Phenological Stage and Nitrogen Input Coordinately Regulate Bud Bank Dynamics and Shoot Allocation in an Alpine Clonal Perennial Grass
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Site Description
2.2. Experimental Design
2.3. Measurement Indices and Methods
2.4. Data Analysis
3. Results and Analysis
3.1. Interactive Effects of Nitrogen Levels and Growth Stages on Rhizome and Tiller Bud Density of Kentucky Bluegrass
3.2. Interactive Effects of Nitrogen Levels and Growth Stage on Aboveground Tiller Density
3.3. Correlation Between Belowground Bud Density and Aboveground Tiller Number Under Nitrogen Addition Conditions Across Phenological Stages
4. Discussion
4.1. Regulation of Belowground Bud Dynamics by Nitrogen Addition and Phenological Development in Kentucky Bluegrass
4.2. Effects of Nitrogen Addition on Vegetative and Reproductive Tiller Density in Kentucky Bluegrass
4.3. Phenological Correlations Between Bud Density and Tiller Development Under Nitrogen Addition Conditions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Klimes, J. Bud banks and their role in vegetative regeneration–a literature review and proposal for simple classification and assessment. Perspect. Plant Ecol. Evol. Syst. 2007, 8, 115–129. [Google Scholar] [CrossRef]
- Li, W.; Huang, A.; Zhou, T.; Liu, M.; Ma, S.; Zhao, N.; Wang, X.; Sun, J. Patterns and drivers of the belowground bud bank in alpine grasslands on the Qinghai-Tibet Plateau. Front. Plant Sci. 2023, 13, 1095864. [Google Scholar] [CrossRef] [PubMed]
- Aarssen, L. Death without sex: The problem of the small and selection for reproductive economy in flowering plants. Evol. Ecol. 2008, 22, 279–298. [Google Scholar] [CrossRef]
- Zhao, L.P.; Wu, G.L.; Shi, Z.H. Post-fire species recruitment in a semiarid perennial steppe on the Loess Plateau. Aust. J. Bot. 2013, 61, 29–35. [Google Scholar] [CrossRef]
- Ott, J.P.; Klimešová, J.; Hartnett, D.C. The ecology and significance of below-ground bud banks in plants. Ann. Bot. 2019, 123, 1099–1118. [Google Scholar] [CrossRef]
- Teniwu; Guo, Z.; Liu, D.; Luo, W.; Wuyunna, A.; Qian, J.Q. Responses of belowground bud bank to simulated extreme drought in the meadow steppe of inner Mongolia. Chin. J. Ecol. 2021, 40, 759–765. [Google Scholar] [CrossRef]
- VanderWeide, B.L.; Hartnett, D.C.; Carter, D.L. Belowground bud banks of tallgrass prairie are insensitive to multi-year, growing-season drought. Ecosphere 2014, 5, 103. [Google Scholar] [CrossRef]
- Qian, J.Q.; Wang, Z.; Klimešová, J.; Lü, X.; Zhang, C. Belowground bud bank and its relationship with aboveground vegetation under watering and nitrogen addition in temperate semiarid steppe. Ecol. Indic. 2021, 125, 107520. [Google Scholar] [CrossRef]
- Li, Y.; Bao, G.; Zhang, P.; Feng, X.; Ma, J.; Lu, H.; Liu, K. Changes in bud bank and their correlation with plant community composition in degraded alpine meadows. Front. Plant Sci. 2023, 14, 1259340. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, M.; Wang, X.T. Response of under-ground bud bank to degradation in an alpine meadows on the Qinghai-Tibet Plateau, China. Front. Plant Sci. 2022, 13, 1013331. [Google Scholar] [CrossRef]
- Ott, J.P.; Hartnett, D.C. Contrasting bud bank dynamics of two co-occurring grasses in tallgrass prairie: Implications for grassland dynamics. Plant Ecol. 2012, 213, 1437–1448. [Google Scholar] [CrossRef]
- Silvertown, J.; Charlesworth, D. Introduction to Plant Population Biology; John Wiley and Sons: Chichester, UK, 2009. [Google Scholar]
