An Interval Prediction Method Based on TSKANMixer Architecture for Predicting the State of Health of Lithium-Ion Batteries
Abstract
1. Introduction
- (1)
- Battery degradation dynamics are modelled through the stochastic process of the SDE method and prediction intervals are generated with quantification of uncertainty to make up for the shortcomings of traditional point prediction;
- (2)
- The TSKANMixer model is introduced to enhance the nonlinear dynamic modeling capability. The KAN layer captures the complex nonlinear relationships in the battery degradation process through a learnable nonlinear basis function, which, combined with the temporal attention mechanism and the multilayer perceptron module of the TSMixer, significantly enhances the model’s ability to model long-term dependence and dynamic trends;
- (3)
- Efficient exploration of high-dimensional hyperparameter spaces uses the CEO algorithm for chaotic mapping and initialization of populations, combined with evolutionary strategies to overcoming the inefficiencies and limitations of traditional grid searches or manual parameter tuning.
2. Dataset and Preprocessing
2.1. Definition of State of Health
2.2. Introduction to the Dataset
2.3. Feature Extraction
3. SOH Estimation Process and Principle
3.1. Stochastic Differential Equation
3.2. TSKANMixer Model
3.2.1. TSMixer Principle
3.2.2. Kolmogorov–Arnold Network Principle
3.2.3. TSKANMixer Overall Architecture
- Time-series input layer
- Parallel processing path
- Fusion layer
- Loss function
3.3. CEO Algorithm Optimization TSKANMixer
- Mutation operation
- Crossover operation
- Selection operation
- Initial population diversity: The CEO algorithm employs chaotic mappings to generate pseudo-random sequences for initializing the population. Compared with purely random or fixed-range initialization methods, this method yields a more uniform distribution of individuals and enhanced employability, thereby improving global search capabilities;
- Escaping local optima: The non-periodic and sensitive dependency characteristics of chaotic sequences can overcome the limitations of traditional evolutionary algorithms, which are prone to falling into local optima, thereby facilitating the algorithm’s escape from traps during iteration and further reducing prediction errors;
- Fast convergence: The CEO algorithm introduces chaotic perturbations into evolutionary operators (selection, crossover, mutation), which can accelerate convergence while ensuring sufficient exploration capabilities, significantly reducing hyperparameter tuning time;
- Parameter adaptation: By dynamically adjusting the mutation rate and crossover rate through chaotic mapping, the CEO algorithm can adaptively balance exploration and exploitation based on the current search state, avoiding premature convergence or excessive randomness.
4. Analysis of Results and Discussion
4.1. Evaluation Metrics
4.2. SOH Prediction Results
4.3. Comparison of Prediction Results Between Different Model Intervals
5. Conclusions
- (1)
- This study establishes the TSKANMixer model, which combines multi-layer attention mechanisms and residual connections to optimize time series modeling capabilities, providing a foundational framework for lithium-ion battery state-of-health (SOH) prediction and significantly enhancing feature expression capabilities;
- (2)
