Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (209)

Search Parameters:
Keywords = battery safety and health

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
51 pages, 4099 KiB  
Review
Artificial Intelligence and Digital Twin Technologies for Intelligent Lithium-Ion Battery Management Systems: A Comprehensive Review of State Estimation, Lifecycle Optimization, and Cloud-Edge Integration
by Seyed Saeed Madani, Yasmin Shabeer, Michael Fowler, Satyam Panchal, Hicham Chaoui, Saad Mekhilef, Shi Xue Dou and Khay See
Batteries 2025, 11(8), 298; https://doi.org/10.3390/batteries11080298 - 5 Aug 2025
Abstract
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery [...] Read more.
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery Management Systems (BMS). This review paper explores how artificial intelligence (AI) and digital twin (DT) technologies can be integrated to enable the intelligent BMS of the future. It investigates how powerful data approaches such as deep learning, ensembles, and models that rely on physics improve the accuracy of predicting state of charge (SOC), state of health (SOH), and remaining useful life (RUL). Additionally, the paper reviews progress in AI features for cooling, fast charging, fault detection, and intelligible AI models. Working together, cloud and edge computing technology with DTs means better diagnostics, predictive support, and improved management for any use of EVs, stored energy, and recycling. The review underlines recent successes in AI-driven material research, renewable battery production, and plans for used systems, along with new problems in cybersecurity, combining data and mass rollout. We spotlight important research themes, existing problems, and future drawbacks following careful analysis of different up-to-date approaches and systems. Uniting physical modeling with AI-based analytics on cloud-edge-DT platforms supports the development of tough, intelligent, and ecologically responsible batteries that line up with future mobility and wider use of renewable energy. Full article
Show Figures

Figure 1

30 pages, 2537 KiB  
Review
The State of Health Estimation of Lithium-Ion Batteries: A Review of Health Indicators, Estimation Methods, Development Trends and Challenges
by Kang Tang, Bingbing Luo, Dian Chen, Chengshuo Wang, Long Chen, Feiliang Li, Yuan Cao and Chunsheng Wang
World Electr. Veh. J. 2025, 16(8), 429; https://doi.org/10.3390/wevj16080429 - 1 Aug 2025
Viewed by 298
Abstract
The estimation of the state of health (SOH) of lithium-ion batteries is a critical technology for enhancing battery lifespan and safety. When estimating SOH, it is essential to select representative features, commonly referred to as health indicators (HIs). Most existing studies primarily focus [...] Read more.
The estimation of the state of health (SOH) of lithium-ion batteries is a critical technology for enhancing battery lifespan and safety. When estimating SOH, it is essential to select representative features, commonly referred to as health indicators (HIs). Most existing studies primarily focus on HIs related to capacity degradation and internal resistance increase. However, due to the complexity of lithium-ion battery degradation mechanisms, the relationships between these mechanisms and health indicators remain insufficiently explored. This paper provides a comprehensive review of core methodologies for SOH estimation, with a particular emphasis on the classification and extraction of health indicators, direct measurement techniques, model-based and data-driven SOH estimation approaches, and emerging trends in battery management system applications. The findings indicate that capacity, internal resistance, and temperature-related indicators significantly impact SOH estimation accuracy, while machine learning models demonstrate advantages in multi-source data fusion. Future research should further explore composite health indicators and aging mechanisms of novel battery materials, and improve the interpretability of predictive models. This study offers theoretical support for the intelligent management and lifespan optimization of lithium-ion batteries. Full article
Show Figures