- Herben, T.; Šerá, B.; Klimešová, J. Clonal growth and sexual reproduction: Tradeoffs and environmental constraints. Oikos 2015, 124, 469–476. [Google Scholar] [CrossRef]
- Cooke, J.E.; Eriksson, M.E.; Junttila, O. The dynamic nature of bud dormancy in trees: Environmental control and molecular mechanisms. Plant Cell Environ. 2012, 35, 1707–1728. [Google Scholar] [CrossRef] [PubMed]
- Rohde, A.; Bhalerao, R.P. Plant dormancy in the perennial context. Trends Plant Sci. 2007, 12, 217–223. [Google Scholar] [CrossRef]
- Martinkova, J.; Klimeš, A.; Klimešová, J. No evidence for nutrient foraging in root-sprouting clonal plants. Basic Appl. Ecol. 2018, 28, 27–36. [Google Scholar] [CrossRef]
- Elser, J.J.; Bracken, M.E.; Cleland, E.E.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Smith, J.E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 2007, 10, 1135–1142. [Google Scholar] [CrossRef]
- Maun, M.A. The Biology of Coastal Sand Dunes; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Takei, K.; Sakakibara, H.; Taniguchi, M.; Sugiyama, T. Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: Implication of cytokinin species that induces gene expression of maize response regulator. Plant Cell Physiol. 2001, 42, 85–93. [Google Scholar] [CrossRef]
- Bangerth, F.; Li, C.J.; Gruber, J. Mutual interaction of auxin and cytokinins in regulating correlative dominance. Plant Growth Regul. 2000, 32, 205–217. [Google Scholar] [CrossRef]
- Rong, C.Y.; Liu, Y.X.; Chang, Z.Y.; Liu, Z.Y.; Ding, Y.F.; Ding, C.Q. Cytokinin oxidase/dehydrogenase family genes exhibit functional divergence and overlap in rice growth and development, especially in control of tillering. J. Exp. Bot. 2002, 73, 3552–3568. [Google Scholar] [CrossRef]
- Keller, A.B.; Walter, C.A.; Blumenthal, D.M.; Borer, E.T.; Collins, S.L.; DeLancey, L.C.; Hobbie, S.E. Stronger fertilization effects on aboveground versus belowground plant properties across nine US grasslands. Ecology 2023, 104, e3891. [Google Scholar] [CrossRef]
- Feng, H.; Guo, J.; Peng, C.; Kneeshaw, D.; Roberge, G.; Pan, C.; Wang, W. Nitrogen addition promotes terrestrial plants to allocate more biomass to aboveground organs: A global meta-analysis. Glob. Change Biol. 2023, 29, 3970–3989. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.; Sun, X.; Wang, Z.; Li, L. Nitrogen addition and rhizome severing modify clonal growth and reproductive modes of Leymus chinensis population. Plant Ecol. 2009, 205, 13–21. [Google Scholar] [CrossRef]
- LeBauer, D.S.; Treseder, K.K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 2008, 89, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, K.W.; Connor, T.G. Control of tiller recruitment in bunchgrasses: Uniting physiology and ecology. Funct. Ecol. 2004, 18, 489–496. [Google Scholar] [CrossRef]
- Fornara, D.A.; Tilman, D. Soil carbon sequestration in prairie grasslands increased by chronic nitrogen addition. Ecology 2012, 93, 2030–2036. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, N.; Wang, H.; Zhang, S.; Zhao, J.; Liu, H.; Yang, D. Importance of plant community composition and aboveground biomass in shaping microbial communities following long-term nitrogen and phosphorus addition in a temperate steppe ecosystem. Plant Soil. 2025, 509, 543–560. [Google Scholar] [CrossRef]
- Hautier, Y.; Niklaus, P.A.; Hector, A. Competition for light causes plant biodiversity loss after eutrophication. Science 2009, 324, 636–638. [Google Scholar] [CrossRef]
- Li, S.; Liu, W.; Shi, Z.; Liu, K.; Wang, W.; Liu, L.; Duan, H. Production performance in cultivated mixed-sown grasslands combining Poa pratensis L. and various Poaceae forage grasses. PLoS ONE 2025, 20, e0324084. [Google Scholar] [CrossRef]
