Activities, and in Vitro Release. Int. J. Biol. Macromol. 2023, 244, 125311. [Google Scholar] [CrossRef]
- Fatmi, S.; Taouzinet, L.; Benslimane, A.; Chibani, N.; Hammiche, D. Drug Release and Sperm Motility Protection Studies of Vitamin E Encapsulated in Liposome, Cyclodextrin or Polyethylene Glycol. Mater. Today Proc. 2022, 53, 71–75. [Google Scholar] [CrossRef]
- Herrera, C.V.; O’Connor, P.M.; Ratrey, P.; Ross, P.R.; Hill, C.; Hudson, S.P. Anionic liposome formulation for oral delivery of thuricin CD, a potential antimicrobial peptide therapeutic. Int. J. Pharm. 2021, 654, 123918. [Google Scholar] [CrossRef]
- Wang, P.; Zhu, S.; Zhu, Q.; Yang, X.; Wu, C.; Liang, K.; He, Z.; Min, W.; Liu, X.; Li, W.; et al. Effect of Chitosan Coating on the Characterization and Stability of the CPH Liposomes. J. Food. Eng. 2025, 388, 112363. [Google Scholar] [CrossRef]
- Zhong, C.; Liu, T.; Diao, J.; Li, X.; Liu, M.; Wang, Y. Preparation and Characterization of Astaxanthin-Loaded Liposomes by Phytosterol Oleate Instead of Cholesterol. Food Chem. 2025, 462, 141008. [Google Scholar] [CrossRef]
- Adiguzel, S.; Karamese, M.; Kugu, S.; Kacar, E.A.; Esen, M.F.; Erdogan, H.; Tasoglu, S.; Bacanli, M.G.; Altuntas, S. Doxorubicin-Loaded Liposome-like Particles Embedded in Chitosan/Hyaluronic Acid-Based Hydrogels as a Controlled Drug Release Model for Local Treatment of Glioblastoma. Int. J. Biol. Macromol. 2024, 278, 135054. [Google Scholar] [CrossRef]
- Mehta, S.; Dumoga, S.; Malhotra, S.; Singh, N. Comparative Analysis of PEG-Liposomes and RBCs-Derived Nanovesicles for Anti-Tumor Therapy. Colloids. Surf. B Biointerfaces. 2022, 218, 112785. [Google Scholar] [CrossRef]
- Meland, H.G.; Johnsen, A.R.; Smistad, G.; Hiorth, M. Studies on surface coating of phospholipid vesicles with a non-ionic polymer. Colloids Surf. B Biointerfaces 2014, 114, 45–52. [Google Scholar] [CrossRef]
- Gan, N.; Li, Q.; Li, Y.; Li, M.; Li, Y.; Chen, L.; Zeng, T.; Song, Y.; Geng, F.; Wu, D. Encapsulation of Lemongrass Essential Oil by Bilayer Liposomes Based on Pectin, Gum Arabic, and Carrageenan: Characterization and Application in Chicken Meat Preservation. Int. J. Biol. Macromol. 2024, 281, 135706. [Google Scholar] [CrossRef]
- Pu, C.; Tang, W.; Li, X.; Li, M.; Sun, Q. Stability Enhancement Efficiency of Surface Decoration on Curcumin-Loaded Liposomes: Comparison of Guar Gum and Its Cationic Counterpart. Food Hydrocoll. 2019, 87, 29–37. [Google Scholar] [CrossRef]