Figure 1

18 pages, 3440 KiB  
Article
Ambient Electromagnetic Wave Energy Harvesting Using Human Body Antenna for Wearable Sensors
by Dairoku Muramatsu and Kazuki Amano
Sensors 2025, 25(15), 4689; https://doi.org/10.3390/s25154689 - 29 Jul 2025
Viewed by 374
Abstract
Wearable sensors are central to health-monitoring systems, but the limited capacity of compact batteries poses a challenge for long-term and maintenance-free operation. In this study, we investigated ambient electromagnetic wave (AEMW) energy harvesting using a human body antenna (HBA) as a means to [...] Read more.
Wearable sensors are central to health-monitoring systems, but the limited capacity of compact batteries poses a challenge for long-term and maintenance-free operation. In this study, we investigated ambient electromagnetic wave (AEMW) energy harvesting using a human body antenna (HBA) as a means to supply power to wearable sensors. The power density and frequency distribution of AEMWs were measured in diverse indoor, outdoor, and basement environments. We designed and fabricated a flexible HBA–circuit interface electrode, optimized for broadband impedance matching when worn on the body. Experimental comparisons using a simulated AEMW source demonstrated that the HBA outperformed a conventional small whip antenna, particularly at frequencies below 300 MHz. Furthermore, the outdoor measurements indicated that the power harvested by the HBA was estimated to be −31.9 dBm (0.64 μW), which is sufficient for the intermittent operation of low-power wearable sensors and Bluetooth Low Energy modules. The electromagnetic safety was also evaluated through numerical analysis, and the specific absorption rate was confirmed to be well below the international safety limits. These findings indicate that HBA-based AEMW energy harvesting provides a practical and promising approach to achieving battery-maintenance-free wearable devices. Full article
(This article belongs to the Special Issue Energy Harvesting Technologies for Wireless Sensors)
Show Figures

Figure 1

16 pages, 3383 KiB  
Article
Thermal and Electrical Design Considerations for a Flexible Energy Storage System Utilizing Second-Life Electric Vehicle Batteries
by Rouven Christen, Simon Nigsch, Clemens Mathis and Martin Stöck
Batteries 2025, 11(8), 287; https://doi.org/10.3390/batteries11080287 - 26 Jul 2025
Viewed by 313
Abstract
The transition to electric mobility has significantly increased the demand for lithium-ion batteries, raising concerns about their end-of-life management. Therefore, this study presents the design, development and first implementation steps of a stationary energy storage system utilizing second-life electric vehicle (EV) batteries. These [...] Read more.
The transition to electric mobility has significantly increased the demand for lithium-ion batteries, raising concerns about their end-of-life management. Therefore, this study presents the design, development and first implementation steps of a stationary energy storage system utilizing second-life electric vehicle (EV) batteries. These batteries, no longer suitable for traction applications due to a reduced state of health (SoH) below 80%, retain sufficient capacity for less demanding stationary applications. The proposed system is designed to be flexible and scalable, serving both research and commercial purposes. Key challenges include heterogeneous battery characteristics, safety considerations due to increased internal resistance and battery aging, and the need for flexible power electronics. An optimized dual active bridge (DAB) converter topology is introduced to connect several batteries in parallel and to ensure efficient bidirectional power flow over a wide voltage range. A first prototype, rated at 50 kW, has been built and tested in the laboratory. This study contributes to sustainable energy storage solutions by extending battery life cycles, reducing waste, and promoting economic viability for industrial partners. Full article
Show Figures

