Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = bamboo deterioration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1486 KiB  
Review
Review on Aging Behavior and Durability Enhancement of Bamboo Fiber-Reinforced Polymer Composites
by Sameeksha Shettigar, Mandya Channegowda Gowrishankar and Manjunath Shettar
Molecules 2025, 30(15), 3062; https://doi.org/10.3390/molecules30153062 - 22 Jul 2025
Viewed by 245
Abstract
This review article focuses on the long-term durability challenges associated with bamboo fiber-reinforced polymer composites when subjected to various environmental aging conditions such as water immersion, hygrothermal fluctuations, ultraviolet (UV) radiation, soil burial, and refrigerated storage. The primary issue addressed is the degradation [...] Read more.
This review article focuses on the long-term durability challenges associated with bamboo fiber-reinforced polymer composites when subjected to various environmental aging conditions such as water immersion, hygrothermal fluctuations, ultraviolet (UV) radiation, soil burial, and refrigerated storage. The primary issue addressed is the degradation of mechanical and structural performance of bamboo fiber-reinforced polymer composites due to moisture absorption, fiber swelling, and fiber–matrix interface deterioration. To mitigate these aging effects, the study evaluates and compares multiple strategies, including chemical and physical fiber surface treatments, filler additions, and fiber hybridization, which aim to enhance moisture resistance and mechanical stability. These composites are relevant in automotive interiors, construction panels, building insulation, and consumer goods due to their eco-friendly nature and potential to replace conventional synthetic composites. This review is necessary to consolidate current knowledge, identify effective enhancement approaches, and guide the development of environmentally resilient bamboo fiber-reinforced polymer composites for real-world applications. Full article
(This article belongs to the Special Issue Advances in Natural Fiber Composites)
Show Figures

Figure 1

16 pages, 3205 KiB  
Article
Effect of Different Postharvest Pre-Cooling Treatments on Quality of Water Bamboo Shoots (Zizania latifolia) during Refrigerated Storage
by Shuwen Tang, Zhongyi Xu, Chenwei Chen and Jing Xie
Plants 2024, 13(20), 2856; https://doi.org/10.3390/plants13202856 - 12 Oct 2024
Cited by 1 | Viewed by 1811
Abstract
Post-harvest pre-cooling of water bamboo shoots (WBS) [Zizania latifolia] can effectively delay its quality deterioration. Six types of pre-cooling treatments were used to pre-cooling post-harvest WBS, including cold slightly acidic electrolytic water pre-cooling (CSAEW), cold water pre-cooling (CWPC), vacuum pre-cooling (VPC), [...] Read more.
Post-harvest pre-cooling of water bamboo shoots (WBS) [Zizania latifolia] can effectively delay its quality deterioration. Six types of pre-cooling treatments were used to pre-cooling post-harvest WBS, including cold slightly acidic electrolytic water pre-cooling (CSAEW), cold water pre-cooling (CWPC), vacuum pre-cooling (VPC), strong wind pre-cooling (SWPC), refrigerator pre-cooling (RPC), and fluid ice pre-cooling (FIPC). The effects of different pre-cooling treatments on the quality of refrigerated WBS were investigated. The results showed that the FIPC treatment was harmful to the storage quality of WBS, while the other five pre-cooling treatments could extend the shelf life of WBS to some extent. These pre-cooling treatments can inhibit the respiration of WBS, slow down its weight loss and lignification process, and maintain its relatively high levels of nutrient content and antioxidant activity. The CSAEW treatment outperformed other treatments in terms of bactericidal action and microbiological content control for WBS during storage. The protective effect of CSAEW treatment on the storage quality of WBS was relatively the best, and extended the shelf life of WBS by 12 days compared to the control group. This study indicated that the CSAEW pre-cooling treatment offers a new choice for pre-cooling root vegetables. Full article
(This article belongs to the Special Issue Postharvest Quality and Physiology of Vegetables and Fruits)
Show Figures

