Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (49,575)

Search Parameters:
Keywords = behavioral effects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 17593 KiB  
Review
Responsive Therapeutic Environments: A Dual-Track Review of the Research Literature and Design Case Studies in Art Therapy for Children with Autism Spectrum Disorder
by Jing Liang, Jingxuan Jiang, Jinghao Hei and Jiaqi Zhang
Buildings 2025, 15(15), 2735; https://doi.org/10.3390/buildings15152735 (registering DOI) - 3 Aug 2025
Abstract
Art therapy serves as a crucial intervention modality for children with autism spectrum disorder (ASD), demonstrating unique value in emotional expression, sensory integration, and social communication. However, current practice presents critical challenges, including the disconnect between design expertise and clinical needs, unclear mechanisms [...] Read more.
Art therapy serves as a crucial intervention modality for children with autism spectrum disorder (ASD), demonstrating unique value in emotional expression, sensory integration, and social communication. However, current practice presents critical challenges, including the disconnect between design expertise and clinical needs, unclear mechanisms of environmental factors’ impact on therapeutic outcomes, and insufficient evidence-based support for technology integration. Purpose: This study aimed to construct an evidence-based theoretical framework for art therapy environment design for children with autism, clarifying the relationship between environmental design elements and therapeutic effectiveness. Methodology: Based on the Web of Science database, this study employed a dual-track approach comprising bibliometric analysis and micro-qualitative content analysis to systematically examine the knowledge structure and developmental trends. Research hotspots were identified through keyword co-occurrence network analysis using CiteSpace, while 24 representative design cases were analyzed to gain insights into design concepts, emerging technologies, and implementation principles. Key Findings: Through keyword network visualization analysis, this study identified ten primary research clusters that were systematically categorized into four core design elements: sensory feedback design, behavioral guidance design, emotional resonance design, and therapeutic support design. A responsive therapeutic environment conceptual framework was proposed, encompassing four interconnected components based on the ABC model from positive psychology: emotional, sensory, environmental, and behavioral dimensions. Evidence-based design principles were established emphasizing child-centeredness, the promotion of multisensory expression, the achievement of dynamic feedback, and appropriate technology integration. Research Contribution: This research establishes theoretical connections between environmental design elements and art therapy effectiveness, providing a systematic design guidance framework for interdisciplinary teams, including environmental designers, clinical practitioners, technology developers, and healthcare administrators. The framework positions technology as a therapeutic mediator rather than a driver, ensuring technological integration supports rather than interferes with children’s natural creative impulses. This contributes to creating more effective environmental spaces for art therapy activities for children with autism while aligning with SDG3 goals for promoting mental health and reducing inequalities in therapeutic access. Full article
(This article belongs to the Special Issue Art and Design for Healing and Wellness in the Built Environment)
Show Figures

Graphical abstract

19 pages, 443 KiB  
Article
Effects of a Flipped Classroom College Business Course on Students’ Pre-Class Preparation, In-Class Participation, Learning, and Skills Development
by Gordon Wang
Adm. Sci. 2025, 15(8), 301; https://doi.org/10.3390/admsci15080301 (registering DOI) - 2 Aug 2025
Abstract
As an example of pedagogical approaches that blend online and face-to-face instruction, the flipped classroom model has seen exponential growth in business schools. To explore its effectiveness, expectancy-value theory and cognitive load theory were employed to develop a framework linking students’ perceived usefulness [...] Read more.
As an example of pedagogical approaches that blend online and face-to-face instruction, the flipped classroom model has seen exponential growth in business schools. To explore its effectiveness, expectancy-value theory and cognitive load theory were employed to develop a framework linking students’ perceived usefulness of the online and in-person content to their pre-class preparation, class participation, perceived learning, and skills development. A preliminary test of this framework was conducted using a flipped Organizational Behavior course within a business diploma program at a publicly funded Canadian college. The perceived usefulness of the online component was positively associated with students’ pre-class preparation, which, in turn, was positively related to both their perceived learning and skills development. Implications for practice and directions for future research are discussed. Full article
(This article belongs to the Section Organizational Behavior)
Show Figures

