Stacking Order-Dependent Electronic and Optical Properties of h-BP/Borophosphene Van Der Waals Heterostructures
Abstract
1. Introduction
2. Computational Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Jose, D.; Datta, A. Understanding of the Buckling Distortions in Silicene. J. Phys. Chem. C 2012, 116, 24639–24648. [Google Scholar] [CrossRef]
- Cahangirov, S.; Topsakal, M.; Aktu, E.; Şahin, H.; Ciraci, S. Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium. Phys. Rev. Lett. 2009, 102, 236804. [Google Scholar] [CrossRef] [PubMed]
- Malko, D.; Neiss, C.; Viñes, F.; Görling, A. Competition for Graphene: Graphynes with Direction-Dependent Dirac Cones. Phys. Rev. Lett. 2012, 108, 086804. [Google Scholar] [CrossRef]
- Xu, L.C.; Wang, R.Z.; Miao, M.S.; Wei, X.L.; Chen, Y.P.; Yan, H.; Lau, W.M.; Liu, L.M.; Ma, Y.M. Two dimensional Dirac carbon allotropes from graphene. Nanoscale 2014, 6, 1113–1118. [Google Scholar] [CrossRef]
- Choi, W.; Choudhary, N.; Han, G.H.; Park, J.; Akinwande, D.; Lee, Y.H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116–130. [Google Scholar] [CrossRef]
- Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409. [Google Scholar] [CrossRef]
- Bernardi, M.; Palummo, M.; Grossman, J.C. Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials. Nano Lett. 2013, 13, 3664–3670. [Google Scholar] [CrossRef]
- Deng, D.; Novoselov, K.S.; Fu, Q.; Zheng, N.; Tian, Z.; Bao, X. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230. [Google Scholar] [CrossRef]
- Butler, S.Z.; Hollen, S.M.; Cao, L.; Cui, Y.; Gupta, J.A.; Gutiérrez, H.R.; Heinz, T.F.; Hong, S.S.; Huang, J.; Ismach, A.F.; et al. Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano 2013, 7, 2898–2926. [Google Scholar] [CrossRef]
- Kang, J.; Tongay, S.; Zhou, J.; Li, J.; Wu, J. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 2013, 102, 012111. [Google Scholar] [CrossRef]
- Wang, J.; Li, Z.; Chen, H.; Deng, G.; Niu, X. Recent Advances in 2D Lateral Heterostructures. Nano-Micro Lett. 2019, 11, 48. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Kim, J.; Shi, S.; Zhang, Y.; Jin, C.; Sun, Y.; Tongay, S.; Wu, J.; Zhang, Y.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Kumar, N.; Bellus, M.Z.; Chiu, H.; He, D.; Wang, Y.; Zhao, H. Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures. Nat. Commun. 2014, 5, 5622. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhou, M.; Yang, M.; Yang, Q.; Zhang, Z.; Zhang, Y. High-Performance Borophene/Graphene Heterostructure Anode of Lithium-Ion Batteries Achieved via Controlled Interlayer Spacing. ACS Appl. Energy Mater. 2020, 3, 11699–11705. [Google Scholar] [CrossRef]
- Gavali, D.S.; Thapa, R. Identification of Borophosphene/graphene heterostructure as anode for Li-ion Batteries and its origin. J. Power Sources 2023, 566, 232947. [Google Scholar] [CrossRef]
- Guo, G.-C.; Wang, D.; Wei, X.-L.; Zhang, Q.; Liu, H.; Lau, W.-M.; Liu, L.-M. First-Principles Study of Phosphorene and Graphene Heterostructure as Anode Materials for Rechargeable Li Batteries. J. Phys. Chem. Lett. 2015, 6, 5002–5008. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, G.; Zhang, Y.-W. Electronic Properties of Phosphorene/Graphene and Phosphorene/Hexagonal Boron Nitride Heterostructures. J. Phys. Chem. C 2015, 119, 13929–13936. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Bai, Z.; Xiong, J.; Liu, F.; Zhou, G.; Qing, T.; Zhang, S.; Lu, J. Ohmic contact in graphene and hexagonal III-V monolayer (GaP, GaAs, InP, and InAs) van der Waals heterostructures: Role of electric field. Phys. Lett. A 2022, 433, 128029. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Z.; Huang, A.; Wang, Z. The dependence of interfacial properties on the layer number in 1T′/2H-MoS2 van der Waals heterostructures. Phys. Lett. A 2020, 384, 126747. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, J.; Zheng, F.; Gao, P.-F.; Zhang, S.-L.; Wang, L.-W. Borophosphene: A New Anisotropic Dirac Cone Monolayer with a High Fermi Velocity and a Unique Self-Doping Feature. J. Phys. Chem. Lett. 2019, 10, 6656–6663. [Google Scholar] [CrossRef]