- Shoaib, A.; Shahid, S.; Mansoor, S.; Javed, M.; Iqbal, S.; Mahmood, S.; Bahadur, A.; Jaber, F.; Alshalwi, M. Tailoring of an Anti-Diabetic Drug Empagliflozin onto Zinc Oxide Nanoparticles: Characterization and in Vitro Evaluation of Anti-Hyperglycemic Potential. Sci. Rep. 2024, 14, 2499. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, D.; Yu, J.; Wang, X.; Wang, T.; Yu, D.; Elfalleh, W. Complex Phospholipid Liposomes Co-Encapsulated of Proanthocyanidins and α-Tocopherol: Stability, Antioxidant Activity and in Vitro Digestion Simulation. Food Biosci. 2024, 61, 104899. [Google Scholar] [CrossRef]
- Li, Z.; Peng, S.; Chen, X.; Zhu, Y.; Zou, L.; Liu, W.; Liu, C. Pluronics Modified Liposomes for Curcumin Encapsulation: Sustained Release, Stability and Bioaccessibility. Food Res. Int. 2018, 108, 246–253. [Google Scholar] [CrossRef]
- Teixeira, A.C.T.; Garcia, A.R.; Ilharco, L.M.; da Silva, A.M.P.S.G.; Fernandes, A.C. Phase Behaviour of Oleanolic Acid, Pure and Mixed with Stearic Acid: Interactions and Crystallinity. Chem. Phys. Lipids 2010, 163, 655–666. [Google Scholar] [CrossRef]
- Kheoane, P.S.; Enslin, G.M.-A.; Tarirai, C. Formulation and Characterization of Liposomes Containing Drug Absorption Enhancers for Optimized Anti-HIV and Antimalarial Drug Delivery. Drug Deliv. Transl. Res. 2023, 13, 1358–1371. [Google Scholar] [CrossRef]
- Trenkenschuh, E.; Friess, W. Freeze-Drying of Nanoparticles: How to Overcome Colloidal Instability by Formulation and Process Optimization. Eur. J. Pharm. Biopharm. 2021, 165, 345–360. [Google Scholar] [CrossRef]
- Susa, F.; Bucca, G.; Limongi, T.; Cauda, V.; Pisano, R. Enhancing the Preservation of Liposomes: The Role of Cryoprotectants, Lipid Formulations and Freezing Approaches. Cryobiology 2021, 98, 46–56. [Google Scholar] [CrossRef]
- Heffernan, C.; Ukrainczyk, M.; Gamidi, R.K.; Hodnett, B.K.; Rasmuson, Å.C. Extraction and Purification of Curcuminoids from Crude Curcumin by a Combination of Crystallization and Chromatography. Org. Process Res. Dev. 2017, 21, 821–826. [Google Scholar] [CrossRef]
- Jambhrunkar, S.; Karmakar, S.; Popat, A.; Yu, M.; Yu, C. Mesoporous silica nanoparticles enhance the cytotoxicity of curcumin. RSC Adv. 2014, 4, 709–712. [Google Scholar] [CrossRef]
- Ma, J.; Huang, X.; Wang, N. Solubility and thermodynamic mixing and dissolution properties of empagliflozin in pure and binary solvent systems. J. Mol. Liq. 2020, 309, 113004. [Google Scholar] [CrossRef]
- Hu, L.; Zou, P.; Wei, W.; Yuan, X.M.; Qiu, X.L.; Gou, S.H. Facile and green synthesis of dapagliflozin. Synth. Commun. 2019, 49, 3373–3379. [Google Scholar] [CrossRef]
- Krajewska, M.; Dopierała, K.; Prochaska, K. The Biomimetic System of Oleanolic Acid and Oleic Acid at the Air-Water Interface–Interactions in Terms of Nanotechnology-Based Drug Delivery Systems. Membranes 2022, 12, 1215. [Google Scholar] [CrossRef]
