Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (231)

Search Parameters:
Keywords = bar coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3745 KB  
Article
Development and Characterization of Chitosan-TiO2-Based Photocatalytic Membrane for Water Treatment: Applications on Methylene Blue Elimination
by Hamza En-nasri, Abdellatif Aarfane, Badreddine Hatimi, Najoua Labjar, Meryem Bensemlali, Abdoullatif Baraket, Mina Bakasse, Nadia Zine, Nicole Jaffrezic-Renault, Souad El Hajjaji and Hamid Nasrellah
Eng 2026, 7(1), 43; https://doi.org/10.3390/eng7010043 - 13 Jan 2026
Viewed by 32
Abstract
Photocatalytic membrane reactors (PMRs) are an innovative technology for water treatment, effectively combining membrane filtration and photocatalysis to enhance contaminant removal while enabling the regeneration of fouled membranes. In this study, a new porous film of chitosan that was impregnated with TiO2 [...] Read more.
Photocatalytic membrane reactors (PMRs) are an innovative technology for water treatment, effectively combining membrane filtration and photocatalysis to enhance contaminant removal while enabling the regeneration of fouled membranes. In this study, a new porous film of chitosan that was impregnated with TiO2 was developed and coated onto a ceramic support by spin coating to form a new porous immobilized PMR. The formed membrane was tested for two reasons: the removal of methylene blue dye by a dead-end filtration process and to demonstrate its ability to self-regenerate under UV exposure. The selective layer of the membrane was characterized using FTIR spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), and water permeability tests. The results confirmed the formation of an amorphous film with no chemical interaction between chitosan and TiO2. The membrane exhibited an average water permeability of 10.72 L/m2·h·bar, classifying it as either ultrafiltration (UF) or nanofiltration (NF). Dead-end filtration of methylene blue (10 mg L−1) achieved 99% dye removal based on UV–vis analysis of the permeate, while flux declined rapidly due to fouling. Subsequent UV irradiation removed the deposited dye layer and restored approximately 50% of the initial flux, indicating partial self-regeneration. Overall, spin-coated chitosan–TiO2 layers on ceramic supports provide high dye removal and photocatalytically assisted flux recovery, and further work should quantify photocatalytic degradation during regeneration. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

25 pages, 8923 KB  
Review
Mechanisms and Protection Strategies for Concrete Degradation Under Magnesium Salt Environment: A Review
by Xiaopeng Shang, Xuetao Yue, Lin Pan and Jingliang Dong
Buildings 2026, 16(2), 264; https://doi.org/10.3390/buildings16020264 - 7 Jan 2026
Viewed by 157
Abstract
Concrete structures suffering from Mg2+ environments may suffer severe damage, which mainly has something to do with the coupled effect among Cl, SO42−, and Mg2+. Based on a systematic review of Web of Science and [...] Read more.
Concrete structures suffering from Mg2+ environments may suffer severe damage, which mainly has something to do with the coupled effect among Cl, SO42−, and Mg2+. Based on a systematic review of Web of Science and Scopus database (2000–2025), we first summarized the migration behavior, reaction paths, and interaction mechanism of Cl, SO42−, and Mg2+ in cementitious matrices. Secondly, from the perspective of Cl cyclic adsorption–desorption breaking the passivation film of steel bars, SO42− generating expansion products leads to crack expansion, then Mg2+ decalcifies C-S-H and transforms into M-S-H; we analyzed the main damage mechanisms, respectively. In addition, under the coexistence conditions of three kinds of ions, the “fixation–substitution–redissolution” process and “crack–transport” coupling positive feedback mechanism further increase the development rate of damage. Then, some anti-corrosion measures, such as mineral admixtures, functional chemical admixtures, fiber reinforcements, surface coatings, and new binder systems, are summarized, and the pros and cons of different anti-corrosion technologies are compared and evaluated. Lastly, from two aspects of simulation prediction for the coupled corrosion damage mechanism and service life prediction, respectively, we have critically evaluated the advances and problems existing in the current research on the aspects of ion migration-reaction coupled models, multi-physics coupled frameworks, phase-field methods, etc. We found that there is still much work to be conducted in three respects: deepening mechanism understanding, improving prediction precision, and strengthening the connection between laboratory test results and actual projects, so as to provide theoretical basis and technical support for the durability design and anti-corrosion strategies of concrete in complex Mg2+ environments. Full article
Show Figures