- Wei, X.X. Interannual Changes of Productivity and Ecological Stoichiometry Characteristics of Rhizopoa Pasture Under Nitrogen and Phosphorus Addition. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2024. [Google Scholar]
- Zhang, Z.; Niu, K.; Liu, X.; Jia, P.; Du, G. Linking flowering and reproductive allocation in response to nitrogen addition in an alpine meadow. J. Plant Ecol. 2014, 7, 231–239. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Y.; Zhang, T.; Zhang, P.; Guo, Z.; Huang, L.; Ma, M. Plant phenology response to nitrogen addition decreases community biomass stability in an alpine meadow. New Phytol. 2025, 247, 1145–1155. [Google Scholar] [CrossRef]
- De, Y. Descriptive Standards and Data Criteria for Poa Forage Grass Germplasm Resources; China Agriculture Press: Beijing, China, 2010. [Google Scholar]
- Nie, X.Q.; Xiong, F.; Li, C.B. Biomass allocation relationships in the grass layer in alpine shrubland ecosystemson the Tibetan Plateau. Acta Ecol. Sin. 2018, 38, 6664–6669. [Google Scholar] [CrossRef]
- Ott, J.P.; Hartnett, D.C. Bud bank dynamics and clonal growth strategy in the rhizomatous grass, Pascopyrum smithii. Plant Ecol. 2015, 216, 395–405. [Google Scholar] [CrossRef]
- Klimeš, L.; Klimešová, J. Clonal traits. In Collecting and Measuring Standards of Life-History Traits of the Northwest European Flora, LEDA Traitbase Project; Knevel, I.C., Bekker, R.M., Kunzmann, D., Stadler, M., Thompson, K., Eds.; University of Groningen, Community and Conservation Ecology Group: Groningen, The Netherlands, 2005; pp. 66–88. [Google Scholar]
- Zhang, J.T. Study on the Change of Buds of Various Types of Underground Bud Banks of Mutton Grass Population and Their Relationship with Aboveground Plants. Ph.D. Thesis, Northeast Normal University, Changchun, China, 2009. [Google Scholar]
- Dalgleish, H.J.; Kula, A.R.; Hartnett, D.C.; Sandercock, B.K. Responses of two bunchgrasses to nitrogen addition in tallgrass prairie: The role of bud bank demography. Am. J. Botany 2008, 95, 672–680. [Google Scholar] [CrossRef]
- Yu, D.F.; Zheng, X.Y.; Mu, C.S.; Wang, J.F. Irrigation and nitrogen application promote population density through altered bud bank size and components in Leymus chinensis. Agronomy 2022, 12, 1436. [Google Scholar] [CrossRef]
- Zang, L.; Morère-Le, P.M.; Clochard, T.; Porcher, A.; Satour, P.; Mojović, M.; Vidović, M.; Limami, A.M.; Montrichard, F. Nitrate inhibits primary root growth by reducing accumulation of reactive oxygen species in the root tip in Medicago truncatula. Plant Physiol. Biochem. 2019, 146, 312–321. [Google Scholar] [CrossRef]
- Hermans, C.; Hammond, J.P.; White, P.J.; Verbruggen, N. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci. 2006, 11, 610–617. [Google Scholar] [CrossRef]
- Klimešová, J.; Martínková, J.; Gianluigi, O. Belowground plant functional ecology: Towards an integrated perspective. Funct. Ecol. 2018, 32, 2115–2126. [Google Scholar] [CrossRef]
- Choczynska, J.; Johnson, E.A. A soil heat and water transfer model to predict belowground grass rhizome bud death in a grass fire. J. Veg. Sci. 2009, 20, 277–287. [Google Scholar] [CrossRef]
- Xiang, C.; Wang, X.; Chen, Y.; Liu, L.; Li, M.; Wang, T.; Guo, X. Nitrogen deposition enhances the competitive advantage of invasive plant species over common native species through improved resource acquisition and absorption. Ecol. Process. 2024, 13, 61. [Google Scholar] [CrossRef]