Figure 1

20 pages, 4686 KiB  
Article
Temporal Dynamics of Fungal Communities in Alkali-Treated Round Bamboo Deterioration under Natural Weathering
by Shuaibo Han, Xiaojiao An, Xiaolong He, Xin Ren, John Sichone, Xinxing Wu, Yan Zhang, Hui Wang and Fangli Sun
Microorganisms 2024, 12(5), 858; https://doi.org/10.3390/microorganisms12050858 - 25 Apr 2024
Viewed by 1558
Abstract
Microbes naturally inhabit bamboo-based materials in outdoor environments, sequentially contributing to their deterioration. Fungi play a significant role in deterioration, especially in environments with abundant water and favorable temperatures. Alkali treatment is often employed in the pretreatment of round bamboo to change its [...] Read more.
Microbes naturally inhabit bamboo-based materials in outdoor environments, sequentially contributing to their deterioration. Fungi play a significant role in deterioration, especially in environments with abundant water and favorable temperatures. Alkali treatment is often employed in the pretreatment of round bamboo to change its natural elastic and aesthetic behaviors. However, little research has investigated the structure and dynamics of fungal communities on alkali-treated round bamboo during natural deterioration. In this work, high-throughput sequencing and multiple characterization methods were used to disclose the fungal community succession and characteristic alterations of alkali-treated round bamboo in both roofed and unroofed habitats throughout a 13-week deterioration period. In total, 192 fungal amplicon sequence variants (ASVs) from six phyla were identified. The fungal community richness of roofed bamboo samples declined, whereas that of unroofed bamboo samples increased during deterioration. The phyla Ascomycota and Basidiomycota exhibited dominance during the entire deterioration process in two distinct environments, and the relative abundance of them combined was more than 99%. A distinct shift in fungal communities from Basidiomycota dominant in the early stage to Ascomycota dominant in the late stage was observed, which may be attributed to the increase of moisture and temperature during succession and the effect of alkali treatment. Among all environmental factors, temperature contributed most to the variation in the fungal community. The surface of round bamboo underwent continuous destruction from fungi and environmental factors. The total amount of cell wall components in bamboo epidermis in both roofed and unroofed conditions presented a descending trend. The content of hemicellulose declined sharply by 8.3% and 11.1% under roofed and unroofed environments after 9 weeks of deterioration. In addition, the contact angle was reduced throughout the deterioration process in both roofed and unroofed samples, which might be attributed to wax layer removal and lignin degradation. This study provides theoretical support for the protection of round bamboo under natural weathering. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

14 pages, 4029 KiB  
Article
Mechanical and Antibacterial Properties of Bamboo Charcoal/ZnO-Modified Bamboo Fiber/Polylactic Acid Composites
by Chunlin Liu, Shuai Zhang, Shi Yan, Mingzhu Pan and Hui Huang
Forests 2024, 15(2), 371; https://doi.org/10.3390/f15020371 - 16 Feb 2024
Cited by 3 | Viewed by 2740
Abstract
In this study, biodegradable bamboo fiber/PLA composites (BPCs) modified using bamboo charcoal (BC)/ZnO were prepared. The effects of BC/ZnO addition on the mechanical properties and antibacterial properties of BPCs were investigated. The chemical structure, microscopic morphology, and crystallization of the composites were analyzed [...] Read more.
In this study, biodegradable bamboo fiber/PLA composites (BPCs) modified using bamboo charcoal (BC)/ZnO were prepared. The effects of BC/ZnO addition on the mechanical properties and antibacterial properties of BPCs were investigated. The chemical structure, microscopic morphology, and crystallization of the composites were analyzed using FTIR, SEM, and XRD, respectively. The results showed that in terms of mechanical strength, when the addition of BC was 2%, the tensile impact and flexural strength of the BPCs were most obviously improved, with a tensile strength of 51.6 MPa. However, when the addition of BC was more than 2%, the uneven dispersion of too much BC in the BPCs resulted in a reduction in their mechanical strength. A certain amount of ZnO did not affect the crystallinity of the BPCs. In addition, the uneven distribution of ZnO and its poor compatibility with PLA resulted in a deterioration in the tensile properties of the BPCs. In terms of antibacterial properties, when 2% ZnO was added, the BPCs had better antibacterial properties against Escherichia coli and Staphylococcus aureus, with values of 58.9% and 52.5% against both, respectively. BPC biodegradable materials with both mechanical strength and antimicrobial properties have promising medical uses. Full article
Show Figures