Figure 1

17 pages, 745 KiB  
Article
The Relationship Between Parental Phubbing and Preschoolers’ Behavioral Problems: The Mediation Role of Mindful Attention Awareness
by Antonio Puligheddu, Annamaria Porru, Andrea Spano, Stefania Cataudella, Maria Lidia Mascia, Dolores Rollo, Cristina Cabras, Maria Pietronilla Penna and Daniela Lucangeli
Children 2025, 12(8), 1022; https://doi.org/10.3390/children12081022 (registering DOI) - 2 Aug 2025
Abstract
Phubbing, a relatively new phenomenon in the field of digital risks, refers to the act of ignoring someone in favor of focusing on a smartphone during face-to-face interactions. Parental phubbing, a specific form of this behavior, is a prevalent negative parenting practice that [...] Read more.
Phubbing, a relatively new phenomenon in the field of digital risks, refers to the act of ignoring someone in favor of focusing on a smartphone during face-to-face interactions. Parental phubbing, a specific form of this behavior, is a prevalent negative parenting practice that can affect parent–child relationships and child development. However, the impact of parental phubbing on the emotional and behavioral development of preschool children remains unclear. This study aims to explore the relationship between parental phubbing and preschoolers’ behavioral problems, as well as test whether parents’ mindful attention awareness (MAA) acts as a mediator between them. Method: A questionnaire was administered to 138 Italian parents (mean age = 38.5, SD = 6.2) of 138 kindergarten preschoolers (mean age = 3.9, SD = 1.03). Questionnaires included the Generic Scale of Phubbing (GSP), the Mindful Attention Awareness Scale (MAAS), and the Strengths and Difficulties Questionnaire (SDQ). Results: Analyses revealed a significant negative correlation between the MAAS and SDQ total scores, a positive correlation between the GSP total score and the SDQ total score, and a negative correlation between the GSP total score and the MAAS total score. The mediation analysis did not show a direct effect of GSP on SDQ, suggesting that parental phubbing did not directly predict children’s behavioral difficulties. Nevertheless, the indirect effect measured by bootstrapping was significant, indicating that parental MAA fully mediated the relationship between parental phubbing and preschoolers’ problematic behaviors. Conclusions: Although further research is needed, parental mindfulness may influence phubbing behaviors in parents providing valuable insights for early interventions aimed at reducing problem behaviors in young children. Full article
(This article belongs to the Section Pediatric Mental Health)
12 pages, 3794 KiB  
Article
Enhanced Energy Storage Properties of Ba0.96Ca0.04TiO3 Ceramics Through Doping Bi(Li1/3Zr2/3)O3
by Zhiwei Li, Dandan Zhu, Xuqiang Ding, Lingling Cui and Junlong Wang
Coatings 2025, 15(8), 906; https://doi.org/10.3390/coatings15080906 (registering DOI) - 2 Aug 2025
Abstract
The (1−x)Ba0.96Ca0.04TiO3−xBi(Li1/3Zr2/3)O3 (x = 0.03–0.15) ceramics were fabricated via the traditional solid reaction method. Characterization results revealed that each component exhibited a pure perovskite structure, and the average grain size significantly diminishes [...] Read more.
The (1−x)Ba0.96Ca0.04TiO3−xBi(Li1/3Zr2/3)O3 (x = 0.03–0.15) ceramics were fabricated via the traditional solid reaction method. Characterization results revealed that each component exhibited a pure perovskite structure, and the average grain size significantly diminishes with increasing x. The (1−x)Ba0.96Ca0.04TiO3−xBi(Li1/3Zr2/3)O3 ceramics exhibited prominent relaxor ferroelectric behavior, whose characteristic narrow hysteresis loops effectively enhanced the energy storage performance of the material. Most importantly, the composition with x = 0.10 demonstrated exceptional energy storage properties at 150 kV/cm, achieving a high recoverable energy storage density (Wrec = 1.91 J/cm3) and excellent energy efficiency (η = 90.87%). Under the equivalent electric field, this composition also displayed a superior pulsed discharge performance, including a high current density (871 A/cm2), a high power density (67.3 MW/cm3), an ultrafast discharge time (t0.9 = 109 ns), and a discharged energy density of 1.47 J/cm3. These results demonstrate that the (1−x)Ba0.96Ca0.04TiO3−xBi(Li1/3Zr2/3)O3 ceramic system establishes a promising design paradigm for the creation and refinement of next-generation dielectrics for pulse power applications. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