Figure 1

26 pages, 2875 KiB  
Article
Sustainable THz SWIPT via RIS-Enabled Sensing and Adaptive Power Focusing: Toward Green 6G IoT
by Sunday Enahoro, Sunday Cookey Ekpo, Mfonobong Uko, Fanuel Elias, Rahul Unnikrishnan, Stephen Alabi and Nurudeen Kolawole Olasunkanmi
Sensors 2025, 25(15), 4549; https://doi.org/10.3390/s25154549 - 23 Jul 2025
Viewed by 351
Abstract
Terahertz (THz) communications and simultaneous wireless information and power transfer (SWIPT) hold the potential to energize battery-less Internet-of-Things (IoT) devices while enabling multi-gigabit data transmission. However, severe path loss, blockages, and rectifier nonlinearity significantly hinder both throughput and harvested energy. Additionally, high-power THz [...] Read more.
Terahertz (THz) communications and simultaneous wireless information and power transfer (SWIPT) hold the potential to energize battery-less Internet-of-Things (IoT) devices while enabling multi-gigabit data transmission. However, severe path loss, blockages, and rectifier nonlinearity significantly hinder both throughput and harvested energy. Additionally, high-power THz beams pose safety concerns by potentially exceeding specific absorption rate (SAR) limits. We propose a sensing-adaptive power-focusing (APF) framework in which a reconfigurable intelligent surface (RIS) embeds low-rate THz sensors. Real-time backscatter measurements construct a spatial map used for the joint optimisation of (i) RIS phase configurations, (ii) multi-tone SWIPT waveforms, and (iii) nonlinear power-splitting ratios. A weighted MMSE inner loop maximizes the data rate, while an outer alternating optimisation applies semidefinite relaxation to enforce passive-element constraints and SAR compliance. Full-stack simulations at 0.3 THz with 20 GHz bandwidth and up to 256 RIS elements show that APF (i) improves the rate–energy Pareto frontier by 30–75% over recent adaptive baselines; (ii) achieves a 150% gain in harvested energy and a 440 Mbps peak per-user rate; (iii) reduces energy-efficiency variance by half while maintaining a Jain fairness index of 0.999;; and (iv) caps SAR at 1.6 W/kg, which is 20% below the IEEE C95.1 safety threshold. The algorithm converges in seven iterations and executes within <3 ms on a Cortex-A78 processor, ensuring compliance with real-time 6G control budgets. The proposed architecture supports sustainable THz-powered networks for smart factories, digital-twin logistics, wire-free extended reality (XR), and low-maintenance structural health monitors, combining high-capacity communication, safe wireless power transfer, and carbon-aware operation for future 6G cyber–physical systems. Full article
Show Figures

Figure 1

23 pages, 2233 KiB  
Article
A Novel Back Propagation Neural Network Based on the Harris Hawks Optimization Algorithm for the Remaining Useful Life Prediction of Lithium-Ion Batteries
by Yuyang Zhou, Zijian Shao, Huanhuan Li, Jing Chen, Haohan Sun, Yaping Wang, Nan Wang, Lei Pei, Zhen Wang, Houzhong Zhang and Chaochun Yuan
Energies 2025, 18(14), 3842; https://doi.org/10.3390/en18143842 - 19 Jul 2025
Viewed by 282
Abstract
Remaining useful life (RUL) serves as a pivotal metric for quantifying lithium-ion batteries’ state of health (SOH) in electric vehicles and plays a crucial role in ensuring their safety and reliability. In order to achieve accurate and reliable RUL prediction, a novel RUL [...] Read more.
Remaining useful life (RUL) serves as a pivotal metric for quantifying lithium-ion batteries’ state of health (SOH) in electric vehicles and plays a crucial role in ensuring their safety and reliability. In order to achieve accurate and reliable RUL prediction, a novel RUL prediction method which employs a back propagation (BP) neural network based on the Harris Hawks optimization (HHO) algorithm is proposed. This method optimizes the BP parameters using the improved HHO algorithm. At first, the circle chaotic mapping method is utilized to solve the problem of the initial value. Considering the problem of local convergence, Gaussian mutation is introduced to improve the search ability of the algorithm. Subsequently, two key health factors are selected as input features for the model, including the constant-current charging isovoltage rise time and constant-current discharging isovoltage drop time. The model is validated using aging data from commercial lithium iron phosphate (LiFePO4) batteries. Finally, the model is thoroughly verified under an aging test. Experimental validation using training sets comprising 50%, 60%, and 70% of the cycle data demonstrates superior predictive performance, with mean absolute error (MAE) values below 0.012, root mean square error (RMSE) values below 0.017 and mean absolute percentage error (MAPE) within 0.95%. The results indicate that the model significantly improves prediction accuracy, robustness and searchability. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Graphical abstract