Figure 1

17 pages, 3072 KB  
Article
Washable Few-Layer Graphene-Based Conductive Coating: The Impact of TPU Segmental Structure on Its Final Performances
by Ilaria Improta, Gennaro Rollo, Giovanna Giuliana Buonocore, Marco Fiume, Vladimír Sedlařík and Marino Lavorgna
Coatings 2026, 16(1), 38; https://doi.org/10.3390/coatings16010038 - 30 Dec 2025
Viewed by 277
Abstract
The development of sustainable, water-based conductive coatings is essential for advancing environmentally responsible wearable and printed electronics. Achieving high electrical conductivity and wash durability remains a key challenge. This is largely dependent on the compatibility between the polymer matrix, the conductive filler and [...] Read more.
The development of sustainable, water-based conductive coatings is essential for advancing environmentally responsible wearable and printed electronics. Achieving high electrical conductivity and wash durability remains a key challenge. This is largely dependent on the compatibility between the polymer matrix, the conductive filler and the substrate surface. In this study, a facile formulation strategy is proposed by directly integrating few-layer graphene (FLG, 2.5 wt%) into commercial bio-based thermoplastic polyurethanes (TPUs), combined with polyvinylpyrrolidone (PVP) as a dispersing agent. The investigation focuses on how the segmental architecture of four TPUs with different structure and hard–soft segments composition influences filler dispersion, mechanical integrity, and electrical behavior. Coatings were deposited onto flexible substrates, including textiles and paper, using a bar-coating process and were characterized in terms of morphology, thermal properties, electrical conductivity, and wash resistance. The results demonstrate that TPUs containing a higher presence of hard segments interact more effectively with hydrophobic surfaces, while TPUs with a higher contribution of soft segments improve adhesion to hydrophilic substrates and facilitate the formation of the percolation network, underling the role of TPU microstructure in controlling interfacial interactions and overall coating performance. The proposed comparative approach provides a sustainable pathway toward durable, high-performance, and washable electronic textiles and paper-based devices. Full article
Show Figures

Figure 1

21 pages, 5222 KB  
Article
Eco-Friendly Production of Lignin-Containing Cellulose Nanofibers from Sugarcane Bagasse Fines via Sequential Thermal Hydrolysis–Deep Eutectic Solvents Pretreatment
by Chae-Eun Yeo and Ho-Jin Sung
Polymers 2026, 18(1), 85; https://doi.org/10.3390/polym18010085 - 27 Dec 2025
Viewed by 429
Abstract
Fine and ultra-fine sugarcane bagasse (SCB) fractions (≤200 μm) that are naturally generated during industrial grinding have been systematically overlooked in lignocellulosic pretreatment research. Previous studies have largely relied on commercially processed pulps or coarse particles (>200 μm), typically without systematic size fractionation. [...] Read more.
Fine and ultra-fine sugarcane bagasse (SCB) fractions (≤200 μm) that are naturally generated during industrial grinding have been systematically overlooked in lignocellulosic pretreatment research. Previous studies have largely relied on commercially processed pulps or coarse particles (>200 μm), typically without systematic size fractionation. Here, we demonstrate that these fine fractions—including ultra-fines (≤45 μm), which are often excluded from analytical workflows due to concern about excessive degradation—are viable feedstocks for producing lignin-containing cellulose nanofibers (LCNF) via a sequential thermal hydrolysis treatment (THT)–deep eutectic solvent (DES) pretreatment specifically designed to retain lignin. Size-fractionated SCB (≤45, 45–100, and 100–200 μm) was subjected to THT (190 °C, 15 min), followed by DES treatment using choline chloride/urea (1:2 molar ratio, 130 °C, 2 h). Multi-technique characterization using Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) indicated substantial hemicellulose removal (>70%), effective lignin retention (7.6–9.1%), cellulose enrichment (74.0–77.5%), and preservation of cellulose I structure allomorph. The crystallinity index increased from 46.5–52.7% after THT to 56.7–57.2% after DES treatment, and notably, uniform compositional and structural features were obtained across all particle size classes after DES treatment. Subsequent high-pressure microfluidization (700 bar, five passes) yielded LCNF with consistent morphology across all fractions: uniform fibril diameters (24.6–26.2 nm), a discernible lignin coating, and excellent colloidal stability (zeta potential: −86.3 to −95.0 mV). Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) confirmed well-dispersed nanofibrous networks. Collectively, these findings show that the full range of fine SCB fractions can be effectively valorized into high-performance LCNF through sequential THT–DES pretreatment, enabling comprehensive utilization of industrial grinding outputs and advancing circular bioeconomy objectives. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