15 pages, 1745 KiB  
Article
A Prediction Method for Technically Recoverable Reserves Based on a Novel Relationship Between the Relative Permeability Ratio and Saturation
by Dongqi Wang, Jiaxing Wen, Yang Sun and Daiyin Yin
Eng 2025, 6(8), 182; https://doi.org/10.3390/eng6080182 (registering DOI) - 2 Aug 2025
Abstract
Upon reaching stabilized production in waterflooded reservoirs, waterflood performance curves are conventionally used to predict technically recoverable reserves (TRRs). However, as reservoirs enter high water-cut stages, the relationship between the relative permeability ratio and saturation becomes nonlinear, causing deflection in waterflood performance curves. [...] Read more.
Upon reaching stabilized production in waterflooded reservoirs, waterflood performance curves are conventionally used to predict technically recoverable reserves (TRRs). However, as reservoirs enter high water-cut stages, the relationship between the relative permeability ratio and saturation becomes nonlinear, causing deflection in waterflood performance curves. This leads to systematic overestimation of both predicted TRR and ultimate recovery factors. To overcome these limitations in conventional TRR prediction methods, this study establishes a novel relative permeability ratio-saturation relationship based on characteristic relative permeability curve behaviors. The proposed model is validated for three distinct fluid-rock interaction types. We further develop a permeability-driven forecasting model for oil production rates and water cuts. Comparative analyses with a conventional waterflood curve methodology demonstrate significant accuracy improvements. The results show that while traditional methods predict TRR ranging from 78.40 to 92.29 million tons, our model yields 70.73 million tons—effectively resolving overestimation issues caused by curve deflection during high water-cut phases. This approach establishes a robust framework for determining critical development parameters, including economic field lifespan, strategy adjustments, and ultimate recovery factor. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

21 pages, 1705 KiB  
Article
Antioxidant Effects of Exogenous Mitochondria: The Role of Outer Membrane Integrity
by Sadab Sipar Ibban, Jannatul Naima, Ryo Kato, Taichi Kuroda and Yoshihiro Ohta
Antioxidants 2025, 14(8), 951; https://doi.org/10.3390/antiox14080951 (registering DOI) - 2 Aug 2025
Abstract
The administration of isolated mitochondria is a promising strategy for protecting cells from oxidative damage. This study aimed to identify mitochondrial characteristics that contribute to stronger protective effects. We compared two types of mitochondria isolated from C6 cells with similar ATP-producing capacity but [...] Read more.
The administration of isolated mitochondria is a promising strategy for protecting cells from oxidative damage. This study aimed to identify mitochondrial characteristics that contribute to stronger protective effects. We compared two types of mitochondria isolated from C6 cells with similar ATP-producing capacity but differing in outer membrane integrity. To evaluate their stability in extracellular conditions, we examined their behavior in serum. Both types underwent mitochondrial permeability transition to a similar extent; however, under intracellular-like conditions after serum incubation, mitochondria with intact membranes retained more polarized mitochondria. Notably, mitochondria with intact outer membranes were internalized more efficiently than those with damaged membranes. In H9c2 cells, both types of mitochondria similarly increased intracellular ATP levels 1 h after administration under all tested conditions. When co-administered with H2O2, both suppressed oxidative damage to a comparable degree, as indicated by similar H2O2-scavenging activity in solution, comparable intracellular ROS levels, and equivalent preservation of electron transport chain activity. However, at higher H2O2 concentrations, cells treated with mitochondria possessing intact outer membranes exhibited greater survival 24 h after co-administration. Furthermore, when mitochondria were added after H2O2-induced damage and their removal, intact mitochondria conferred superior cell survival compared to damaged ones. These findings suggest that while both mitochondrial types exert comparable antioxidant effects, outer membrane integrity prior to administration plays a critical role in enhancing cell survival under conditions of oxidative stress. Full article
(This article belongs to the Section ROS, RNS and RSS)
15 pages, 3579 KiB  
Article
Dual-Control-Gate Reconfigurable Ion-Sensitive Field-Effect Transistor with Nickel-Silicide Contacts for Adaptive and High-Sensitivity Chemical Sensing Beyond the Nernst Limit
by Seung-Jin Lee, Seung-Hyun Lee, Seung-Hwa Choi and Won-Ju Cho
Chemosensors 2025, 13(8), 281; https://doi.org/10.3390/chemosensors13080281 (registering DOI) - 2 Aug 2025
Abstract
In this study, we propose a bidirectional chemical sensor platform based on a reconfigurable ion-sensitive field-effect transistor (R-ISFET) architecture. The device incorporates Ni-silicide Schottky barrier source/drain (S/D) contacts, enabling ambipolar conduction and bidirectional turn-on behavior for both p-type and n-type configurations. Channel polarity [...] Read more.
In this study, we propose a bidirectional chemical sensor platform based on a reconfigurable ion-sensitive field-effect transistor (R-ISFET) architecture. The device incorporates Ni-silicide Schottky barrier source/drain (S/D) contacts, enabling ambipolar conduction and bidirectional turn-on behavior for both p-type and n-type configurations. Channel polarity is dynamically controlled via the program gate (PG), while the control gate (CG) suppresses leakage current, enhancing operational stability and energy efficiency. A dual-control-gate (DCG) structure enhances capacitive coupling, enabling sensitivity beyond the Nernst limit without external amplification. The extended-gate (EG) architecture physically separates the transistor and sensing regions, improving durability and long-term reliability. Electrical characteristics were evaluated through transfer and output curves, and carrier transport mechanisms were analyzed using band diagrams. Sensor performance—including sensitivity, hysteresis, and drift—was assessed under various pH conditions and external noise up to 5 Vpp (i.e., peak-to-peak voltage). The n-type configuration exhibited high mobility and fast response, while the p-type configuration demonstrated excellent noise immunity and low drift. Both modes showed consistent sensitivity trends, confirming the feasibility of complementary sensing. These results indicate that the proposed R-ISFET sensor enables selective mode switching for high sensitivity and robust operation, offering strong potential for next-generation biosensing and chemical detection. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