- Xie, X.F.; Hu, Y.K.; Pan, X.; Liu, F.H.; Song, Y.B.; Dong, M. Biomass allocation of stoloniferous and rhizomatous plant in response to resource availability: A phylogenetic meta-analysis. Front. Plant Sci. 2016, 7, 603. [Google Scholar] [CrossRef]
- Yang, G.J.; Stevens, C.; Zhang, Z.J.; Lü, X.T.; Han, X.G. Different nitrogen saturation thresholds for above-, below-, and total net primary productivity in a temperate steppe. Glob. Change Biol. 2023, 29, 4586–4594. [Google Scholar] [CrossRef] [PubMed]
- Zong, N.; Zhao, G.; Shi, P. Different sensitivity and threshold in response to nitrogen addition in four alpine grasslands along a precipitation transect on the Northern Tibetan Plateau. Ecol. Evol. 2019, 9, 9782–9793. [Google Scholar] [CrossRef] [PubMed]
- Nakaji, T.; Fukami, M.; Dokiya, Y.; Lzuta, T. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees-Struct. Funct. 2001, 15, 453–461. [Google Scholar] [CrossRef]
- Fageria, N.K. Yield physiology of rice. J. Plant Nutr. 2007, 30, 843–879. [Google Scholar] [CrossRef]
- Aloni, R.; Aloni, E.; Langhans, M.; Ullrich, C.I. Role of cytokinin and auxin in shaping root architecture: Regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann. Bot. 2006, 97, 883–893. [Google Scholar] [CrossRef]
- Bernier, G.; Havelange, A.; Houssa, C.; Petitjean, A.; Lejeune, P. Physiological signals that induce flowering. Plant Cell 1993, 5, 1147. [Google Scholar] [CrossRef]
- Kumar, P.N.; Reddy, Y.N.; Chandrashekar, R. Effect of growth regulators on flowering and corm production in gladiolus. Indian J. Hortic. 2008, 65, 73–78. [Google Scholar]
- Reznick, D. Costs of reproduction: An evaluation of the empirical evidence. Oikos 1985, 44, 257–267. [Google Scholar] [CrossRef]
- Harper, J.L. Population Biology of Plants; Academic Press: London, UK, 1997. [Google Scholar]
- Körner, C.; Kèorner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Fernandez, R.J.; Reynolds, J.F. Potential growth and drought tolerance of eight desert grasses: Lack of a trade-off? Oecologia 2000, 123, 90–98. [Google Scholar] [CrossRef]
- Yang, P.; Niu, M.; Fu, Q.; Qian, L.; Huang, M.; Li, Z.; Chen, J. Ecosystem engineers can regulate resource allocation strategies in associated plant species. Front. Plant Sci. 2024, 15, 1387951. [Google Scholar] [CrossRef]
- Watts, J.C.; Tenhumberg, B. Optimal resource allocation and prolonged dormancy strategies in herbaceous plants. J. Ecol. 2021, 109, 218–233. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, K.; Zhou, Q.; He, L.; He, L.; Dang, H.; Wei, X.; Wang, Q.; Wang, J. Phenological Stage and Nitrogen Input Coordinately Regulate Bud Bank Dynamics and Shoot Allocation in an Alpine Clonal Perennial Grass. Plants 2025, 14, 2164. https://doi.org/10.3390/plants14142164
He K, Zhou Q, He L, He L, Dang H, Wei X, Wang Q, Wang J. Phenological Stage and Nitrogen Input Coordinately Regulate Bud Bank Dynamics and Shoot Allocation in an Alpine Clonal Perennial Grass. Plants. 2025; 14(14):2164. https://doi.org/10.3390/plants14142164
Chicago/Turabian StyleHe, Keyan, Qingping Zhou, Lin He, Lili He, Haihong Dang, Xiaoxing Wei, Qian Wang, and Jiahao Wang. 2025. "Phenological Stage and Nitrogen Input Coordinately Regulate Bud Bank Dynamics and Shoot Allocation in an Alpine Clonal Perennial Grass" Plants 14, no. 14: 2164. https://doi.org/10.3390/plants14142164
APA StyleHe, K., Zhou, Q., He, L., He, L., Dang, H., Wei, X., Wang, Q., & Wang, J. (2025). Phenological Stage and Nitrogen Input Coordinately Regulate Bud Bank Dynamics and Shoot Allocation in an Alpine Clonal Perennial Grass. Plants, 14(14), 2164. https://doi.org/10.3390/plants14142164