21 pages, 6758 KB  
Review
Advancements in Basalt Fiber-Reinforced Composites: A Critical Review
by Jiadong Li, Lin Lan, Yanliang Zhang, Baofeng Pan, Wei Shi, Zhanyu Gu, Yulong Zhang, Yongbo Yan, Jia Wang, Jianwei Zhou, Rongxiang Wang and Can Wang
Coatings 2025, 15(12), 1441; https://doi.org/10.3390/coatings15121441 - 8 Dec 2025
Viewed by 639
Abstract
Recent comprehensive research (2023–2024) on basalt fiber-reinforced composites (BFRCs) has meticulously documented significant progress across diverse applications, including protective coatings, high-performance concrete, reinforcement bars, and advanced laminates. The central theme of these developments revolves around innovative composite design strategies that strategically incorporate basalt [...] Read more.
Recent comprehensive research (2023–2024) on basalt fiber-reinforced composites (BFRCs) has meticulously documented significant progress across diverse applications, including protective coatings, high-performance concrete, reinforcement bars, and advanced laminates. The central theme of these developments revolves around innovative composite design strategies that strategically incorporate basalt fibers to markedly enhance mechanical properties, durability, and protective capabilities against environmental challenges. Key advancements in synthesis methodologies highlight that the integration of BFs substantially improves abrasion and corrosion resistance, effectively inhibits crack propagation through superior fiber-matrix bonding, and confers exceptional thermal stability, with composites maintaining structural integrity at temperatures of 600–700 °C and demonstrating short-term resistance exceeding 900 °C. The underlying mechanisms for this enhanced performance are attributed to both chemical modifications—such as the application of silane-based coupling agents which improve interfacial adhesion—and physical–mechanical interlocking between the fibers and the matrix. These interactions facilitate efficient stress transfer, leading to a breakthrough in the overall multifunctional performance of the composites. Despite these promising results, the field continues to grapple with challenges, particularly concerning the long-term durability under sustained loads and harsh environments, and a notable lack of standardized global testing protocols hinders direct comparison and widespread certification. This review distinguishes itself by offering a critical synthesis of the latest findings, underscoring the immense application potential of BFRCs in critical sectors such as civil engineering for seismic retrofitting and structural strengthening, the automotive industry for lightweight yet robust components, and advanced passive fireproofing systems. Furthermore, it emphasizes the growing, innovative role of simulation techniques like finite element analysis (FEA) in predicting and optimizing the performance and design of these composites, thereby providing a robust scientific foundation for developing the next generation of high-performance, sustainable structural components. Full article
Show Figures