28 pages, 4634 KiB  
Article
Predicting the Next Location of Urban Individuals via a Representation-Enhanced Multi-View Learning Network
by Maoqi Lun, Peixiao Wang, Sheng Wu, Hengcai Zhang, Shifen Cheng and Feng Lu
ISPRS Int. J. Geo-Inf. 2025, 14(8), 302; https://doi.org/10.3390/ijgi14080302 (registering DOI) - 2 Aug 2025
Abstract
Accurately predicting the next location of urban individuals is a central issue in human mobility research. Human mobility exhibits diverse patterns, requiring the integration of spatiotemporal contexts for location prediction. In this context, multi-view learning has become a prominent method in location prediction. [...] Read more.
Accurately predicting the next location of urban individuals is a central issue in human mobility research. Human mobility exhibits diverse patterns, requiring the integration of spatiotemporal contexts for location prediction. In this context, multi-view learning has become a prominent method in location prediction. Despite notable advances, current methods still face challenges in effectively capturing non-spatial proximity of regional preferences, complex temporal periodicity, and the ambiguity of location semantics. To address these challenges, we propose a representation-enhanced multi-view learning network (ReMVL-Net) for location prediction. Specifically, we propose a community-enhanced spatial representation that transcends geographic proximity to capture latent mobility patterns. In addition, we introduce a multi-granular enhanced temporal representation to model the multi-level periodicity of human mobility and design a rule-based semantic recognition method to enrich location semantics. We evaluate the proposed model using mobile phone data from Fuzhou. Experimental results show a 2.94% improvement in prediction accuracy over the best-performing baseline. Further analysis reveals that community space plays a key role in narrowing the candidate location set. Moreover, we observe that prediction difficulty is strongly influenced by individual travel behaviors, with more regular activity patterns being easier to predict. Full article
19 pages, 2157 KiB  
Article
WEEE Glass as a Sustainable Supplementary Cementitious Material: Experimental Analysis on Strength, Durability and Ecotoxic Performance of Mortars
by Raphaele Malheiro, André Lemos, Aires Camões, Duarte Ferreira, Juliana Alves and Cristina Quintelas
Sci 2025, 7(3), 107; https://doi.org/10.3390/sci7030107 (registering DOI) - 2 Aug 2025
Abstract
This study investigates the use of waste glass powder derived from fluorescent lamps as a partial replacement for cement in mortar production, aiming to valorize this Waste from Electrical and Electronic Equipment (WEEE) and enhance sustainability in the construction sector. Mortars were formulated [...] Read more.
This study investigates the use of waste glass powder derived from fluorescent lamps as a partial replacement for cement in mortar production, aiming to valorize this Waste from Electrical and Electronic Equipment (WEEE) and enhance sustainability in the construction sector. Mortars were formulated by substituting 25% of cement by volume with glass powders from fluorescent lamp glass and green bottle glass. The experimental program evaluated mechanical strength, durability parameters and ecotoxicological performance. Results revealed that clean fluorescent lamp mortars showed the most promising mechanical behavior, exceeding the reference in long-term compressive (54.8 MPa) and flexural strength (10.0 MPa). All glass mortars exhibited significantly reduced chloride diffusion coefficients (85–89%) and increased electrical resistivity (almost 4 times higher), indicating improved durability. Leaching tests confirmed that the incorporation of fluorescent lamp waste did not lead to hazardous levels of heavy metals in the cured mortars, suggesting effective encapsulation. By addressing both technical (mechanical and durability) and ecotoxic performance, this research contributes in an original and relevant way to the development of more sustainable building materials. Full article
Show Figures

