Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (813)

Search Parameters:
Keywords = below-ground

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1205 KiB  
Review
Patterns in Root Phenology of Woody Plants Across Climate Regions: Drivers, Constraints, and Ecosystem Implications
by Qiwen Guo, Boris Rewald, Hans Sandén and Douglas L. Godbold
Forests 2025, 16(8), 1257; https://doi.org/10.3390/f16081257 (registering DOI) - 1 Aug 2025
Abstract
Root phenology significantly influences ecosystem processes yet remains poorly characterized across biomes. This study synthesized data from 59 studies spanning Arctic to tropical ecosystems to identify woody plants root phenological patterns and their environmental drivers. The analysis revealed distinct climate-specific patterns. Arctic regions [...] Read more.
Root phenology significantly influences ecosystem processes yet remains poorly characterized across biomes. This study synthesized data from 59 studies spanning Arctic to tropical ecosystems to identify woody plants root phenological patterns and their environmental drivers. The analysis revealed distinct climate-specific patterns. Arctic regions had a short growing season with remarkably low temperature threshold for initiation of root growth (0.5–1 °C). Temperate forests displayed pronounced spring-summer growth patterns with root growth initiation occurring at 1–9 °C. Mediterranean ecosystems showed bimodal patterns optimized around moisture availability, and tropical regions demonstrate seasonality primarily driven by precipitation. Root-shoot coordination varies predictably across biomes, with humid continental ecosystems showing the highest synchronous above- and belowground activity (57%), temperate regions exhibiting leaf-before-root emergence (55%), and Mediterranean regions consistently showing root-before-leaf patterns (100%). Winter root growth is more widespread than previously recognized (35% of studies), primarily in tropical and Mediterranean regions. Temperature thresholds for phenological transitions vary with climate region, suggesting adaptations to environmental conditions. These findings provide a critical, region-specific framework for improving models of terrestrial ecosystem responses to climate change. While our synthesis clarifies distinct phenological strategies, its conclusions are drawn from data focused primarily on Northern Hemisphere woody plants, highlighting significant geographic gaps in our current understanding. Bridging these knowledge gaps is essential for accurately forecasting how belowground dynamics will influence global carbon sequestration, nutrient cycling, and ecosystem resilience under changing climatic regimes. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

19 pages, 3546 KiB  
Article
Loss and Early Recovery of Biomass and Soil Organic Carbon in Restored Mangroves After Paspalum vaginatum Invasion in West Africa
by Julio César Chávez Barrera, Juan Fernando Gallardo Lancho, Robert Puschendorf and Claudia Maricusa Agraz Hernández
Resources 2025, 14(8), 122; https://doi.org/10.3390/resources14080122 - 29 Jul 2025
Viewed by 99
Abstract
Invasive plant species pose an increasing threat to mangroves globally. This study assessed the impact of Paspalum vaginatum invasion on carbon loss and early recovery following four years of restoration in a mangrove forest with Rhizophora racemosa in Benin. Organic carbon was quantified [...] Read more.
Invasive plant species pose an increasing threat to mangroves globally. This study assessed the impact of Paspalum vaginatum invasion on carbon loss and early recovery following four years of restoration in a mangrove forest with Rhizophora racemosa in Benin. Organic carbon was quantified in the total biomass, including both aboveground and belowground components, as well as in the soil to a depth of −50 cm. In addition, soil gas fluxes of CO2, CH4, and N2O were measured. Three sites were evaluated: a conserved mangrove, a site degraded by P. vaginatum, and the same site post-restoration via hydrological rehabilitation and reforestation. Invasion significantly reduced carbon storage, especially in soil, due to lower biomass, incorporation of low C/N ratio organic residues, and compaction. Restoration recovered 7.8% of the total biomass carbon compared to the conserved mangrove site, although soil organic carbon did not rise significantly in the short term. However, improvements in deep soil C/N ratios (15–30 and 30–50 cm) suggest enhanced soil organic matter recalcitrance linked to R. racemosa reforestation. Soil CO2 emissions dropped by 60% at the restored site, underscoring restoration’s potential to mitigate early carbon loss. These results highlight the need to control invasive species and suggest that restoration can generate additional social benefits. Full article
Show Figures