20 pages, 2207 KiB  
Review
A Critical Review of the State Estimation Methods of Power Batteries for Electric Vehicles
by Qi Zhang, Hailin Rong, Daduan Zhao, Menglu Pei and Xing Dong
Energies 2025, 18(14), 3834; https://doi.org/10.3390/en18143834 - 18 Jul 2025
Viewed by 337
Abstract
Power batteries and their management technology are crucial for the safe and efficient operation of electric vehicles (EVs). The life and safety issues of power batteries have always plagued the EV industry. To achieve an intelligent battery management system (BMS), it is crucial [...] Read more.
Power batteries and their management technology are crucial for the safe and efficient operation of electric vehicles (EVs). The life and safety issues of power batteries have always plagued the EV industry. To achieve an intelligent battery management system (BMS), it is crucial to accurately estimate the internal state of the power battery. The purpose of this review is to analyze the current status of research on multi-state estimation of power batteries, which mainly focuses on the estimation of state of charge (SOC), state of energy (SOE), state of health (SOH), state of power (SOP), state of temperature (SOT), and state of safety (SOS). Moreover, it also analyzes and prospects the research hotspots, development trends, and future challenges of battery state estimation. It is a significant guide for designing BMSs for EVs, as well as for achieving intelligent safety management and efficient power battery use. Full article
Show Figures

Figure 1

19 pages, 15854 KiB  
Article
Failure Analysis of Fire in Lithium-Ion Battery-Powered Heating Insoles: Case Study
by Rong Yuan, Sylvia Jin and Glen Stevick
Batteries 2025, 11(7), 271; https://doi.org/10.3390/batteries11070271 - 17 Jul 2025
Viewed by 412
Abstract
This study investigates a lithium-ion battery failure in heating insoles that ignited during normal walking while powered off. Through comprehensive material characterization, electrical testing, thermal analysis, and mechanical gait simulation, we systematically excluded electrical or thermal abuse as failure causes. X-ray/CT imaging localized [...] Read more.
This study investigates a lithium-ion battery failure in heating insoles that ignited during normal walking while powered off. Through comprehensive material characterization, electrical testing, thermal analysis, and mechanical gait simulation, we systematically excluded electrical or thermal abuse as failure causes. X-ray/CT imaging localized the ignition source to the lateral heel edge of the pouch cell, correlating precisely with peak mechanical stress identified through gait analysis. Remarkably, the cyclic load was less than 10% of the single crush load threshold specified in safety standards. Key findings reveal multiple contributing factors as follows: the uncoated polyethylene separator’s inability to prevent stress-induced internal short circuits, the circuit design’s lack of battery health monitoring functionality that permitted undetected degradation, and the hazardous placement inside clothing that exacerbated burn injuries. These findings necessitate a multi-level safety framework for lithium-ion battery products, encompassing enhanced cell design to prevent internal short circuit, improved circuit protection with health monitoring capabilities, optimized product integration to mitigate mechanical and environmental impact, and effective post-failure containment measures. This case study exposes a critical need for product-specific safety standards that address the unique demands of wearable lithium-ion batteries, where existing certification requirements fail to prevent real-use failure scenarios. Full article
(This article belongs to the Section Battery Performance, Ageing, Reliability and Safety)
Show Figures

Graphical abstract

30 pages, 4926 KiB  
Article
Impact Testing of Aging Li-Ion Batteries from Light Electric Vehicles (LEVs)
by Miguel Antonio Cardoso-Palomares, Juan Carlos Paredes-Rojas, Juan Alejandro Flores-Campos, Armando Oropeza-Osornio and Christopher René Torres-SanMiguel
Batteries 2025, 11(7), 263; https://doi.org/10.3390/batteries11070263 - 13 Jul 2025
Viewed by 397
Abstract
The increasing adoption of Light Electric Vehicles (LEVs) in urban areas, driven by the micromobility wave, raises significant safety concerns, particularly regarding battery fire incidents. This research investigates the electromechanical performance of aged 18650 lithium-ion batteries (LIBs) from LEVs under mechanical impact conditions. [...] Read more.
The increasing adoption of Light Electric Vehicles (LEVs) in urban areas, driven by the micromobility wave, raises significant safety concerns, particularly regarding battery fire incidents. This research investigates the electromechanical performance of aged 18650 lithium-ion batteries (LIBs) from LEVs under mechanical impact conditions. For this study, a battery module from a used e-scooter was disassembled, and its constituent cells were reconfigured into compact modules for testing. To characterize their initial condition, the cells underwent cycling tests to evaluate their state of health (SOH). Although a slight majority of the cells retained an SOH greater than 80%, a notable increase in their internal resistance (IR) was also observed, indicating degradation due to aging. The mechanical impact tests were conducted in adherence to the UL 2271:2018 standard, employing a semi-sinusoidal acceleration pulse. During these tests, linear kinematics were analyzed using videogrammetry, while key electrical and thermal parameters were monitored. Additionally, strain gauges were installed on the central cells to measure stress and deformation. The results from the mechanical shock tests revealed characteristic acceleration and velocity patterns. These findings clarify the electromechanical behavior of aged LIBs under impact, providing critical data to enhance the safety and reliability of these vehicles. Full article
Show Figures