Figure 1

24 pages, 1964 KiB  
Article
Data-Driven Symmetry and Asymmetry Investigation of Vehicle Emissions Using Machine Learning: A Case Study in Spain
by Fei Wu, Jinfu Zhu, Hufang Yang, Xiang He and Qiao Peng
Symmetry 2025, 17(8), 1223; https://doi.org/10.3390/sym17081223 (registering DOI) - 2 Aug 2025
Abstract
Understanding vehicle emissions is essential for developing effective carbon reduction strategies in the transport sector. Conventional emission models often assume homogeneity and linearity, overlooking real-world asymmetries that arise from variations in vehicle design and powertrain configurations. This study explores how machine learning and [...] Read more.
Understanding vehicle emissions is essential for developing effective carbon reduction strategies in the transport sector. Conventional emission models often assume homogeneity and linearity, overlooking real-world asymmetries that arise from variations in vehicle design and powertrain configurations. This study explores how machine learning and explainable AI techniques can effectively capture both symmetric and asymmetric emission patterns across different vehicle types, thereby contributing to more sustainable transport planning. Addressing a key gap in the existing literature, the study poses the following question: how do structural and behavioral factors contribute to asymmetric emission responses in internal combustion engine vehicles compared to new energy vehicles? Utilizing a large-scale Spanish vehicle registration dataset, the analysis classifies vehicles by powertrain type and applies five supervised learning algorithms to predict CO2 emissions. SHapley Additive exPlanations (SHAPs) are employed to identify nonlinear and threshold-based relationships between emissions and vehicle characteristics such as fuel consumption, weight, and height. Among the models tested, the Random Forest algorithm achieves the highest predictive accuracy. The findings reveal critical asymmetries in emission behavior, particularly among hybrid vehicles, which challenge the assumption of uniform policy applicability. This study provides both methodological innovation and practical insights for symmetry-aware emission modeling, offering support for more targeted eco-design and policy decisions that align with long-term sustainability goals. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

20 pages, 681 KiB  
Review
Unraveling Glioblastoma Heterogeneity: Advancing Immunological Insights and Therapeutic Innovations
by Joshua H. Liu, Maksym Horiachok, Santosh Guru and Cecile L. Maire
Brain Sci. 2025, 15(8), 833; https://doi.org/10.3390/brainsci15080833 (registering DOI) - 2 Aug 2025
Abstract
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, largely due to its profound intratumoral heterogeneity and immunosuppressive microenvironment. Various classifications of GBM subtypes were created based on transcriptional and methylation profiles. This effort, followed by the development of new [...] Read more.
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, largely due to its profound intratumoral heterogeneity and immunosuppressive microenvironment. Various classifications of GBM subtypes were created based on transcriptional and methylation profiles. This effort, followed by the development of new technology such as single-nuclei sequencing (snRNAseq) and spatial transcriptomics, led to a better understanding of the glioma cells’ plasticity and their ability to transition between diverse cellular states. GBM cells can mimic neurodevelopmental programs to resemble oligodendrocyte or neural progenitor behavior and hitchhike the local neuronal network to support their growth. The tumor microenvironment, especially under hypoxic conditions, drives the tumor cell clonal selection, which then reshapes the immune cells’ functions. These adaptations contribute to immune evasion by progressively disabling T cell and myeloid cell functions, ultimately establishing a highly immunosuppressive tumor milieu. This complex and metabolically constrained environment poses a major barrier to effective antitumor immunity and limits the success of conventional therapies. Understanding the dynamic interactions between glioma cells and their microenvironment is essential for the development of more effective immunotherapies and rational combination strategies aimed at overcoming resistance and improving patient outcomes. Full article
(This article belongs to the Special Issue Recent Advances in Translational Neuro-Oncology)
Show Figures