Figure 1

17 pages, 2895 KiB  
Article
Trade-Offs of Plant Biomass by Precipitation Regulation Across the Sanjiangyuan Region of Qinghai–Tibet Plateau
by Mingxue Xiang, Gang Fu, Junxi Wu, Yunqiao Ma, Tao Ma, Kai Zheng, Zhaoqi Wang and Xinquan Zhao
Plants 2025, 14(15), 2325; https://doi.org/10.3390/plants14152325 - 27 Jul 2025
Viewed by 250
Abstract
Climate change alters plant biomass allocation and aboveground–belowground trade-offs in grassland ecosystems, potentially affecting critical functions such as carbon sequestration. However, uncertainties persist regarding how precipitation gradients regulate (1) responses of aboveground biomass (AGB), belowground biomass (BGB), and total biomass in alpine grasslands, [...] Read more.
Climate change alters plant biomass allocation and aboveground–belowground trade-offs in grassland ecosystems, potentially affecting critical functions such as carbon sequestration. However, uncertainties persist regarding how precipitation gradients regulate (1) responses of aboveground biomass (AGB), belowground biomass (BGB), and total biomass in alpine grasslands, and (2) precipitation-mediated AGB-BGB allocation strategies. To address this, we conducted a large-scale field survey across precipitation gradients (400–700 mm/y) in the Sanjiangyuan alpine grasslands, Qinghai–Tibet Plateau. During the 2024 growing season, a total of 63 sites (including 189 plots and 945 quadrats) were sampled along five aridity classes: <400, 400–500, 500–600, 600–700, and >700 mm/y. Our findings revealed precipitation as the dominant driver of biomass dynamics: AGB exhibited equal growth rates relative to BGB within the 600–700 mm/y range, but accelerated under drier/wetter conditions. This suggests preferential allocation to aboveground parts under most precipitation regimes. Precipitation explained 31.71% of AGB–BGB trade-off variance (random forest IncMSE), surpassing contributions from AGB (17.61%), specific leaf area (SLA, 13.87%), and BGB (12.91%). Structural equation modeling confirmed precipitation’s positive effects on SLA (β = 0.28, p < 0.05), AGB (β = 0.53, p < 0.05), and BGB (β = 0.60, p < 0.05), with AGB-mediated cascades (β = 0.33, p < 0.05) dominating trade-off regulation. These results advance our understanding of mechanistic drivers governing allometric AGB–BGB relationships across climatic gradients in alpine ecosystems of the Sanjiangyuan Region on the Qinghai–Tibet Plateau. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

14 pages, 2980 KiB  
Article
Assessing Two Decades of Organic Farming: Effects on Soil Heavy Metal Concentrations and Biodiversity for Sustainable Management
by Yizhi Chen, Jianning Guo, Hanyue Zhao, Guangyu Qu, Siqi Han and Caide Huang
Sustainability 2025, 17(15), 6817; https://doi.org/10.3390/su17156817 - 27 Jul 2025
Viewed by 231
Abstract
Organic farming is widely recognized as a promising practice for sustainable agriculture, yet its long-term ecological impacts remain insufficiently investigated. In this study, we evaluated these impacts by comparing heavy metal concentrations, soil invertebrate communities, and microbial profiles between long-term organic and conventional [...] Read more.
Organic farming is widely recognized as a promising practice for sustainable agriculture, yet its long-term ecological impacts remain insufficiently investigated. In this study, we evaluated these impacts by comparing heavy metal concentrations, soil invertebrate communities, and microbial profiles between long-term organic and conventional farming systems. A comparative analysis was conducted on 24 plot soils from two paired organic and conventional farm systems in Beijing, each managed continuously for over 20 years. Our results revealed that soils under organic management consistently contained 10.8% to 73.7% lower heavy metals, along with reduced geo-accumulation indices (Igeo, a standardized metric for soil contamination assessment), indicating decreased contamination risks. In terms of soil fauna, while conventional soils showed higher Collembola abundance, organic farming significantly enhanced Collembola richness and diversity by 20.6% to 55.0%. Microbial sequencing likewise revealed enhanced richness and diversity of bacteria and fungi in organic soils. These microbial communities also displayed shifts in dominant taxa and more stable co-occurrence networks under organic management. Principal component analysis and Mantel tests identified soil pH and nutrients as key drivers of soil biodiversity, while heavy metals also imposed negative influences. Collectively, these findings demonstrate that long-term organic farming not only mitigates environmental risks associated with soil contaminants but also promotes belowground ecological integrity by supporting biodiversity of soil fauna and microbiota. This study highlights the ecological significance of sustained organic practices and provides critical insights for advancing sustainable agricultural developments. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Graphical abstract