Figure 1

22 pages, 10088 KB  
Article
Preparation and Research on 2-Methylimidazole-Lanthanum Nickel-Based Sol-Gel Conversion Coating for Oxide Scale Reinforcement Bars
by Yuhao Xie, Yanwei Zeng, Xinwei Wang, Yuxin Bai and Guozhe Meng
Buildings 2025, 15(23), 4272; https://doi.org/10.3390/buildings15234272 - 26 Nov 2025
Viewed by 288
Abstract
Corrosion induced by defective oxide scales severely compromises the durability of concrete structures. This study develops a dual-mechanism sol-gel protection strategy based on La3+/Ni2+/2-Methylimidazole (2-MI). First, 2-Methylimidazole-catalyzed epoxy ring-opening constructs defect-minimized Si–O–Si/C–O–C networks through 60 °C low-temperature curing, reducing [...] Read more.
Corrosion induced by defective oxide scales severely compromises the durability of concrete structures. This study develops a dual-mechanism sol-gel protection strategy based on La3+/Ni2+/2-Methylimidazole (2-MI). First, 2-Methylimidazole-catalyzed epoxy ring-opening constructs defect-minimized Si–O–Si/C–O–C networks through 60 °C low-temperature curing, reducing microcrack formation and curing energy consumption compared to conventional 130 °C processing. Second, utilizing 400 °C waste heat from hot-rolled steel triggers pH-modulated La2O3/NiO co-deposition within oxide scale defects, enhancing corrosion resistance. After a 40-day immersion in SCP + 0.1 M NaCl, the coated reinforcement exhibits a low-frequency impedance modulus of 25.6 kΩ·cm2, achieving a 10.4-fold increase over untreated steel. Specimens embedded in 3.5 wt% NaCl mortar demonstrate a 120-day impedance modulus of 74.63 kΩ·cm2, exceeding the control by 8.03-fold. This strategy integrates efficient industrial waste heat utilization with energy-saving low-temperature curing, providing long-term corrosion protection for marine concrete structures. Full article
(This article belongs to the Special Issue Research on Corrosion Resistance of Reinforced Concrete)
Show Figures

Figure 1

9 pages, 648 KB  
Article
Optilume Drug-Coated Balloon Dilation for Male Sphincteric (Membranous) Urethral Strictures: 53 Consecutive Cases
by Lukas Andrius Jelisejevas, Gennadi Tulchiner and Peter Rehder
J. Clin. Med. 2025, 14(23), 8369; https://doi.org/10.3390/jcm14238369 - 25 Nov 2025
Viewed by 593
Abstract
Background/Objectives: Reconstruction of membranous urethral strictures poses significant surgical challenges, including risks of urinary incontinence and erectile dysfunction. Optilume drug-coated balloon dilation (DCBD) is a minimally invasive treatment for short, recurrent bulbar urethral strictures, but its application in strictures involving the sphincteric urethra [...] Read more.
Background/Objectives: Reconstruction of membranous urethral strictures poses significant surgical challenges, including risks of urinary incontinence and erectile dysfunction. Optilume drug-coated balloon dilation (DCBD) is a minimally invasive treatment for short, recurrent bulbar urethral strictures, but its application in strictures involving the sphincteric urethra remains controversial. This study aims to evaluate the safety, efficacy, and impact on continence of DCBD in membranous urethral strictures involving the male sphincter. Methods: A retrospective analysis was conducted on 53 consecutive patients with urethral strictures involving the sphincteric urethra, treated with Optilume DCBD between June 2021 and June 2025 at a tertiary center. After preoperative imaging, dilation to 20 Fr, then DCBD (30 Fr, 10 bar, 10 min) were performed. We assessed anatomical success (≥18 Fr as per cystoscopy/calibration), freedom from re-intervention, and continence status. Patients with neurological conditions or urinary infections were excluded. Results: The cohort included 35 membranous urethral strictures and 18 vesicourethral anastomosis stenoses that extended into the sphincter. The median follow-up was 13.3 months. At last follow-up, 66.6% and 65.6% of patients in both groups were free from recurrence and re-intervention with satisfactory voiding. No de novo incontinence was observed; two patients with prior post-prostatectomy incontinence remained incontinent. The median age was 68 years; median prior interventions were 2.5, and median stricture length was 3 cm. Conclusions: Optilume DCBD appears to be a safe and effective option for membranous urethral strictures involving the sphincter, without inducing de novo incontinence. Although not a replacement for reconstruction, it offers a minimally invasive alternative for selected patients. Full article
(This article belongs to the Special Issue Recent Advances in Reconstructive Urology and Prosthetic Surgery)
Show Figures