Figure 1

23 pages, 1388 KiB  
Article
Machine Learning-Based State-of-Health Estimation of Battery Management Systems Using Experimental and Simulation Data
by Anas Al-Rahamneh, Irene Izco, Adrian Serrano-Hernandez and Javier Faulin
Mathematics 2025, 13(14), 2247; https://doi.org/10.3390/math13142247 - 11 Jul 2025
Viewed by 512
Abstract
In pursuit of zero-emission targets, increasing sustainability concerns have prompted urban centers to adopt more environmentally friendly modes of transportation, notably through the deployment of electric vehicles (EVs). A prominent manifestation of this shift is the transition from conventional fuel-powered buses to electric [...] Read more.
In pursuit of zero-emission targets, increasing sustainability concerns have prompted urban centers to adopt more environmentally friendly modes of transportation, notably through the deployment of electric vehicles (EVs). A prominent manifestation of this shift is the transition from conventional fuel-powered buses to electric buses (e-buses), which, despite their environmental benefits, introduce significant operational challenges—chief among them, the management of battery systems, the most critical and complex component of e-buses. The development of efficient and reliable Battery Management Systems (BMSs) is thus central to ensuring battery longevity, operational safety, and overall vehicle performance. This study examines the potential of intelligent BMSs to improve battery health diagnostics, extend service life, and optimize system performance through the integration of simulation, real-time analytics, and advanced deep learning techniques. Particular emphasis is placed on the estimation of battery state of health (SoH), a key metric for predictive maintenance and operational planning. Two widely recognized deep learning models—Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM)—are evaluated for their efficacy in predicting SoH. These models are embedded within a unified framework that combines synthetic data generated by a physics-informed battery simulation model with empirical measurements obtained from real-world battery aging datasets. The proposed approach demonstrates a viable pathway for enhancing SoH prediction by leveraging both simulation-based data augmentation and deep learning. Experimental evaluations confirm the effectiveness of the framework in handling diverse data inputs, thereby supporting more robust and scalable battery management solutions for next-generation electric urban transportation systems. Full article
(This article belongs to the Special Issue Operations Research and Intelligent Computing for System Optimization)
Show Figures

Figure 1

42 pages, 8136 KiB  
Review
From Empirical Measurements to AI Fusion—A Holistic Review of SOH Estimation Techniques for Lithium-Ion Batteries in Electric and Hybrid Vehicles
by Runzhe Shan, Yaxuan Wang, Shilong Guo, Yue Cui, Lei Zhao, Junfu Li and Zhenbo Wang
Energies 2025, 18(13), 3542; https://doi.org/10.3390/en18133542 - 4 Jul 2025
Viewed by 444
Abstract
Accurate assessment of lithium-ion battery state of health (SOH) represents a cross-disciplinary challenge that is critical for the reliability, safety, and total cost of ownership of electric vehicles (EVs) and hybrid electric vehicles (HEVs). This review systematically examines the evolutionary trajectory of SOH [...] Read more.
Accurate assessment of lithium-ion battery state of health (SOH) represents a cross-disciplinary challenge that is critical for the reliability, safety, and total cost of ownership of electric vehicles (EVs) and hybrid electric vehicles (HEVs). This review systematically examines the evolutionary trajectory of SOH estimation methods, ranging from conventional experimental measurement approaches to cutting-edge data-driven techniques. We analyze how these techniques address critical challenges in battery aging and performance evaluation, while discussing their respective advantages across different application scenarios. The paper highlights emerging trends in artificial intelligence-integrated advanced technologies for SOH estimation, along with practical implementation considerations. Special emphasis is placed on key challenges of SOH estimation in EVs/HEVs applications with proposed alternative solutions. By synthesizing current research directions and identifying critical knowledge gaps, this work provides valuable insights for fundamental research and industrial applications in battery health management. Full article
Show Figures