- Yang, Q.-Q.; Cai, W.-Q.; Wang, Z.-X.; Li, Y.; Zhang, Y.; Lin, X.; Su, B.-L.; Corke, H.; Zhang, B.-B. Structural Characteristics, Binding Behaviors, and Stability of Ternary Nanocomplexes of Lecithin, Polyvinylpyrrolidone, and Curcumin. LWT 2023, 175, 114489. [Google Scholar] [CrossRef]
- Yuan, M.; Wang, Y.; Wan, Y.; Li, S.; Tang, J.; Liang, X.; Zeng, B.; Li, M.; Wei, X.; Li, X.; et al. Novel sodium tauroursodeoxycholate-based multifunctional liposomal delivery system for encapsulation of oleanolic acid and combination therapy of type 2 diabetes mellitus. Int. J. Pharm. 2024, 666, 124803. [Google Scholar] [CrossRef]
- Soudan, H.M.; Soliman, M.E.; El-Bab, A.M.R.F.; Ghazy, M.A.; Hammad, S.F. Biocompatible, Controlled-Release Remdesivir-Loaded Liposomes Tackling the Telomerase Activity of Non-Small Cell Lung Cancer Cells: Preparation, Characterization, in Vitro Biological Evaluation, and Molecular Docking Analysis. Curr. Res. Biotechnol. 2024, 8, 100256. [Google Scholar] [CrossRef]
- Pan, L.; Li, H.; Hou, L.; Chang, Z.; Li, Y.; Li, X. Gastrointestinal Digestive Fate of Whey Protein Isolate Coated Liposomes Loading Astaxanthin: Lipolysis, Release, and Bioaccessibility. Food Biosci. 2022, 45, 101464. [Google Scholar] [CrossRef]
- Ding, Q.; Liu, W.; Liu, X.; Ding, C.; Zhao, Y.; Dong, L.; Chen, H.; Sun, S.; Zhang, Y.; Zhang, J.; et al. Polyvinylpyrrolidone-Modified Taxifolin Liposomes Promote Liver Repair by Modulating Autophagy to Inhibit Activation of the TLR4/NF-κB Signaling Pathway. Front. Bioeng. Biotechnol. 2022, 10, 860515. [Google Scholar] [CrossRef]
LPs | Extrusion | Col (mg) | PC (mg) | API:PC (w/w) | API (mg) | |
---|---|---|---|---|---|---|
LPs@1a | - | 5 | 30 | - | - | |
LPs@2a | - | 5 | 20 | - | - | |
LPs@1b | ✓ | 5 | 30 | - | - | |
LPs@2b | ✓ | 5 | 20 | - | - | |
Cur-LPs@1 | ✓ | 5 | 20 | 1:10 | 2 | |
Cur-LPs@2 | ✓ | 5 | 30 | 1:15 | 2 | |
OA-LPs@1 | ✓ | 5 | 20 | 1:10 | 2 | |
OA-LPs@2 | ✓ | 5 | 30 | 1:15 | 2 | |
EMPA-LPs@1 | ✓ | 5 | 20 | 1:25 | 0.800 | |
EMPA-LPs@2 | ✓ | 5 | 30 | 2:75 | 0.800 | |
DAPA-LPs@1 | ✓ | 5 | 20 | 1:100 | 0.200 | |
DAPA-LPs@2 | ✓ | 5 | 30 | 1:150 | 0.200 | |
EMPA-Cur-LPs(a) | EMPA | ✓ | 5 | 20 | 1:30 | 0.667 |
Cur | ✓ | 5 | 20 | 1:10 | 2 | |
EMPA-Cur-LPs(b) | EMPA | ✓ | 5 | 20 | 1:60 | 0.333 |
Cur | ✓ | 5 | 20 | 1:20 | 1 | |
EMPA-Cur-LPs(c) | EMPA | ✓ | 5 | 20 | 1:75 | 0.266 |
Cur | ✓ | 5 | 20 | 1:25 | 0.800 | |
EMPA-Cur-LPs(d) | EMPA | ✓ | 5 | 20 | 1:90 | 0.222 |
Cur | ✓ | 5 | 20 | 1:30 | 0.666 | |
EMPA-OA-LPs(a) | EMPA | ✓ | 5 | 20 | 1:30 | 0.666 |
OA | ✓ | 5 | 20 | 1:10 | 2 | |
EMPA-OA-LPs(b) | EMPA | ✓ | 5 | 20 | 1:60 | 0.333 |
OA | ✓ | 5 | 20 | 1:20 | 1 | |
EMPA-OA-LPs(c) | EMPA | ✓ | 5 | 20 | 1:90 | 0.220 |
OA | ✓ | 5 | 20 | 1:30 | 0.666 | |
EMPA-OA-LPs(d) | EMPA | ✓ | 5 | 20 | 1:100 | 0.200 |
OA | ✓ | 5 | 20 | 1:35 | 0.571 | |
DAPA-Cur-LPs(a) | DAPA | ✓ | 5 | 20 | 1:200 | 0.100 |