Figure 1

17 pages, 2816 KB  
Article
Green Manufacturing of Rutile (TiO2) Welding Electrodes with Blast Furnace Slag
by Mustafa Kaptanoglu
Inorganics 2025, 13(11), 361; https://doi.org/10.3390/inorganics13110361 - 29 Oct 2025
Cited by 1 | Viewed by 974 | Correction
Abstract
This study develops a sustainable welding approach by incorporating 35–50% blast furnace slag (BFS), a byproduct of the steel industry, into rutile-type electrode coatings. To fabricate the electrodes, BFS was dry-mixed with fluxes, followed by the addition of potassium silicate binder to create [...] Read more.
This study develops a sustainable welding approach by incorporating 35–50% blast furnace slag (BFS), a byproduct of the steel industry, into rutile-type electrode coatings. To fabricate the electrodes, BFS was dry-mixed with fluxes, followed by the addition of potassium silicate binder to create a paste. This mixture was then pressed onto 3.25 mm core wires at 150 bar and heat-treated at 150 °C for two hours. Weld quality and performance were evaluated through visual inspections, microstructure and XRD analyses, hardness, tensile, and impact tests. Visual inspections confirmed weld quality comparable to commercial standards, with stable arc and minimal spatter. Microstructure analysis revealed a ferrite-dominated weld metal with TiO2 and FeTiO3 phases in the slag layer, enhancing strength and toughness. Electrodes with 35–40% BFS achieved yield strength of 477–482 MPa, tensile strength of 570–573 MPa, and impact energy of 58–59 J at 0 °C, complying with ISO 2560:2020. BFS integration reduced CO2 emissions by 0.28–0.4 kg per kg of coating and diverted 200–600 kg of slag per ton of steel from landfills. Coating and raw material costs decreased by 33–48% and 15–25%, respectively, aligning with the EU Green Deal’s circular economy goals and enhancing weld quality and sustainability. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

22 pages, 24589 KB  
Article
Genesis of Conventional Reservoirs in Braided Fluvial Tight Sandstones: Evidence from the He 1 Member, Upper Paleozoic, Southern Ordos Basin, China
by Xiaoqi Ding, Yi Wang, Jingyun Gao, Feilan Lin, Xiang Zhang, Shujie Han and Ying Zhu
Minerals 2025, 15(11), 1104; https://doi.org/10.3390/min15111104 - 23 Oct 2025
Viewed by 335
Abstract
The He 1 Member of the Xiashihezi Formation (Upper Paleozoic) in the Ordos Basin represents typical tight sandstones (Φ < 10%, k < 0.5 mD). However, against the extensive tight sandstone background of the He 1 Member in the southern basin, conventional reservoirs [...] Read more.
The He 1 Member of the Xiashihezi Formation (Upper Paleozoic) in the Ordos Basin represents typical tight sandstones (Φ < 10%, k < 0.5 mD). However, against the extensive tight sandstone background of the He 1 Member in the southern basin, conventional reservoirs (Φ > 12%, K > 1 mD) occur locally. Elucidating the genetic mechanism of these conventional reservoirs is critical for evaluating gas reservoirs in this region. Based on core descriptions and systematic sampling from cored wells, reservoir types are classified according to pore types and porosity in sandstones. Depositional microfacies, petrology, and diagenesis of each reservoir type are then investigated to ultimately elucidate the genetic mechanism of conventional reservoirs. Results demonstrate that intense compaction and quartz overgrowths are the primary controls on the development of the He 1 Member tight sandstones. Alteration of volcanic lithic fragments and volcanic ash matrix generated abundant intragranular dissolution pores and micropores within the matrix, while simultaneously producing substantial illite–smectite mixed-layer clays and chlorite clays. Additionally, this process supplied silica for quartz overgrowths. Moderate amounts of chlorite coatings can inhibit quartz overgrowths, thereby preserving residual intergranular porosity. Conventional reservoirs exhibit low lithic fragment content (<20 vol.%) and are characterized by a porosity assemblage of both intergranular (avg. 2.3%) and intragranular dissolution pores (avg. 6.5%). Their formation requires weak compaction, intense dissolution, and weak quartz overgrowths. These reservoirs develop within high-energy transverse bars that are sealed by overlying and underlying mudstones. Such transverse bars constitute closed intrastratal-diagenetic systems with restricted mass transfer during burial. This study provides a compelling example of diagenetic heterogeneity induced by variations in sandstone architecture within fluvial successions. Full article
(This article belongs to the Special Issue Natural and Induced Diagenesis in Clastic Rock)
Show Figures