24 pages, 12938 KiB  
Article
Spatial Distribution of Mangrove Forest Carbon Stocks in Marismas Nacionales, Mexico: Contributions to Climate Change Adaptation and Mitigation
by Carlos Troche-Souza, Edgar Villeda-Chávez, Berenice Vázquez-Balderas, Samuel Velázquez-Salazar, Víctor Hugo Vázquez-Morán, Oscar Gerardo Rosas-Aceves and Francisco Flores-de-Santiago
Forests 2025, 16(8), 1224; https://doi.org/10.3390/f16081224 - 25 Jul 2025
Viewed by 575
Abstract
Mangrove forests are widely recognized for their effectiveness as carbon sinks and serve as critical ecosystems for mitigating the effects of climate change. Current research lacks comprehensive, large-scale carbon storage datasets for wetland ecosystems, particularly across Mexico and other understudied regions worldwide. Therefore, [...] Read more.
Mangrove forests are widely recognized for their effectiveness as carbon sinks and serve as critical ecosystems for mitigating the effects of climate change. Current research lacks comprehensive, large-scale carbon storage datasets for wetland ecosystems, particularly across Mexico and other understudied regions worldwide. Therefore, the objective of this study was to develop a high spatial resolution map of carbon stocks, encompassing both aboveground and belowground components, within the Marismas Nacionales system, which is the largest mangrove complex in northeastern Pacific Mexico. Our approach integrates primary field data collected during 2023–2024 and incorporates some historical plot measurements (2011–present) to enhance spatial coverage. These were combined with contemporary remote sensing data, including Sentinel-1, Sentinel-2, and LiDAR, analyzed using Random Forest algorithms. Our spatial models achieved strong predictive accuracy (R2 = 0.94–0.95), effectively resolving fine-scale variations driven by canopy structure, hydrologic regime, and spectral heterogeneity. The application of Local Indicators of Spatial Association (LISA) revealed the presence of carbon “hotspots,” which encompass 33% of the total area but contribute to 46% of the overall carbon stocks, amounting to 21.5 Tg C. Notably, elevated concentrations of carbon stocks are observed in the central regions, including the Agua Brava Lagoon and at the southern portion of the study area, where pristine mangrove stands thrive. Also, our analysis reveals that 74.6% of these carbon hotspots fall within existing protected areas, demonstrating relatively effective—though incomplete—conservation coverage across the Marismas Nacionales wetlands. We further identified important cold spots and ecotones that represent priority areas for rehabilitation and adaptive management. These findings establish a transferable framework for enhancing national carbon accounting while advancing nature-based solutions that support both climate mitigation and adaptation goals. Full article
Show Figures