Cur | ✓ | 5 | 20 | 1:10 | 2 | |
DAPA-Cur-LPs(b) | DAPA | ✓ | 5 | 20 | 1:400 | 0.050 |
Cur | ✓ | 5 | 20 | 1:20 | 1 | |
DAPA-Cur-LPs(c) | DAPA | ✓ | 5 | 20 | 1:500 | 0.040 |
Cur | ✓ | 5 | 20 | 1:22 | 0.900 | |
DAPA-Cur-LPs(d) | DAPA | ✓ | 5 | 20 | 1:500 | 0.040 |
Cur | ✓ | 5 | 20 | 1:25 | 0.800 | |
DAPA-OA-LPs(a) | DAPA | ✓ | 5 | 20 | 1:200 | 0.100 |
OA | ✓ | 5 | 20 | 1:10 | 2 | |
DAPA-OA-LPs(b) | DAPA | ✓ | 5 | 20 | 1:400 | 0.050 |
OA | ✓ | 5 | 20 | 1:20 | 1 | |
DAPA-OA-LPs(c) | DAPA | ✓ | 5 | 20 | 1:500 | 0.040 |
OA | ✓ | 5 | 20 | 1:25 | 0.800 | |
DAPA-OA-LPs(d) | DAPA | ✓ | 5 | 20 | 1:600 | 0.033 |
OA | ✓ | 5 | 20 | 1:30 | 0.666 |
LPs/ APIs-LPs | PS (nm) | PDI | ZP (mV) |
---|---|---|---|
LPs@1a | 1796.00 ± 0.22 *** | 0.916 ± 0.017 ns | −31.79 ± 0.57 ** |
LPs@2a | 871.80 ± 0.15 *** | 0.745 ± 0.015 ns | −26.41 ± 0.51 ** |
LPs@1b | 199.60 ± 2.57 *** | 0.351 ± 0.019 ns | −16.29 ± 0.82 ** |
LPs@2b | 191.60 ± 1.85 *** | 0.484 ± 0.015 ns | −14.86 ± 0.34 ** |
Cur-LPs@1 | 166.30 ± 4.70 ns | 0.488 ± 0.014 ns | −12.28 ± 4.47 ns |
Cur-LPs@2 | 179.40 ± 5.30 ns | 0.045 ± 0.011 ** | −13.40 ± 4.09 ns |
OA-LPs@1 | 221.20 ± 4.30 ns | 0.321 ± 0.011 ns | −20.31 ± 3.12 ns |
OA-LPs@2 | 236.80 ± 3.20 ns | 0.244 ± 0.015 ns | −13.68 ± 1.75 ns |
EMPA-LPs@1 | 190.50 ± 12.30 ns | 0.080 ± 0.066 ** | −15.27 ± 3.89 ns |
EMPA-LPs@2 | 198.90 ± 2.60 ns | 0.010 ± 0.057 ** | −16.27 ± 1.25 ns |
DAPA-LPs@1 | 178.40 ± 4.00 ns | 0.062 ± 0.028 ** | −10.54 ± 1.05 ns |
DAPA-LPs@2 | 199.10 ± 5.60 ns | 0.236 ± 0.031 ns | −16.10 ± 2.03 ns |
LPs | PS (nm) | PDI | ZP (mV) |
---|---|---|---|
EMPA-Cur-LPs(a) | 164.20 ± 1.21 | 0.031 ± 0.01 | −8.10 ± 1.67 |
EMPA-Cur-LPs(b) | 206.00 ± 12.30 | 0.082 ± 0.01 | −10.54 ± 2.05 |
EMPA-Cur-LPs(c) | 166.50 ± 3.11 | 0.122 ± 0.03 | −10.42 ± 1.53 |
EMPA-Cur-LPs(d) | 194.90 ± 7.32 | 0.147 ± 0.01 | −10.07 ± 2.09 |
EMPA-OA-LPs(a) | 200.90 ± 3.91 | 0.065 ± 0.02 | −7.46 ± 2.61 |
EMPA-OA-LPs(b) | 203.40 ± 2.01 | 0.191 ± 0.01 | −7.49 ± 1.53 |
EMPA-OA-LPs(c) | 177.50 ± 2.21 | 0.056 ± 0.01 | −8.92 ± 2.01 |
EMPA-OA-LPs(d) | 178.40 ± 3.22 | 0.072 ± 0.06 | −9.15 ± 2.06 |
DAPA-Cur-LPs(a) | 226.30 ± 5.11 | 0.183 ± 0.11 | −7.43 ± 0.47 |
DAPA-Cur-LPs(b) | 225.90 ± 10.23 | 0.070 ± 0.01 | −6.95 ± 0.29 |
DAPA-Cur-LPs(c) | 212.90 ± 3.91 | 0.164 ± 0.01 | −7.04 ± 0.81 |
DAPA-Cur-LPs(d) | 235.10 ± 5.31 | 0.141 ± 0.11 | −8.88 ± 0.96 |
DAPA-OA-LPs(a) | 198.10 ± 3.72 | 0.147 ± 0.10 | −7.48 ± 0.94 |
DAPA-OA-LPs(b) | 182.00 ± 2.71 | 0.047± 0.21 | −10.44 ± 0.68 |
DAPA-OA-LPs(c) | 205.90 ± 6.92 | 0.049 ± 0.13 | −9.72 ± 1.05 |
DAPA-OA-LPs(d) | 197.00 ± 8.01 | 0.047 ± 0.22 | −8.93 ± 1.08 |
PVP-EMPA-Cur-LPs(b) | 289.80 ± 2.01 ** | 0.147 ± 0.07 ns | −6.97 ± 1.49 * |
PVP-EMPA-OA-LPs(b) | 236.2 ± 7.31 ns | 0.084 ± 0.05 ** | −5.79 ± 2.14 * |