Figure 1

13 pages, 2838 KiB  
Article
Differential Effects of Two Herbivore-Induced Plant Volatiles on the Oviposition of Chilo suppressalis
by Xiaowei Yang, Chang Liu, Xixi Jia, Chen Zhang, Lanzhi Han, Wanlun Cai and Yunhe Li
Plants 2025, 14(15), 2384; https://doi.org/10.3390/plants14152384 (registering DOI) - 2 Aug 2025
Abstract
Herbivore-induced plant volatiles (HIPVs) are well known for their roles in herbivore deterrence and attraction of natural enemies, but their direct impact on insect reproduction remains largely unexplored. In this study, we provide novel evidence that two representative HIPVs, 2-heptanol and α-cedrene, exert [...] Read more.
Herbivore-induced plant volatiles (HIPVs) are well known for their roles in herbivore deterrence and attraction of natural enemies, but their direct impact on insect reproduction remains largely unexplored. In this study, we provide novel evidence that two representative HIPVs, 2-heptanol and α-cedrene, exert opposing effects on the reproduction of Chilo suppressalis, a major rice pest. While both volatiles repelled adults, α-cedrene unexpectedly enhanced oviposition, whereas 2-heptanol significantly suppressed egg laying. To examine these effects, we conducted oviposition assays, preoviposition and longevity tests, combined with qPCR and transcriptome analyses to explore underlying molecular responses. Mechanistically, α-cedrene upregulated Kr-h1, a gene linked to juvenile hormone signaling and vitellogenesis, promoting reproductive investment. Transcriptomic profiling revealed divergent molecular responses: α-cedrene activated reproductive pathways, whereas 2-heptanol induced stress- and immune-related genes, suggesting a trade-off between stress defense and reproduction. These findings demonstrate that HIPVs can exert compound-specific reproductive effects beyond repellency. This work fills a key knowledge gap and highlights the potential of HIPVs as precision tools in pest management strategies that exploit behavioral and physiological vulnerabilities beyond repellency. Full article
Show Figures

Figure 1

25 pages, 3387 KiB  
Article
Efficiency of Spirulina sp. in the Treatment of Model Wastewater Containing Ni(II) and Pb(II)
by Eleonora Sočo, Andżelika Domoń, Mostafa Azizi, Dariusz Pająk, Bogumił Cieniek, Magdalena M. Michel and Dorota Papciak
Materials 2025, 18(15), 3639; https://doi.org/10.3390/ma18153639 (registering DOI) - 1 Aug 2025
Abstract
In this work, the biosorption potential of Spirulina sp. as an effective and eco-friendly biosorbent for the removal of Ni(II) and Pb(II) ions from aqueous solutions was investigated. Detailed characterization of the biosorbent was carried out, including surface morphology, chemical composition, particle size, [...] Read more.
In this work, the biosorption potential of Spirulina sp. as an effective and eco-friendly biosorbent for the removal of Ni(II) and Pb(II) ions from aqueous solutions was investigated. Detailed characterization of the biosorbent was carried out, including surface morphology, chemical composition, particle size, zeta potential, crystallinity, zero-point charge, and functional group analysis. Batch tests were performed to determine the kinetic constants and adsorption equilibrium of the studied ions. The adsorption behavior of Spirulina sp. was described using six adsorption isotherms. The best fit was obtained for the Redlich-Peterson and Langmuir isotherms, indicating that monolayer adsorption occurred. The maximum biosorption capacities for Ni(II) and Pb(II) were 20.8 mg·g−1 and 93.5 mg·g−1, respectively, using a biosorbent dose of 10 g·L−1, initial metal concentrations ranging from 50 to 5000 mg·L−1, at pH 6, 20 °C, and a contact time of 120 min. Low values of the mean free energy of adsorption (E) in the Dubinin–Radushkevich and Temkin model (0.3 and 0.1 kJ·mol−1 for Pb(II) and 0.35 and 0.23 kJ·mol−1 for Ni(II)) indicate the dominance of physical processes in the ion binding mechanism. The adsorption of Pb(II) ions was more effective than that of Ni(II) ions across the entire range of tested concentrations. At low initial concentrations, the removal of Pb(II) reached 94%, while for Ni(II) it was 80%. Full article
Show Figures