Graphical abstract

17 pages, 1706 KiB  
Article
Root-Emitted Volatile Organic Compounds from Daucus carota Modulate Chemotaxis in Phasmarhabditis and Oscheius Nematodes
by Emre Sen, Tamás Lakatos, Tímea Tóth, Stanislav Trdan and Žiga Laznik
Agronomy 2025, 15(8), 1793; https://doi.org/10.3390/agronomy15081793 - 25 Jul 2025
Viewed by 633
Abstract
Root-emitted volatile organic compounds (VOCs) play a critical role in below-ground ecological interactions by mediating communication between plants, pests, and their natural enemies. This study investigates the chemotactic behavior of three slug-parasitic nematode species—Phasmarhabditis papillosa, Oscheius myriophilus, and Oscheius onirici [...] Read more.
Root-emitted volatile organic compounds (VOCs) play a critical role in below-ground ecological interactions by mediating communication between plants, pests, and their natural enemies. This study investigates the chemotactic behavior of three slug-parasitic nematode species—Phasmarhabditis papillosa, Oscheius myriophilus, and Oscheius onirici—in response to four carrot (Daucus carota) root-derived VOCs: α-pinene, terpinolene, bornyl acetate, and 2-ethyl-1-hexanol. Using a modified Petri dish assay, infective juveniles (IJs) were exposed to each compound across four concentrations (pure, 1000 ppm, 10 ppm, and 0.03 ppm), and their directional movement was quantified using a chemotaxis index (CI). The results revealed strong species-specific and concentration-dependent patterns. O. myriophilus exhibited the highest motility and repellency, particularly toward bornyl acetate and terpinolene, indicating its potential for use in VOC-guided biocontrol strategies. O. onirici showed moderate but consistent attraction to most VOCs, while P. papillosa exhibited generally weak or repellent responses, especially at higher concentrations. None of the compounds tested functioned as strong attractants (CI ≥ 0.2), suggesting that plant-derived VOCs alone may not be sufficient to direct nematode recruitment under field conditions. However, their integration with other biotic cues could enhance nematode-based “lure-and-infect” systems for sustainable slug control in carrot cropping systems. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

22 pages, 4318 KiB  
Article
The Molecular Mechanism and Effects of Root Pruning Treatment on Blueberry Tree Growth
by Liwei Chu, Chengjing Shi, Xin Wang, Benyin Li, Siyu Zuo, Qixuan Li, Jiarui Han, Hexin Wang and Xin Lou
Plants 2025, 14(15), 2269; https://doi.org/10.3390/plants14152269 - 23 Jul 2025
Viewed by 173
Abstract
Root pruning can promote the transplanting of young green plants, but the overall impact of pruning on root growth, morphology, and physiological functions remains unclear. This study integrated transcriptomics and physiological analyses to elucidate the effects of root pruning on blueberry growth. Appropriate [...] Read more.
Root pruning can promote the transplanting of young green plants, but the overall impact of pruning on root growth, morphology, and physiological functions remains unclear. This study integrated transcriptomics and physiological analyses to elucidate the effects of root pruning on blueberry growth. Appropriate pruning (CT4) significantly promoted plant growth, with above-ground biomass and leaf biomass significantly increasing compared to the control group within 42 days. Photosynthesis temporarily decreased at 7 days but recovered at 21 and 42 days. Transcriptomics analysis showed that the cellulose metabolism pathway was rapidly activated and influenced multiple key genes in the starch metabolism pathway. Importantly, transcription factors associated with vascular development were also significantly increased at 7, 21, and 42 days after root pruning, indicating their role in regulating vascular differentiation. Enhanced aboveground growth was positively correlated with the expression of photosynthesis-related genes, and the transport of photosynthetic products via vascular tissues provided a carbon source for root development. Thus, root development is closely related to leaf photosynthesis, and changes in gene expression associated with vascular tissue development directly influence root development, ultimately ensuring coordinated growth between aboveground and belowground parts. These findings provide a theoretical basis for optimizing root pruning strategies to enhance blueberry growth and yield. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

18 pages, 3178 KiB  
Article
Biomass Estimation of Apple and Citrus Trees Using Terrestrial Laser Scanning and Drone-Mounted RGB Sensor
by Min-Ki Lee, Yong-Ju Lee, Dong-Yong Lee, Jee-Su Park and Chang-Bae Lee
Remote Sens. 2025, 17(15), 2554; https://doi.org/10.3390/rs17152554 - 23 Jul 2025
Viewed by 247
Abstract
Developing accurate activity data on tree biomass using remote sensing tools such as LiDAR and drone-mounted sensors is essential for improving carbon accounting in the agricultural sector. However, direct biomass measurements of perennial fruit trees remain limited, especially for validating remote sensing estimates. [...] Read more.
Developing accurate activity data on tree biomass using remote sensing tools such as LiDAR and drone-mounted sensors is essential for improving carbon accounting in the agricultural sector. However, direct biomass measurements of perennial fruit trees remain limited, especially for validating remote sensing estimates. This study evaluates the potential of terrestrial laser scanning (TLS) and drone-mounted RGB sensors (Drone_RGB) for estimating biomass in two major perennial crops in South Korea: apple (‘Fuji’/M.9) and citrus (‘Miyagawa-wase’). Trees of different ages were destructively sampled for biomass measurement, while volume, height, and crown area data were collected via TLS and Drone_RGB. Regression analyses were performed, and the model accuracy was assessed using R2, RMSE, and bias. The TLS-derived volume showed strong predictive power for biomass (R2 = 0.704 for apple, 0.865 for citrus), while the crown area obtained using both sensors showed poor fit (R2 ≤ 0.7). Aboveground biomass was reasonably estimated (R2 = 0.725–0.865), but belowground biomass showed very low predictability (R2 < 0.02). Although limited in scale, this study provides empirical evidence to support the development of remote sensing-based biomass estimation methods and may contribute to improving national greenhouse gas inventories by refining emission/removal factors for perennial fruit crops. Full article
(This article belongs to the Special Issue Biomass Remote Sensing in Forest Landscapes II)
Show Figures