- Hernandez, O.M.; Sanchez, J.G.; Perez, R.P.; Diaz, R.G.; Fernandez-Escamilla, H.N.; Cocoletzi, G.H. Hexagonal boron phosphide monolayer exfoliation induced by arsenic incorporation in the BP (1 1 1) surface: A DFT study. Appl. Surf. Sci. 2021, 538, 148163. [Google Scholar] [CrossRef]
- Wang, S.-F.; Wu, X.-J. First-Principles Study on Electronic and Optical Properties of Graphene-Like Boron Phosphide Sheets. Chin. J. Chem. Phys. 2015, 28, 588–594. [Google Scholar] [CrossRef]
- Silveira, J.F.R.V.; Besse, R.; Da Silva, J.L.F. Stacking Order Effects on the Electronic and Optical Properties of Graphene/Transition Metal Dichalcogenide Van der Waals Heterostructures. ACS Appl. Electron. Mater. 2021, 3, 1671–1680. [Google Scholar] [CrossRef]
- Jin, X.; Wang, X.; Wu, R.; Gao, Y.; Yan, Y.; Xuan, F. Tuning Band Gaps in Twisted Bilayer Borophene. J. Phys. Chem. C 2022, 126, 17769–17776. [Google Scholar] [CrossRef]
- Li, J.; Li, M.; Shi, X.; Fei, J.; Tang, X.; Wang, Y.; Long, M. Stacking Order-Dependent Electronic, Optical, and Charge Transport Properties of van der Waals GaS/WXY (X/Y = S, Se, Te) Heterostructures. J. Phys. Chem. C 2023, 127, 16588–16597. [Google Scholar] [CrossRef]
- Wang, S.; Hu, Y.; Wei, Y.; Li, W.; Kaner, N.T.; Jiang, Y.; Yang, J.; Li, X. Electronic structure and optical properties of InSe/α-AsP van der Waals heterostructure from DFT calculations. Phys. E: Low-Dimens. Syst. Nanostructures 2021, 130, 114674. [Google Scholar] [CrossRef]
- Cheng, B.; Zhou, Y.; Jiang, R.; Wang, X.; Huang, S.; Huang, X.; Zhang, W.; Dai, Q.; Zhou, L.; Lu, P.; et al. Structural, Electronic and Optical Properties of Some New Trilayer Van de Waals Heterostructures. Nanomaterials 2023, 13, 1574. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, W. Comment on “Generalized Gradient Approximation Made Simple”. Phys. Rev. Lett. 1998, 80, 890. [Google Scholar] [CrossRef]
- Feynman, R.P. Forces in Molecules. Phys. Rev. 1939, 56, 340. [Google Scholar] [CrossRef]
- Tsoi, S.; Dev, P.; Friedman, A.L.; Stine, R.; Robinson, J.R.; Reinecke, T.L.; Sheehan, P.E. van der Waals Screening by Single-Layer Graphene and Molybdenum Disulfide. ACS Nano 2014, 8, 12410–12417. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Heyd, J.; Peralta, J.E.; Scuseria, G.E.; Martin, R.L. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J. Chem. Phys. 2005, 123, 174101. [Google Scholar] [CrossRef]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215, Erratum in J. Chem. Phys. 2006, 124, 219906. [Google Scholar] [CrossRef]
- Moses, P.G.; Miao, M.; Yan, Q.; Van de Walle, C.G. Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN. J. Chem. Phys. 2011, 134, 084703. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z.F.; Gao, P.F.; Fang, D.Q.; Zhang, S.L. Enhanced visible light absorption in ZnO/GaN heterostructured nanofilms. J. Alloys Compd. 2017, 704, 478–483. [Google Scholar] [CrossRef]
- Saha, S.; Sinha, T.P. Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3. Phys. Rev. B 2000, 62, 8828. [Google Scholar] [CrossRef]
- Petersilka, M.; Gossmann, U.J.; Gross, E.K.U. Excitation Energies from Time-Dependent Density-Functional Theory. Phys. Rev. Lett. 1996, 76, 1212. [Google Scholar] [CrossRef] [PubMed]