Figure 1

20 pages, 3057 KiB  
Article
An Interval Prediction Method Based on TSKANMixer Architecture for Predicting the State of Health of Lithium-Ion Batteries
by Fang Guo, Haolin Huang, Guangshan Huang and Zitao Chen
Electronics 2025, 14(13), 2608; https://doi.org/10.3390/electronics14132608 - 27 Jun 2025
Viewed by 225
Abstract
Current state-of-health (SOH) point prediction methods are highly accurate during early cycles. However, the prediction error increases significantly with increasing numbers of battery charging and discharging cycles, especially in the later stages of degradation. This leads to the intensification of uncertainty regarding SOH, [...] Read more.
Current state-of-health (SOH) point prediction methods are highly accurate during early cycles. However, the prediction error increases significantly with increasing numbers of battery charging and discharging cycles, especially in the later stages of degradation. This leads to the intensification of uncertainty regarding SOH, which seriously affects the accuracy and safety of judgments about battery failure. To solve this problem and overcome the limitation of human parameter tuning, this study proposes a method for predicting the SOH interval of lithium batteries based on a stochastic differential equation (SDE) and the chaotic evolutionary optimization (CEO) algorithm to optimize the TSKANMixer network. First, battery charge/discharge curves are analyzed, and health features were extracted to establish a SOH estimation model based on TSKANMixer. Then, the hyperparameters of the TSKANMixer model were optimized using the CEO algorithm to further improve the prediction performance. Finally, the prediction of SOH intervals was implemented using SDE based on the CEO-TSKANMixer model. The results show that the CEO optimization brought the RMSE of SOH prediction for the three cells down to no more than 1%, which was 72.70% lower than that of the baseline model. The PICP of the SDE-based interval prediction model exceeded 90% for all of them, and the NMPIW was no more than 6.47%. This indicates that the model can accurately quantify the SOH uncertainty and effectively support the early warning of the risk of battery failure in the late stages of attenuation. The method can also be used for SOH interval prediction for subsequent battery clusters, reducing the computational complexity of cell-by-cell analysis and improving the overall efficiency of battery management systems. Full article
Show Figures

Figure 1

13 pages, 2217 KiB  
Article
A Method for Predicting the Remaining Life of Lithium-Ion Batteries Based on an Improved Dempster–Shafer Evidence Theory Framework
by Tongrui Zhang and Hao Sun
Energies 2025, 18(13), 3370; https://doi.org/10.3390/en18133370 - 26 Jun 2025
Viewed by 359
Abstract
Lithium-ion batteries (LIBs) are widely used in consumer electronics, electric vehicles, and renewable energy systems, but their performance decays with their lifespan, which poses safety risks. Therefore, it is crucial to develop remaining useful life (RUL) prediction technology. This paper proposes a RUL [...] Read more.
Lithium-ion batteries (LIBs) are widely used in consumer electronics, electric vehicles, and renewable energy systems, but their performance decays with their lifespan, which poses safety risks. Therefore, it is crucial to develop remaining useful life (RUL) prediction technology. This paper proposes a RUL prediction method for lithium-ion batteries based on an improved Dempster–Shafer (D-S) evidence theory framework, which aims to improve the accuracy and robustness of prediction by integrating the advantages of a wavelet packet decomposition convolutional neural network (WPD-CNN) and an extended Kalman filter (EKF). The results show that the improved D-S theory overcomes the limitations of the classical D-S theory, improves the accuracy and robustness of diagnosis and prediction, and can effectively integrate multi-source information. Experimental verification shows that the fused model is significantly better than a single model in terms of prediction accuracy and robustness, providing an efficient and reliable solution for fault diagnosis and health management of lithium-ion batteries. Full article
Show Figures