Figure 1

20 pages, 2546 KiB  
Article
Positive Relationships Between Soil Organic Carbon and Tree Physical Structure Highlights Significant Carbon Co-Benefits of Beijing’s Urban Forests
by Rentian Xie, Syed M. H. Shah, Chengyang Xu, Xianwen Li, Suyan Li and Bingqian Ma
Forests 2025, 16(8), 1206; https://doi.org/10.3390/f16081206 - 22 Jul 2025
Viewed by 292
Abstract
Increasing soil carbon storage is an important strategy for achieving sustainable development. Enhancing soil carbon sequestration capacity can effectively reduce the concentration of atmospheric carbon dioxide, which not only contributes to the carbon neutrality goal but also helps maintain ecosystem stability. Based on [...] Read more.
Increasing soil carbon storage is an important strategy for achieving sustainable development. Enhancing soil carbon sequestration capacity can effectively reduce the concentration of atmospheric carbon dioxide, which not only contributes to the carbon neutrality goal but also helps maintain ecosystem stability. Based on 146 soil samples collected at plot locations selected across Beijing, we examined relationships between soil organic carbon (SOC) and key characteristics of urban forests, including their spatial structure and species complexity. The results showed that SOC in the topsoil with a depth of 20 cm was highest over forested plots (6.384 g/kg–20.349 g/kg) and lowest in soils without any vegetation cover (5.586 g/kg–6.783 g/kg). The plots with herbaceous/shrub vegetation but no tree cover had SOC values in between (5.586 g/kg–15.162 g/kg). The plot data revealed that SOC was better correlated with the physical structure than the species diversity of Beijing’s urban trees. The correlation coefficients (r) between SOC and five physical structure indicators, including average diameter at breast height (DBH), average tree height, basal area density, and the diversity of DBH and tree height, ranged from 0.32 to 0.52, whereas the r values for four species diversity indicators ranged from 0.10 to 0.25, two of which were not statistically different from 0. Stepwise linear regression analyses revealed that the species diversity indicators were not very sensitive to SOC variations among a large portion of the plots and were about half as effective as the physical structure indicators for explaining the total variance of SOC. These results suggest that urban planning and greenspace management policies could be tailored to maximize the carbon co-benefits of urban land. Specifically, trees should be planted in urban areas wherever possible, preferably as densely as what can be allowed given other urban planning considerations. Protection of large, old trees should be encouraged, as these trees will continue to sequester and store large quantities of carbon in above- and belowground biomass as well as in soil. Such policies will enhance the contribution of urban land, especially urban forests and other greenspaces, to nature-based solutions (NBS) to climate change. Full article
(This article belongs to the Special Issue Ecosystem Services of Urban Forest)
Show Figures