Figure 1

11 pages, 1589 KB  
Article
Two-Step Statistical and Physical–Mechanical Optimization of Electric Arc Spraying Parameters for Enhanced Coating Adhesion
by Nurtoleu Magazov, Bauyrzhan Rakhadilov and Moldir Bayandinova
Processes 2025, 13(10), 3349; https://doi.org/10.3390/pr13103349 - 19 Oct 2025
Viewed by 495
Abstract
This paper presents the development and experimental verification of a second-order polynomial regression model for predicting the adhesion strength of coatings produced by electric arc metallization (EAM). The aim of the study is to optimize three key process parameters: current strength (I), carrier [...] Read more.
This paper presents the development and experimental verification of a second-order polynomial regression model for predicting the adhesion strength of coatings produced by electric arc metallization (EAM). The aim of the study is to optimize three key process parameters: current strength (I), carrier gas pressure (P) and nozzle-to-substrate distance (L) in order to maximize the adhesion strength of the coating to the substrate. Experimental data were obtained from the central composite plan within the response surface method (RSM) and processed using analysis of variance (ANOVA). A pronounced synergistic interaction between pressure and distance was found (P × L), whereas current strength had no statistically significant effect in the range investigated. Optimal parameters (I = 200 A, P = 6.5 bar, L = 190 mm) provided an adhesion strength of ~15.4 kN, which was within 8.5% of the model’s prediction, confirming its accuracy. The proposed two-stage approach—combining statistical modeling with experimental fine-tuning in the global extremum zone—made it possible to improve the accuracy of the forecast and link statistical dependencies with the physical and mechanical mechanisms of adhesion formation (kinetic energy of particles, residual thermoelastic stresses). This method provides engineering-based recommendations for industrial application of EAM, reduces the cost of parameter selection, and improves the reproducibility of coating properties. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

20 pages, 5472 KB  
Article
The Influence of Storage Conditions and Gelatin Concentration on Changes in Selected Physical Properties of Freeze-Dried Coated Carrot Bars
by Agnieszka Ciurzyńska, Monika Janowicz, Magdalena Karwacka, Jakub Zwierzchowski and Sabina Galus
Gels 2025, 11(10), 788; https://doi.org/10.3390/gels11100788 - 1 Oct 2025
Viewed by 1027
Abstract
The aim of the study was to determine the effect of storage conditions and gelatin concentration on changes in selected physical properties of freeze-dried coated carrot bars. Freeze-dried carrot snacks were prepared and coated with an addition of 8% and 12% porcine gelatin. [...] Read more.
The aim of the study was to determine the effect of storage conditions and gelatin concentration on changes in selected physical properties of freeze-dried coated carrot bars. Freeze-dried carrot snacks were prepared and coated with an addition of 8% and 12% porcine gelatin. They were stored at different temperatures (4 °C, 25 °C, and 40 °C) for 3 and 6 months. After this time, selected physical properties of coated freeze-dried products were tested. The study’s results indicated that time and temperature significantly impacted water activity, dry matter content, hygroscopicity, mechanical properties, and color. Based on most of the tested features, the coated freeze-dried product should be stored for 3 months at 25 °C. The water activity was low (0.261), with high dry matter content (96%), a porosity value at 81%, and high hardness, while the total color difference was at 18.2. However, there were no notable changes in the porosity and internal structure of the samples based on storage temperature and duration. The most substantial effect of gelatin concentration on the tested features was observed in the control samples (coated and not stored). Developing sustainable packaging for freeze-dried carrot bars is a future challenge. Edible packaging allows for the use of food industry byproducts and is ecological. Full article
(This article belongs to the Special Issue Characterization Techniques for Hydrogels and Their Applications)
Show Figures