Figure 1

19 pages, 2980 KiB  
Article
SOH and RUL Estimation for Lithium-Ion Batteries Based on Partial Charging Curve Features
by Kejun Qian, Yafei Li, Qiheng Zou, Kecai Cao and Zhongpeng Li
Energies 2025, 18(13), 3248; https://doi.org/10.3390/en18133248 - 21 Jun 2025
Viewed by 509
Abstract
Accurate estimation of the state of health (SOH) and remaining useful life (RUL) of lithium-ion batteries (LiBs) is critical for ensuring battery reliability and safety in applications such as electric vehicles and energy storage systems. However, existing methods developed for estimating the SOH [...] Read more.
Accurate estimation of the state of health (SOH) and remaining useful life (RUL) of lithium-ion batteries (LiBs) is critical for ensuring battery reliability and safety in applications such as electric vehicles and energy storage systems. However, existing methods developed for estimating the SOH and RUL of LiBs often rely on full-cycle charging data, which are difficult to obtain in engineering practice. To bridge this gap, this paper proposes a novel data-driven method to estimate the SOH and RUL of LiBs only using partial charging curve features. Key health features are extracted from the constant voltage (CV) charging process and voltage relaxation, validated through Pearson correlation analysis and SHapley Additive exPlanations (SHAP) interpretability. A hybrid framework combining CatBoost for SOH estimation and particle swarm optimization-support vector regression (PSO-SVR) for RUL estimation is developed. Experimental validation on public datasets demonstrates superior performance of the methodology described above, with an SOH estimation root mean square error (RMSE) and mean absolute error (MAE) below 1.42% and 0.52% and RUL estimation relative error (RE) under 1.87%. The proposed methodology also exhibits robustness and computational efficiency, making it suitable for battery management systems (BMSs) of LiBs. Full article
(This article belongs to the Section F5: Artificial Intelligence and Smart Energy)
Show Figures

Figure 1

28 pages, 9320 KiB  
Article
Embedded Sensor Data Fusion and TinyML for Real-Time Remaining Useful Life Estimation of UAV Li Polymer Batteries
by Jutarut Chaoraingern and Arjin Numsomran
Sensors 2025, 25(12), 3810; https://doi.org/10.3390/s25123810 - 18 Jun 2025
Viewed by 583
Abstract
The accurate real-time estimation of the remaining useful life (RUL) of lithium-polymer (LiPo) batteries is a critical enabler for ensuring the safety, reliability, and operational efficiency of unmanned aerial vehicles (UAVs). Nevertheless, achieving such prognostics on resource-constrained embedded platforms remains a considerable technical [...] Read more.
The accurate real-time estimation of the remaining useful life (RUL) of lithium-polymer (LiPo) batteries is a critical enabler for ensuring the safety, reliability, and operational efficiency of unmanned aerial vehicles (UAVs). Nevertheless, achieving such prognostics on resource-constrained embedded platforms remains a considerable technical challenge. This study proposes an end-to-end TinyML-based framework that integrates embedded sensor data fusion with an optimized feedforward neural network (FFNN) model for efficient RUL estimation under strict hardware limitations. The system collects voltage, discharge time, and capacity measurements through a lightweight data fusion pipeline and leverages the Edge Impulse platform with the EON™Compiler for model optimization. The trained model is deployed on a dual-core ARM Cortex-M0+ Raspberry Pi RP2040 microcontroller, communicating wirelessly with a LabVIEW-based visualization system for real-time monitoring. Experimental validation on an 80-gram UAV equipped with a 1100 mAh LiPo battery demonstrates a mean absolute error (MAE) of 3.46 cycles and a root mean squared error (RMSE) of 3.75 cycles. Model testing results show an overall accuracy of 98.82%, with a mean squared error (MSE) of 55.68, a mean absolute error (MAE) of 5.38, and a variance score of 0.99, indicating strong regression precision and robustness. Furthermore, the quantized (int8) version of the model achieves an inference latency of 2 ms, with memory utilization of only 1.2 KB RAM and 11 KB flash, confirming its suitability for real-time deployment on resource-constrained embedded devices. Overall, the proposed framework effectively demonstrates the feasibility of combining embedded sensor data fusion and TinyML to enable accurate, low-latency, and resource-efficient real-time RUL estimation for UAV battery health management. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

Back to TopTop