Figure 1

17 pages, 2163 KiB  
Article
Allometric Growth of Annual Pinus yunnanensis After Decapitation Under Different Shading Levels
by Pengrui Wang, Chiyu Zhou, Boning Yang, Jiangfei Li, Yulan Xu and Nianhui Cai
Plants 2025, 14(15), 2251; https://doi.org/10.3390/plants14152251 - 22 Jul 2025
Viewed by 236
Abstract
Pinus yunnanensis, a native tree species in southwest China, is shading-tolerant and ecologically significant. Light has a critical impact on plant physiology, and decapitation improves canopy light penetration and utilization efficiency. The study of allometric relationships is well-known in forestry, forest ecology, [...] Read more.
Pinus yunnanensis, a native tree species in southwest China, is shading-tolerant and ecologically significant. Light has a critical impact on plant physiology, and decapitation improves canopy light penetration and utilization efficiency. The study of allometric relationships is well-known in forestry, forest ecology, and related fields. Under control (full daylight exposure, 0% shading), L1 (partial shading, 25% shading), L2 (medium shading, 50% shading), and L3 (serious shading, 75% shading) levels, this study used the decapitation method. The results confirmed the effectiveness of decapitation in annual P. yunnanensis and showed that the main stem maintained isometric growth in all shading treatments, accounting for 26.8% of the individual plant biomass, and exhibited dominance in biomass allocation and high shading sensitivity. These results also showed that lateral roots exhibited a substantial biomass proportion of 12.8% and maintained more than 0.5 of higher plasticity indices across most treatments. Moreover, the lateral root exhibited both the lowest slope in 0.5817 and the highest significance (p = 0.023), transitioning from isometric to allometric growth under L1 shading treatment. Importantly, there was a positive correlation between the biomass allocation of an individual plant and that of all components of annual P. yunnanensis. In addition, the synchronized allocation between main roots and lateral branches, as well as between main stems and lateral roots, suggested functional integration between corresponding belowground and aboveground structures to maintain balanced resource acquisition and architectural stability. At the same time, it has been proved that the growth of lateral roots can be accelerated through decapitation. Important scientific implications for annual P. yunnanensis management were derived from these shading experiments on allometric growth. Full article
(This article belongs to the Special Issue Development of Woody Plants)
Show Figures

Figure 1

18 pages, 6976 KiB  
Article
Molecular Mechanisms Underlying Sweet Potato (Ipomoea batatas L.) Responses to Phosphorus Deficiency
by Zhufang Yao, Zhongxia Luo, Hongda Zou, Yiling Yang, Bingzhi Jiang, Lifei Huang and Zhangying Wang
Agronomy 2025, 15(7), 1745; https://doi.org/10.3390/agronomy15071745 - 20 Jul 2025
Viewed by 214
Abstract
Phosphorus deficiency poses a significant challenge to the growth and productivity of crops, particularly in nutrient-poor soils. This study investigates the effects of phosphorus deficiency on the growth, endogenous phytohormones, metabolome, and transcriptome of sweet potato (Ipomoea batatas L.) over a growth [...] Read more.
Phosphorus deficiency poses a significant challenge to the growth and productivity of crops, particularly in nutrient-poor soils. This study investigates the effects of phosphorus deficiency on the growth, endogenous phytohormones, metabolome, and transcriptome of sweet potato (Ipomoea batatas L.) over a growth period from 30 to 120 days. We found that low phosphorus conditions significantly reduced both above- and below-ground biomass, while tuber number remained unchanged. Endogenous phytohormone analysis revealed altered levels of abscisic acid (ABA), indole-3-acetic acid (IAA), and cytokinins, indicating a complex hormonal response to phosphorus starvation. Transcriptomic analysis identified a total of 6324 differentially expressed genes (DEGs) at 60 days, with significant enrichment in pathways related to stress response and phosphorus utilization (PAPs and PHO1). Metabolomic profiling revealed notable shifts in key metabolites, with consistent downregulation of several phosphorous-related compounds. Our findings highlight the intricate interplay between growth, hormonal regulation, metabolic reprogramming, and gene expression in response to phosphorus deficiency in sweet potato. This research underscores the importance of understanding nutrient stress responses to enhance sweet potato resilience and inform sustainable agricultural practices. Future research should focus on exploring the potential for genetic and agronomic interventions to mitigate the effects of phosphorus deficiency and optimize sweet potato productivity in challenging environments. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