- The CEO algorithm was used to perform chaotic optimization on the TSKANMixer model, simplifying the manual parameter tuning process. Experimental results demonstrate that the CEO algorithm can improve the global search efficiency of hyperparameters, resulting in a 47.18% reduction in prediction errors compared with the baseline model;
- (3)
- By combining the TSKANMixer network with the SDE network, an SOH interval prediction model was established. Through SDE modeling of degradation uncertainty, the final prediction interval coverage exceeded 90%, and the normalized average prediction interval width did not exceed 6.47%, providing accurate SOH prediction values and reasonable interval estimates.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SOH | State of health |
SDE | Stochastic differential equation |
CEO | Chaotic evolutionary optimization |
ECM | Equivalent circuit model |
LSTM | Long short-term memory network |
CNN | Convolutional neural network |
KAN | Kolmogorov–Arnold network |
CALCE | Center for Advanced Life Cycle Engineering |
ADV | Average discharge voltage |
CCCT | Constant current charge time |
CCCTR | Constant current charge time ratio |
CVCT | Constant voltage charge time |
CVCTR | Constant voltage charge time ratio |
PCC | Pearson correlation coefficient |
MLP | Multilayer perceptron |
MLE | Maximum likelihood estimation |
RMSE | Root mean square error |
MAE | Mean absolute error |
MRE | Mean relative error |
PICP | Probability of coverage of prediction intervals |
NMPIW | Normalized mean pediction interval width |
References
- Shahed, M.T.; Harun-ur Rashid, A.B.M. Battery charging technologies and standards for electric vehicles: A state-of-the-art review, challenges, and future research prospects. Energy Rep. 2024, 11, 5978–5998. [Google Scholar] [CrossRef]
- Jia, C.; Liu, W.; He, H.; Chau, K.T. Deep reinforcement learning-based energy management strategy for fuel cell buses integrating future road information and cabin comfort control. Energy Convers. Manag. 2024, 321, 119032. [Google Scholar] [CrossRef]
- Jia, C.; Liu, W.; He, H.; Chau, K.T. Superior energy management for fuel cell vehicles guided by improved DDPG algorithm: Integrating driving intention speed prediction and health-aware control. Appl. Energy 2025, 394, 126195. [Google Scholar] [CrossRef]
- Li, K.; Zhou, J.; Jia, C.; Yi, F.; Zhang, C. Energy sources durability energy management for fuel cell hybrid electric bus based on deep reinforcement learning considering future terrain information. Int. J. Hydrogen Energy 2024, 52 Pt D, 821–833. [Google Scholar] [CrossRef]
- Ge, M.-F.; Liu, Y.; Jiang, X.; Liu, J. A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries. Measurement 2021, 174, 109057. [Google Scholar] [CrossRef]
- Guo, F.; Huang, G.; Zhang, W.; Wen, A.; Li, T.; He, H.; Huang, H.; Zhu, S. Lithium Battery State-of-Health Estimation Based on Sample Data Generation and Temporal Convolutional Neural Network. Energies 2023, 16, 8010. [Google Scholar] [CrossRef]
- Zhang, J.; Lee, J. A review on prognostics and health monitoring of Li-ion battery. J. Power Sources 2011, 196, 6007–6014. [Google Scholar] [CrossRef]
- Xing, C.; Liu, H.; Zhang, Z.; Wang, J.; Wang, J. Enhancing Lithium-Ion Battery Health Predictions by Hybrid-Grained Graph Modeling. Sensors 2024, 24, 4185. [Google Scholar] [CrossRef]
- Gu, X.; See, K.W.; Li, P.; Shan, K.; Wang, Y.; Zhao, L.; Lim, K.C.; Zhang, N. A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model. Energy 2023, 262 Pt B, 125501. [Google Scholar] [CrossRef]