Figure 1

29 pages, 8115 KB  
Article
Experimental Investigation of Bond Performance Between GFRP Bars and Concrete Considering Confinement Effect
by Zhiyong Li, Zhifeng Wu, Jinhai Fu and Duanfeng Zhao
Buildings 2025, 15(18), 3385; https://doi.org/10.3390/buildings15183385 - 18 Sep 2025
Viewed by 854
Abstract
To investigate the influence of transverse confinement on the bond performance between glass-fiber reinforced polymer (GFRP) bars and concrete, an experimental study involving 28 beam-type bond specimens was designed and conducted. The effects of key parameters, including the spacing of transverse stirrup confinement [...] Read more.
To investigate the influence of transverse confinement on the bond performance between glass-fiber reinforced polymer (GFRP) bars and concrete, an experimental study involving 28 beam-type bond specimens was designed and conducted. The effects of key parameters, including the spacing of transverse stirrup confinement (60, 80, and 120 mm), concrete strength (C30 and C50), concrete cover thickness (1.5d and 2.5d), surface characteristics of GFRP bars (ribbed and sand coated), bar diameter (16 and 20 mm), and bond length (5d and 10d), on the bond-slip behavior and failure modes were systematically examined. The results indicate that transverse stirrup confinement effectively restrains the development of splitting cracks, thereby significantly enhancing bond strength and improving the ductility of the bond interface. Both the bond strength and residual bond strength increase as stirrup spacing decreases. Under confined conditions, the bond strength of ribbed GFRP bars is 17.26% to 41.72% higher than that of sand-coated bars. Additionally, bond strength increases with higher concrete strength and greater concrete cover thickness but decreases with longer bond lengths. This study provides an experimental basis and theoretical reference for the design of GFRP-reinforced concrete structures that consider the transverse confinement effect. Full article
Show Figures

Figure 1

15 pages, 2336 KB  
Article
Tribo-Catalytic Degradation of Methyl Orange Dye via Cu/Al2O3 Nanoparticles
by Claudia Cirillo, Mariagrazia Iuliano, Sana Abrar, Elena Navarrete Astorga and Maria Sarno
Lubricants 2025, 13(9), 418; https://doi.org/10.3390/lubricants13090418 - 17 Sep 2025
Viewed by 858
Abstract
In this study, we report, for the first time, the tribo-catalytic degradation of methyl orange (MO) using Cu/Al2O3 nanoparticles under mechanical stirring conditions. The hybrid catalyst was synthesized via a wet impregnation method and characterized through different techniques, confirming structural [...] Read more.
In this study, we report, for the first time, the tribo-catalytic degradation of methyl orange (MO) using Cu/Al2O3 nanoparticles under mechanical stirring conditions. The hybrid catalyst was synthesized via a wet impregnation method and characterized through different techniques, confirming structural integrity and compositional uniformity. When subjected to friction generated by a PTFE-coated magnetic stir bar, Cu/Al2O3 nanoparticles exhibited high tribo-catalytic activity, achieving up to 95% MO degradation within 10 h under dark conditions. The observed activity surpasses that of alumina alone and is attributed to the synergistic effects between copper and alumina, facilitating charge separation and enhancing reactive oxygen species (ROS) formation. Tribo-catalytic efficiency was further influenced by stirring speed and contact area, confirming the key role of mechanical friction. Reusability tests demonstrated stable performance over five cycles, highlighting the material’s durability and potential for practical environmental remediation applications. Full article
(This article belongs to the Special Issue Tribo-Catalysis)
Show Figures