22 pages, 3382 KiB  
Article
Communities of Arbuscular Mycorrhizal Fungi and Their Effects on Plant Biomass Allocation Patterns in Degraded Karst Grasslands of Southwest China
by Wangjun Li, Xiaolong Bai, Dongpeng Lv and Yurong Yang
J. Fungi 2025, 11(7), 525; https://doi.org/10.3390/jof11070525 - 16 Jul 2025
Viewed by 306
Abstract
The biomass allocation patterns between aboveground and belowground are an essential functional trait for plant survival under a changing environment. The effects of arbuscular mycorrhizal fungi (AMF) communities on plant biomass allocation, particularly in degraded Festuca ovina grasslands in ecologically fragile karst areas, [...] Read more.
The biomass allocation patterns between aboveground and belowground are an essential functional trait for plant survival under a changing environment. The effects of arbuscular mycorrhizal fungi (AMF) communities on plant biomass allocation, particularly in degraded Festuca ovina grasslands in ecologically fragile karst areas, remain unclear. Therefore, we conducted a field investigation combined with a greenhouse experiment to explore the importance of AMF compared to bacteria and fungi for plant biomass allocation. The results showed that plant biomass in degraded grasslands exhibited allometric biomass allocation, contrasting with isometric partitioning in non-degraded grasslands. AMF, not bacteria or fungi, were the primary microbial mediators of grassland degradation effects on plant biomass allocation based on structural equation modeling. The greenhouse experiment demonstrated that the selected AMF keystone species from the field study performed according to ecological network analysis, particularly multi-species combinations, enhanced the belowground biomass allocation of F. ovina under rocky desertification stress compared to single-species inoculations, through decreasing soil pH, enhancing alkaline phosphatase (ALP) activity, and increasing the expression level of AMF-inducible phosphate transporter (PT4). This study highlights the critical role of the AMF community, rather than individual species, in mediating plant survival strategies under rocky desertification stress. Full article
(This article belongs to the Section Environmental and Ecological Interactions of Fungi)
Show Figures

Figure 1

13 pages, 919 KiB  
Article
Phenological Stage and Nitrogen Input Coordinately Regulate Bud Bank Dynamics and Shoot Allocation in an Alpine Clonal Perennial Grass
by Keyan He, Qingping Zhou, Lin He, Lili He, Haihong Dang, Xiaoxing Wei, Qian Wang and Jiahao Wang
Plants 2025, 14(14), 2164; https://doi.org/10.3390/plants14142164 - 14 Jul 2025
Viewed by 279
Abstract
Belowground buds play a vital role in the clonal propagation and structural regulation of perennial herbaceous plants, especially in alpine environments, where vegetative renewal depends heavily on bud bank dynamics. However, the interactive effects of nitrogen addition and phenological stages on bud development [...] Read more.
Belowground buds play a vital role in the clonal propagation and structural regulation of perennial herbaceous plants, especially in alpine environments, where vegetative renewal depends heavily on bud bank dynamics. However, the interactive effects of nitrogen addition and phenological stages on bud development and aboveground branching remain poorly understood. In this study, we examined the responses of rhizome buds, tiller buds, and aboveground tiller types of Kentucky bluegrass to six nitrogen levels (0, 6, 9, 12, 15, and 18 g/m2) across five growth stages on the Qinghai–Tibet Plateau. The results showed that moderate nitrogen input (N2, 9 g/m2) significantly enhanced total bud density, particularly at the heading and maturity stages, indicating a threshold response. Aboveground reproductive tiller density peaked at N2 (9 g/m2), while vegetative and total tiller densities plateaued beyond N3 (12 g/hm2), suggesting a diminishing marginal effect of nitrogen on aboveground tiller density. Furthermore, bud density showed stage-specific correlations with tiller types: vegetative tillers were primarily influenced at the heading stage, and reproductive tillers were mainly influenced at the mature stage, with weakened associations in senescence. These findings highlight the phenological specificity and non-linear response of clonal grass regeneration to nitrogen input and provide a theoretical basis for optimizing nutrient management in cold alpine grasslands. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