- Tang, X.; Liu, K.; Wang, X.; Gao, F.; Macro, J.; Widanage, W.D. Model Migration Neural Network for Predicting Battery Aging Trajectories. IEEE Trans. Transp. Electrif. 2020, 6, 363–374. [Google Scholar] [CrossRef]
- Shang, Y.; Zheng, W.; Yan, X.; Nguyen, D.H.; Jian, L. Predicting the state of health of VRLA batteries in UPS using data-driven method. Energy Rep. 2023, 9 (Suppl. S8), 184–190. [Google Scholar] [CrossRef]
- Ho, K.-C.; Khanh, D.N.; Hsueh, Y.-F.; Wang, S.-C.; Liu, Y.-H. Deep Learning Approach for Equivalent Circuit Model Parameter Identification of Lithium-Ion Batteries. Electronics 2025, 14, 2201. [Google Scholar] [CrossRef]
- Li, J.; Zhao, S.; Miah, M.S.; Niu, M. Remaining useful life prediction of lithium-ion batteries via an EIS based deep learning approach. Energy Rep. 2023, 10, 3629–3638. [Google Scholar] [CrossRef]
- Plett, G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1. Background. J. Power Sources 2004, 134, 252–261. [Google Scholar] [CrossRef]
- Plett, G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification. J. Power Sources 2004, 134, 262–276. [Google Scholar] [CrossRef]
- Andre, D.; Meiler, M.; Steiner, K.; Walz, H.; Soczka-Guth, T.; Sauer, D.U. Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II: Modelling. J. Power Sources 2011, 196, 5349–5356. [Google Scholar] [CrossRef]
- Yao, L.; Wen, J.; Xu, S.; Zheng, J.; Hou, J.; Fang, Z.; Xiao, Y. State of Health Estimation Based on the Long Short-Term Memory Network Using Incremental Capacity and Transfer Learning. Sensors 2022, 22, 7835. [Google Scholar] [CrossRef]
- He, Y.; Pattanadech, N.; Sukemoke, K.; Chen, L.; Li, L. SOH Estimation Model Based on an Ensemble Hierarchical Extreme Learning Machine. Electronics 2025, 14, 1832. [Google Scholar] [CrossRef]
- Feng, X.; Weng, C.; He, X.; Han, X.; Lu, L.; Ren, D.; Ouyang, M. Online State-of-Health Estimation for Li-Ion Battery Using Partial Charging Segment Based on Support Vector Machine. IEEE Trans. Veh. Technol. 2019, 68, 8583–8592. [Google Scholar] [CrossRef]
- Lin, C.; Xu, J.; Shi, M.; Mei, X. Constant current charging time based fast state-of-health estimation for lithium-ion batteries. Energy 2022, 247, 123556. [Google Scholar] [CrossRef]
- Gao, M.; Bao, Z.; Zhu, C.; Jiang, J.; He, Z.; Dong, Z.; Song, Y. HFCM-LSTM: A novel hybrid framework for state-of-health estimation of lithium-ion battery. Energy Rep. 2023, 9, 2577–2590. [Google Scholar] [CrossRef]
- Zheng, Y.; Hu, J.; Chen, J.; Deng, H.; Hu, W. State of health estimation for lithium battery random charging process based on CNN-GRU method. Energy Rep. 2023, 9 (Suppl. S3), 1–10. [Google Scholar] [CrossRef]
- Chemali, E.; Kollmeyer, P.J.; Preindl, M.; Ahmed, R.; Emadi, A. Long Short-Term Memory Networks for Accurate State-of-Charge Estimation of Li-ion Batteries. IEEE Trans. Ind. Electron. 2018, 65, 6730–6739. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Kong, L.; Xu, H.; Shen, H.; Chen, M. Multi-step state of health prediction of lithium-ion batteries based on multi-feature extraction and improved Transformer. J. Energy Storage 2025, 105, 114538. [Google Scholar] [CrossRef]
- Jarraya, I.; Atitallah, S.B.; Alahmed, F.; Abdelkader, M.; Driss, M.; Abdelhadi, F.; Koubaa, A. SOH-KLSTM: A hybrid Kolmogorov-Arnold Network and LSTM model for enhanced Lithium-ion battery Health Monitoring. J. Energy Storage 2025, 122, 116541. [Google Scholar] [CrossRef]