Figure 1

18 pages, 3240 KB  
Article
Zn2+-Mediated Co-Deposition of Dopamine/Tannic Acid/ZIF-8 on PVDF Hollow Fiber Membranes for Enhanced Antifouling Performance and Protein Separation
by Lei Ni, Qiancheng Cui, Zhe Wang, Xueting Zhang, Jun Ma, Wenjuan Zhang and Caihong Liu
Membranes 2025, 15(9), 277; https://doi.org/10.3390/membranes15090277 - 15 Sep 2025
Cited by 1 | Viewed by 1700
Abstract
The inherent hydrophobicity of poly(vinylidene fluoride) (PVDF) ultrafiltration membranes leads to severe membrane fouling when processing proteinaceous solutions and organic contaminants, significantly limiting their practical applications. This study presents a novel metal-ion mediated co-deposition strategy for fabricating high-performance antifouling poly(vinylidene fluoride) (PVDF) hollow [...] Read more.
The inherent hydrophobicity of poly(vinylidene fluoride) (PVDF) ultrafiltration membranes leads to severe membrane fouling when processing proteinaceous solutions and organic contaminants, significantly limiting their practical applications. This study presents a novel metal-ion mediated co-deposition strategy for fabricating high-performance antifouling poly(vinylidene fluoride) (PVDF) hollow fiber ultrafiltration membranes. Through Zn2+ coordination-driven self-assembly, a uniform and stable composite coating of dopamine (DA), tannic acid (TA), and ZIF-8 nanoparticles was successfully constructed on the membrane surface under mild conditions. The modified membrane exhibited significantly enhanced hydrophilicity, with a water contact angle of 21° and zeta potential of −29.68 mV, facilitating the formation of a dense hydration layer that effectively prevented protein adhesion. The membrane demonstrated exceptional separation performance, achieving a pure water permeability of 771 L/(m2∙h∙bar) and bovine serum albumin (BSA) rejection of 97.7%. Furthermore, it showed outstanding antifouling capability with flux recovery rates exceeding 83.6%, 74.7%, and 71.5% after fouling by BSA, lysozyme, and ovalbumin, respectively. xDLVO analysis revealed substantially increased interfacial free energy and stronger repulsive interactions between the modified surface and protein foulants. The antifouling mechanism was attributed to the synergistic effects of hydration layer formation, optimized pore structure, additional water transport pathways from ZIF-8 incorporation, and electrostatic repulsion from negatively charged surface groups. This work provides valuable insights into the rational design of high-performance antifouling membranes for sustainable water treatment and protein separation applications. Full article
Show Figures

Figure 1

12 pages, 5351 KB  
Article
Research on the Application of Graphene Oxide-Reinforced SiO2 Corrosion-Resistant Coatings in the Long-Term Protection of Water Treatment Facilities
by Youhua Zhang, Zewen Zhu, Huijie Zou, Li Dai, Huiting Liu, Yao Rong, Xizheng Chang, Chundi Zheng and Wei Han
Processes 2025, 13(9), 2938; https://doi.org/10.3390/pr13092938 - 15 Sep 2025
Cited by 3 | Viewed by 673
Abstract
The reaction tank of process wastewater, as one of the key pieces of equipment for wastewater treatment, is exposed to an acidic and alkaline wastewater immersion environment for a long time and is prone to the influence of complex ions in water, resulting [...] Read more.
The reaction tank of process wastewater, as one of the key pieces of equipment for wastewater treatment, is exposed to an acidic and alkaline wastewater immersion environment for a long time and is prone to the influence of complex ions in water, resulting in concrete shedding and steel bar corrosion, which seriously affect service performance. To address the issue of ionic erosion in process wastewater reaction tanks, a silicon–oxygen grid substrate was constructed with ethyl orthosilicate, and graphene oxide was used as the corrosion-resistant functional component to prepare GO/SiO2 corrosion-resistant films under acid-catalyzed conditions. Extreme corrosion environments were designed to evaluate the corrosion resistance of GO/SiO2 films. The results showed that the permeability of the uncoated samples decreased significantly, and the ion concentration leached in the corrosive medium was higher. The permeability of the GO/SiO2-coated samples did not decrease significantly, and the ion leaching concentration in the corrosive medium gradually decreased with the increase in GO content, verifying the positive correlation between GO content and corrosion resistance and GO’s use in the field of corrosion resistance in water treatment facilities. Full article
(This article belongs to the Special Issue Advanced Water Monitoring and Treatment Technologies)
Show Figures

Figure 1

Back to TopTop