PVP-DAPA-Cur-LPs(b) | 271.6 ± 3.11 * | 0.051 ± 0.01 ns | −5.60 ± 1.34 ns |
PVP-DAPA-OA-LPs(b) | 264.1 ± 2.20 * | 0.055 ± 0.01 ns | −7.61 ± 1.52 * |
API-LPs | API:PC Ratio (w/w) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1:10 | 1:20 | 1:30 | 1:60 | 1:90 | 1:105 | 1:200 | 1:400 | 1:500 | 1:540 | |
EMPA-LPs | - | - | 69.14 ± 8.20 | 80.20 ± 5.41 ns | 65.01 ± 4.30 ns | 57.51 ± 3.70 ns | - | - | - | - |
DAPA-LPs | - | - | - | - | - | - | 81.51 ± 6.03 | 87.11 ± 3.00 ns | 72.09 ± 5.19 ns | 69.12 ± 7.60 ns |
Cur-LPs | 58.32 ± 5.02 | 75.40 ± 6.90 ns | 67.42 ± 5.14 ns | 48.60 ± 4.07 ns | - | - | - | - | - | - |
LPs | PVP-EMPA-Cur-LPs | PVP-EMPA-OA-LPs | PVP-DAPA-Cur-LPs | PVP-DAPA-OA-LPs | ||
---|---|---|---|---|---|---|
EMPA | Cur | EMPA | DAPA | Cur | DAPA | |
(a) | 71.00 ± 2.03 | 60.30 ± 3.06 | 76.00 ± 1.03 | 82.00 ± 2.09 | 65.30± 4.02 | 86.50 ± 4.92 |
(b) | 84.20 ± 3.08 | 75.60 ± 6.62 ns | 96.20 ± 4.03 ns | 96.10 ± 2.71 | 80.10± 3.09 ns | 97.40 ± 5.01 ns |
(c) | 70.00 ± 1.06 | 67.90 ± 5.02 ns | 86.20 ± 1.09 ns | 85.20 ± 1.89 | 74.90± 4.92 ns | 88.00 ± 7.02 ns |
(d) | 65.20 ± 6.01 | 65.20 ± 3.05 ns | 84.00 ± 1.54 ns | 75.40 ± 2.06 | 51.00± 4.41 ns | 82.20 ± 4.41 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Profire, B.-Ș.; Lupașcu, F.G.; Sava, A.; Turin-Moleavin, I.-A.; Bejan, D.; Stătescu, C.; Șorodoc, V.; Sascău, R.-A.; Șorodoc, L.; Pinteala, M.; et al. SGLT2 Inhibitors and Curcumin Co-loaded Liposomal Formulations as Synergistic Delivery Systems for Heart Failure Therapy. Pharmaceutics 2025, 17, 969. https://doi.org/10.3390/pharmaceutics17080969
Profire B-Ș, Lupașcu FG, Sava A, Turin-Moleavin I-A, Bejan D, Stătescu C, Șorodoc V, Sascău R-A, Șorodoc L, Pinteala M, et al. SGLT2 Inhibitors and Curcumin Co-loaded Liposomal Formulations as Synergistic Delivery Systems for Heart Failure Therapy. Pharmaceutics. 2025; 17(8):969. https://doi.org/10.3390/pharmaceutics17080969
Chicago/Turabian StyleProfire, Bianca-Ștefania, Florentina Geanina Lupașcu, Alexandru Sava, Ioana-Andreea Turin-Moleavin, Dana Bejan, Cristian Stătescu, Victorița Șorodoc, Radu-Andy Sascău, Laurențiu Șorodoc, Mariana Pinteala, and et al. 2025. "SGLT2 Inhibitors and Curcumin Co-loaded Liposomal Formulations as Synergistic Delivery Systems for Heart Failure Therapy" Pharmaceutics 17, no. 8: 969. https://doi.org/10.3390/pharmaceutics17080969
APA StyleProfire, B.-Ș., Lupașcu, F. G., Sava, A., Turin-Moleavin, I.-A., Bejan, D., Stătescu, C., Șorodoc, V., Sascău, R.-A., Șorodoc, L., Pinteala, M., & Profire, L. (2025). SGLT2 Inhibitors and Curcumin Co-loaded Liposomal Formulations as Synergistic Delivery Systems for Heart Failure Therapy. Pharmaceutics, 17(8), 969. https://doi.org/10.3390/pharmaceutics17080969