- Lin, M.; You, Y.; Wang, W.; Wu, J. Battery health prognosis with gated recurrent unit neural networks and hidden Markov model considering uncertainty quantification. Reliab. Eng. Syst. Saf. 2023, 230, 108978. [Google Scholar] [CrossRef]
- Huang, D. Financial Time Series Forecasting Based on Stochastic Differential Equation Model. In Proceedings of the 2022 IEEE 5th International Conference on Information Systems and Computer Aided Education (ICISCAE), Dalian, China, 23–25 September 2022; pp. 461–465. [Google Scholar] [CrossRef]
- Jha, S.K.; Langmead, C.J. Exploring behaviors of stochastic differential equation models of biological systems using change of measures. BMC Bioinform. 2012, 13 (Suppl. S5). [Google Scholar] [CrossRef]
- Yu, X.; Tang, T.; Song, Z.; He, Y. State-of-health estimation for lithium-ion batteries under complex charging conditions based on SDE-BiLSTM model. J. Energy Storage 2025, 111, 115352. [Google Scholar] [CrossRef]
- Hu, X.; Xu, L.; Lin, X. Michael Pecht, Battery Lifetime Prognostics. Joule 2020, 4, 310–346. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, J.; Sun, Z.; Wang, L.; Xu, R.; Li, M.; Chen, Z. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. Renew. Sustain. Energy Rev. 2020, 131, 110015. [Google Scholar] [CrossRef]
- Bai, J.; Huang, J.; Luo, K.; Yang, F.; Xian, Y. A feature reuse based multi-model fusion method for state of health estimation of lithium-ion batteries. J. Energy Storage 2023, 70, 107965. [Google Scholar] [CrossRef]
- Tang, T.; Yuan, H. The capacity prediction of Li-ion batteries based on a new feature extraction technique and an improved extreme learning machine algorithm. J. Power Sources 2021, 514, 230572. [Google Scholar] [CrossRef]
- Tan, X.; Liu, X.; Wang, H.; Fan, Y.; Feng, G. Intelligent Online Health Estimation for Lithium-Ion Batteries Based on a Parallel Attention Network Combining Multivariate Time Series. Front. Energy Res. 2022, 10, 844985. [Google Scholar] [CrossRef]
- Li, H.; Chen, C.; Wei, J.; Chen, Z.; Lei, G.; Wu, L. State of Health (SOH) Estimation of Lithium-Ion Batteries Based on ABC-BiGRU. Electronics 2024, 13, 1675. [Google Scholar] [CrossRef]
- Sedgwick, P. Pearson’s correlation coefficient. BMJ 2012, 345, e4483. [Google Scholar] [CrossRef]
- Øksendal, B. Stochastic Differential Equations: An Introduction with Applications, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Hong, Y.-C.; Xiao, B.; Chen, Y. TSKANMixer: Kolmogorov-Arnold Networks with MLP-Mixer Model for Time Series Forecasting. arXiv 2025, arXiv:2502.18410. [Google Scholar] [CrossRef]
- Jia, C.; He, H.; Zhou, J.; Li, K.; Li, J.; Wei, Z. A performance degradation prediction model for PEMFC based on bi-directional long short-term memory and multi-head self-attention mechanism. Int. J. Hydrogen Energy 2024, 60, 133–146. [Google Scholar] [CrossRef]
- Lu, D.; Hu, D.; Wang, J.; Wei, W.; Zhang, X. A Data-Driven Vehicle Speed Prediction Transfer Learning Method with Improved Adaptability Across Working Conditions for Intelligent Fuel Cell Vehicle. IEEE Trans. Intell. Transp. Syst. 2025. early access. [Google Scholar] [CrossRef]
- Chen, S.-A.; Li, C.-L.; Yoder, N.; Arik, S.O.; Pfister, T. TSMixer: An All-MLP Architecture for Time Series Forecasting. arXiv 2023, arXiv:2303.06053. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Vaidya, S.; Ruehle, F.; Halverson, J.; Soljačić, M.; Hou, T.Y.; Tegmark, M. KAN: Kolmogorov-Arnold Networks. arXiv 2025, arXiv:2404.19756. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, S.; Zhang, H.; Zhou, X.; Jiang, J. Chaotic evolution optimization: A novel metaheuristic algorithm inspired by chaotic dynamics. Chaos Solitons Fractals 2025, 192, 116049. [Google Scholar] [CrossRef]