Graphical abstract

21 pages, 20135 KiB  
Article
Strain-Rate Effects on the Mechanical Behavior of Basalt-Fiber-Reinforced Polymer Composites: Experimental Investigation and Numerical Validation
by Yuezhao Pang, Chuanlong Wang, Yue Zhao, Houqi Yao and Xianzheng Wang
Materials 2025, 18(15), 3637; https://doi.org/10.3390/ma18153637 (registering DOI) - 1 Aug 2025
Abstract
Basalt-fiber-reinforced polymer (BFRP) composites, utilizing a natural high-performance inorganic fiber, exhibit excellent weathering resistance, including tolerance to high and low temperatures, salt fog, and acid/alkali corrosion. They also possess superior mechanical properties such as high strength and modulus, making them widely applicable in [...] Read more.
Basalt-fiber-reinforced polymer (BFRP) composites, utilizing a natural high-performance inorganic fiber, exhibit excellent weathering resistance, including tolerance to high and low temperatures, salt fog, and acid/alkali corrosion. They also possess superior mechanical properties such as high strength and modulus, making them widely applicable in aerospace and shipbuilding. This study experimentally investigated the mechanical properties of BFRP plates under various strain rates (10−4 s−1 to 103 s−1) and directions using an electronic universal testing machine and a split Hopkinson pressure bar (SHPB).The results demonstrate significant strain rate dependency and pronounced anisotropy. Based on experimental data, relationships linking the strength of BFRP composites in different directions to strain rate were established. These relationships effectively predict mechanical properties within the tested strain rate range, providing reliable data for numerical simulations and valuable support for structural design and engineering applications. The developed strain rate relationships were successfully validated through finite element simulations of low-velocity impact. Full article
(This article belongs to the Special Issue Mechanical Properties of Advanced Metamaterials)
Show Figures

Figure 1

18 pages, 309 KiB  
Article
Effects of Adding Hydroxytyrosol to the Diet of Pigs in the Nursery Phase on Growth Performance, Biochemical Markers, and Fatty Acid Profile
by Rafael Domingos Augusto Rofino, Cassio Antonio Ficagna, Taeline Zamboni, Bruna Klein, Enrico A. Altieri, Kevin E. O’Connor, Reeta Davis, Margaret Walsh, Fernando de Castro Tavernari, Marcel Manente Boiago, Aleksandro Schafer da Silva and Diovani Paiano
Animals 2025, 15(15), 2268; https://doi.org/10.3390/ani15152268 (registering DOI) - 1 Aug 2025
Abstract
This study evaluated the effects of dietary hydroxytyrosol (HT) addition on piglets during the nursery phase across two experiments. In the first, 72 weaned male piglets (~26 days old, 7.3 ± 0.5 kg) were assigned to one of four diets containing 0, 5, [...] Read more.
This study evaluated the effects of dietary hydroxytyrosol (HT) addition on piglets during the nursery phase across two experiments. In the first, 72 weaned male piglets (~26 days old, 7.3 ± 0.5 kg) were assigned to one of four diets containing 0, 5, 10, or 50 mg HT/kg feed. Growth performance, serum biochemistry, histological and behavioral parameters, and meat lipid profiles were assessed. In the second study, the apparent digestibility of diets containing 0, 25, or 50 mg HT/kg feed was evaluated using 15 male piglets (21.5 ± 1.5 kg) through total excreta collection. Results revealed that HT influenced serum glucose and gamma-glutamyl transferase, histological inflammation, and active behaviors. HT modified lipid profiles, reduced capric, lauric, linolenic, arachidonic, cis-5,8,11,14,17-eicosapentaenoic fatty acid concentrations, and increased the nervonic acid profile. The digestibility of dry matter, organic matter, energy, and protein increased with HT use up to 50 mg/kg of feed. These findings demonstrate that HT positively impacts piglet efficiency, changing the fatty acid profile with increased nervonic acid, highlighting its potential as a dietary additive for improving nursery pig production. Full article
(This article belongs to the Section Animal Nutrition)
Back to TopTop