- Zeng, B.; Li, M.; Zhang, X.; Yi, Y.; Fu, L.; Long, M. First-Principles Prediction of the Electronic Structure and Carrier Mobility in Hexagonal Boron Phosphide Sheet and Nanoribbons. J. Phys. Chem. C 2016, 120, 25037–25042. [Google Scholar] [CrossRef]
- Çakır, D.; Kecik, D.; Sahin, H.; Durgun, E.; Peeters, F.M. Realization of a p–n junction in a single layer boron-phosphide. Phys. Chem. Chem. Phys. 2015, 17, 13013–13020. [Google Scholar] [CrossRef]
- Li, F.-Q.; Zhang, Y.; Zhang, S.-L. Defects and Strain Engineering of Structural, Elastic, and Electronic Properties of Boron-Phosphide Monolayer: A Hybrid Density Functional Theory Study. Nanomaterials 2021, 11, 1395. [Google Scholar] [CrossRef]
- Archer, R.J.; Koyama, R.Y.; Loebner, E.E.; Lucas, R.C. Optical Absorption, Electroluminescence, and the Band Gap of BP. Phys. Rev. Lett. 1964, 12, 538. [Google Scholar] [CrossRef]
- Ejembi, J.I.; Nwigboji, I.H.; Franklin, L.; Malozovsky, Y.; Zhao, G.L.; Bagayoko, D. Ab-initio calculations of electronic, transport, and structural properties of boron phosphide. J. Appl. Phys. 2014, 116, 103711. [Google Scholar] [CrossRef]
- Li, Q.; Yang, J.; Zhang, L. Theoretical Prediction of Blue Phosphorene/Borophene Heterostructure as a Promising Anode Material for Lithium-Ion Batteries. J. Phys. Chem. C 2018, 122, 18294–18303. [Google Scholar] [CrossRef]
- Ihm, Y.; Cooper, V.R.; Gallego, N.C.; Contescu, C.I.; Morris, J.R. Microstructure-Dependent Gas Adsorption: Accurate Predictions of Methane Uptake in Nanoporous Carbons. J. Chem. Theory Comput. 2014, 10, 1–4. [Google Scholar] [CrossRef]
- Olsen, T.; Yan, J.; Mortensen, J.J.; Thygesen, K.S. Dispersive and Covalent Interactions between Graphene and Metal Surfaces from the Random Phase Approximation. Phys. Rev. Lett. 2011, 107, 156401. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.Z.; Cheng, Y.; Li, Z.H.; Wang, L.; Zheng, Q.S. Interlayer binding energy of graphite: A mesoscopic determination from deformation. Phys. Rev. B Condens. Matter Mater. Phys. 2012, 85, 205418. [Google Scholar] [CrossRef]
- Bafekry, A.; Obeid, M.M.; Nguyen, C.V.; Ghergherehchi, M.; Tagani, M.B. Graphene hetero-multilayer on layered platinum mineral jacutingaite (Pt2HgSe3): Van der Waals heterostructures with novel optoelectronic and thermoelectric performances. J. Mater. Chem. A 2020, 8, 13248–13260. [Google Scholar] [CrossRef]
Structures | Structural Parameters | Einter | Eg | |||
---|---|---|---|---|---|---|
a | b | d | PBE | HSE06 | ||
h-BP monolayer | 3.213 | 5.564 | - | - | 0.903 | 1.371 |
borophosphene | 3.221 | 5.566 | - | - | - | - |
B-B stacking | 3.210 | 5.556 | 3.340 | −0.017 | 0.157 | 0.186 |
P-P stacking | 3.209 | 5.555 | 3.515 | −0.014 | 0.101 | 0.170 |
moire-I | 14.706 | 8.492 | 3.582 | −0.013 | 0.095 | - |
moire-II | 20.049 | 11.575 | 3.593 | −0.013 | 0.046 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, K.; Zhang, Q.; Zhang, S.; Zhang, Y. Stacking Order-Dependent Electronic and Optical Properties of h-BP/Borophosphene Van Der Waals Heterostructures. Nanomaterials 2025, 15, 1155. https://doi.org/10.3390/nano15151155
Ren K, Zhang Q, Zhang S, Zhang Y. Stacking Order-Dependent Electronic and Optical Properties of h-BP/Borophosphene Van Der Waals Heterostructures. Nanomaterials. 2025; 15(15):1155. https://doi.org/10.3390/nano15151155
Chicago/Turabian StyleRen, Kejing, Quan Zhang, Shengli Zhang, and Yang Zhang. 2025. "Stacking Order-Dependent Electronic and Optical Properties of h-BP/Borophosphene Van Der Waals Heterostructures" Nanomaterials 15, no. 15: 1155. https://doi.org/10.3390/nano15151155
APA StyleRen, K., Zhang, Q., Zhang, S., & Zhang, Y. (2025). Stacking Order-Dependent Electronic and Optical Properties of h-BP/Borophosphene Van Der Waals Heterostructures. Nanomaterials, 15(15), 1155. https://doi.org/10.3390/nano15151155