- Guo, F.; Huang, G.; Zhang, W.; Liu, G.; Li, T.; Ouyang, N.; Zhu, S. State of Health estimation method for lithium batteries based on electrochemical impedance spectroscopy and pseudo-image feature extraction. Measurement 2023, 220, 113412. [Google Scholar] [CrossRef]
- Bracale, A.; De Falco, P.; Noia, L.P.D.; Rizzo, R. Probabilistic State of Health and Remaining Useful Life Prediction for Li-Ion Batteries. IEEE Trans. Ind. Appl. 2023, 59, 578–590. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, X.; Pan, R.; Wang, Y.; Chen, Z. A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve. J. Power Sources 2018, 384, 387–395. [Google Scholar] [CrossRef]
Battery | Pearson Correlation Coefficient | ||||
---|---|---|---|---|---|
ADV | CCCT | CCCTR | CVCT | CVCTR | |
CS2_35 | 0.8950 | 0.9967 | 0.9780 | −0.9133 | −0.9769 |
CS2_36 | 0.9269 | 0.9976 | 0.9770 | −0.8938 | −0.9755 |
CS2_37 | 0.8864 | 0.9968 | 0.9748 | −0.9049 | −0.9734 |
Battery | Model | Error Indicator | ||
---|---|---|---|---|
RMSE | MAE | MRE | ||
CS2_35 | CNN | 0.0377 | 0.0236 | 0.0491 |
TSMixer | 0.0290 | 0.0173 | 0.0369 | |
KAN | 0.0266 | 0.0159 | 0.0337 | |
TSKANMixer | 0.0142 | 0.0081 | 0.0137 | |
CEO-TSKANMixer | 0.0075 | 0.0053 | 0.0062 | |
CS2_36 | CNN | 0.0408 | 0.0255 | 0.0800 |
TSMixer | 0.0333 | 0.0205 | 0.0650 | |
KAN | 0.0254 | 0.0138 | 0.0474 | |
TSKANMixer | 0.0133 | 0.0083 | 0.0229 | |
CEO-TSKANMixer | 0.0088 | 0.0069 | 0.0082 | |
CS2_37 | CNN | 0.0389 | 0.0232 | 0.0540 |
TSMixer | 0.0260 | 0.0152 | 0.0357 | |
KAN | 0.0186 | 0.0097 | 0.0239 | |
TSKANMixer | 0.0142 | 0.0074 | 0.0171 | |
CEO-TSKANMixer | 0.0057 | 0.0046 | 0.0055 |
Battery | Model | Evaluation Indicators | |
---|---|---|---|
PICP | NMPIW | ||
CS2_35 | SDE-CNN | 65.28 | 8.12 |
SDE-TSMixer | 75.13 | 7.69 | |
SDE-KAN | 78.92 | 7.54 | |
SDE-TSKANMixer | 89.66 | 7.03 | |
SDE-CEO-TSKANMixer | 95.79 | 6.47 | |
CS2_36 | SDE-CNN | 61.35 | 7.27 |
SDE-TSMixer | 70.59 | 6.99 | |
SDE-KAN | 72.63 | 6.95 | |
SDE-TSKANMixer | 85.61 | 6.12 | |
SDE-CEO-TSKANMixer | 90.61 | 5.94 | |
CS2_37 | SDE-CNN | 76.49 | 6.78 |
SDE-TSMixer | 83.42 | 6.31 | |
SDE-KAN | 84.23 | 6.25 | |
SDE-TSKANMixer | 90.61 | 5.84 | |
SDE-CEO-TSKANMixer | 96.05 | 5.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, F.; Huang, H.; Huang, G.; Chen, Z. An Interval Prediction Method Based on TSKANMixer Architecture for Predicting the State of Health of Lithium-Ion Batteries. Electronics 2025, 14, 2608. https://doi.org/10.3390/electronics14132608
Guo F, Huang H, Huang G, Chen Z. An Interval Prediction Method Based on TSKANMixer Architecture for Predicting the State of Health of Lithium-Ion Batteries. Electronics. 2025; 14(13):2608. https://doi.org/10.3390/electronics14132608
Chicago/Turabian StyleGuo, Fang, Haolin Huang, Guangshan Huang, and Zitao Chen. 2025. "An Interval Prediction Method Based on TSKANMixer Architecture for Predicting the State of Health of Lithium-Ion Batteries" Electronics 14, no. 13: 2608. https://doi.org/10.3390/electronics14132608
APA StyleGuo, F., Huang, H., Huang, G., & Chen, Z. (2025). An Interval Prediction Method Based on TSKANMixer Architecture for Predicting the State of Health of Lithium-Ion Batteries. Electronics, 14(13), 2608. https://doi.org/10.3390/electronics14132608