15 pages, 845 KiB  
Article
Aboveground and Belowground Input Effects on Soil Health in Urban Camphor Tree Forests
by Xuejia Huang, Yuanying Peng, Wende Yan, Tianyi Yan, Xiaocui Liang, Junjie Lei, Xiaoyong Chen and Yaqin Qi
Sustainability 2025, 17(14), 6358; https://doi.org/10.3390/su17146358 - 11 Jul 2025
Viewed by 221
Abstract
Urban forests provide essential ecosystem services, including improving soil health, sequestering carbon (C), and supporting biodiversity. However, the effects of anthropogenic litter and root management on soil biogeochemical processes in urban environments remain poorly understood. This study applied the Detritus Inputs and Removal [...] Read more.
Urban forests provide essential ecosystem services, including improving soil health, sequestering carbon (C), and supporting biodiversity. However, the effects of anthropogenic litter and root management on soil biogeochemical processes in urban environments remain poorly understood. This study applied the Detritus Inputs and Removal Treatment (DIRT) framework to examine how aboveground and belowground organic inputs influence soil organic carbon (SOC), total nitrogen (TN), soil water content (SWC), and enzymatic activities in subtropical urban camphor tree forests in China. Six treatments were implemented: litter removal (LR), litter addition (LA), root exclusion (RE), combined litter and root removal (LR + RE), combined litter addition and root exclusion (LA + RE), and an undisturbed litter control (LC). The results showed that the LA treatment significantly enhanced SOC, TN, SWC, and key soil enzyme activities (protease, catalase, and urease) compared to the LC, highlighting the crucial role of litter in enhancing soil fertility and microbial functioning. These elevated enzyme activities suggest intensified microbial nutrient cycling and metabolic activity in response to organic matter inputs. In contrast, the combined LR + RE treatment reduced SOC and enzyme activities but unexpectedly increased TN, indicating disrupted nutrient cycling, possibly due to accelerated microbial nitrogen mineralization and decomposition of existing soil organic matter in the absence of fresh carbon inputs. The LA treatment also showed the highest carbon-to-nitrogen (C:N) ratio, reflecting a carbon-enriched environment that may favor long-term carbon stabilization. Additionally, SWC was most improved under the LA + RE treatment, suggesting its potential for enhancing soil moisture retention in urban settings. These findings underscore the complementary roles of litter and root inputs in maintaining soil health and biogeochemical balance in urban forests. The study provides insights into enzyme-mediated soil processes under varying organic input regimes and highlights the value of targeted organic matter management to enhance urban ecosystem services. Full article
Show Figures

Figure 1

15 pages, 8519 KiB  
Article
Microplastics Alter Growth and Reproduction Strategy of Scirpus mariqueter by Modifying Soil Nutrient Availability
by Pengcheng Jiang, Jingwen Gao, Junzhen Li, Ming Wu, Xuexin Shao and Niu Li
Diversity 2025, 17(7), 472; https://doi.org/10.3390/d17070472 - 9 Jul 2025
Viewed by 228
Abstract
Microplastic pollution threatens coastal wetland ecosystems, yet its impacts on the dominant plant species and soil properties remain poorly understood. We investigated the effects of four microplastic types (PP, PE, PS, PET) at three concentrations (0.1%, 0.5%, 1% w/w) on [...] Read more.
Microplastic pollution threatens coastal wetland ecosystems, yet its impacts on the dominant plant species and soil properties remain poorly understood. We investigated the effects of four microplastic types (PP, PE, PS, PET) at three concentrations (0.1%, 0.5%, 1% w/w) on Scirpus mariqueter, a keystone species in the coastal wetlands of China, and the associated soil physicochemical properties. In a controlled pot experiment, microplastics significantly altered the plant biomass, vegetative traits, and reproductive strategies, with type-specific and concentration-dependent responses. PET and PE strongly suppressed the belowground and total biomass (p < 0.05), with reductions in the belowground biomass of 42.87% and 44.13%, respectively, at a 0.1% concentration. PP promoted seed production, particularly increasing the seed number by 25.23% at a 0.1% concentration (p < 0.05). The soil NH4+-N, moisture, and EC were key mediators, with NH4+-N declines linked to biomass reductions via nitrogen limitation. The Spearman correlations confirmed strong associations between the plant traits and soil properties, particularly nitrogen forms. These findings reveal that microplastics disrupt wetland plant performance and soil environments, potentially impairing carbon sequestration and ecosystem stability. Our study underscores the urgent need for microplastic risk assessments in coastal wetlands and highlights soil–microbe–plant interactions as critical mechanisms for future investigation. Full article
(This article belongs to the Special Issue Wetland Biodiversity and Ecosystem Conservation)
Show Figures

Figure 1

Back to TopTop