Figure 1

13 pages, 2232 KiB  
Article
Effects of Moso Bamboo (Phyllostachys pubescens) Expansion on the Stock and Nutrient Characteristics of the Litter Layer in Subtropical Coniferous and Broad-Leaved Mixed Forests, China
by Xi Chen and Yang Liu
Forests 2024, 15(2), 342; https://doi.org/10.3390/f15020342 - 9 Feb 2024
Viewed by 1449
Abstract
To reveal the changes on the stock of the litter layer and its nutrient storage capacity during Moso bamboo expansion in subtropical coniferous and broad-leaved forests, permanent plots were set up in the transitional zone in Wuxie National Park, Zhuji, Zhejiang, China. The [...] Read more.
To reveal the changes on the stock of the litter layer and its nutrient storage capacity during Moso bamboo expansion in subtropical coniferous and broad-leaved forests, permanent plots were set up in the transitional zone in Wuxie National Park, Zhuji, Zhejiang, China. The plots contained conifer and broad-leaved forests (CFs), transition forests (TFs), and Moso bamboo forests (MFs), which represented three stages of the expansion of Moso bamboo to the surrounding forests. Litter samples were collected and analyzed by un-decomposed, semi-decomposed, and decomposed layers. The stock of the litter layer, the content and storage of the main nutrient elements, and their release rate were measured. It was revealed that the stock of the litter layer and each decomposition layer decreased as the bamboo expands. However, the litter decomposition rate exhibited a positive correlation with the expansion of Moso bamboo, which might be due to the change in the physical properties of the litter. Meanwhile, there were no significant differences in the un-decomposed and semi-decomposed layers of the litter contents of C, N, and P between the three forests, but the contents of C, N, and P in the decomposed layer gradually decreased with the expansion of Moso bamboo. There were no remarkable differences in the N content, C/N, C/P, and lignin/N values of the un-decomposed layer of the three forests, indicating that the litter quality was not the principal reason affecting the decomposition rate. The total nutrient storage in the litter layer decreased significantly with the bamboo expansion, and the release rate of nutrient elements increased, which was adverse to the accumulation and storage of the nutrients. The material cycle of the original forest ecosystem is likely to deteriorate gradually with the bamboo expansion. Full article
(This article belongs to the Special Issue Ecological Research in Bamboo Forests)
Show Figures

Figure 1

22 pages, 1387 KiB  
Article
Evaluation of the Shelf life of Ready-to-Eat Fresh Bamboo Sprouts (Phyllostachys edulis) Packaged in a Modified Atmosphere or Vacuum: A Comparative Study
by Vincenzo Sicari, Rosa Tundis, Rosa Romeo, Antonella Reitano, Emilia Lucia Belsito, Antonella Leggio and Monica Rosa Loizzo
Antioxidants 2024, 13(2), 185; https://doi.org/10.3390/antiox13020185 - 1 Feb 2024
Cited by 4 | Viewed by 2735
Abstract
During the last decades, the consumption of bamboo sprouts (Phyllostacys edulis) has increased because they are considered a “superfood”. However, this product is characterized by a short shelf life due to the deterioration in quality parameters. The aim of this study [...] Read more.
During the last decades, the consumption of bamboo sprouts (Phyllostacys edulis) has increased because they are considered a “superfood”. However, this product is characterized by a short shelf life due to the deterioration in quality parameters. The aim of this study was to investigate the application of two modified atmosphere packaging (MAP) systems (MAP1: 2% O2, 5% CO2, 93% N2 and MAP2: 3% O2, 7% CO2, 90% N2) to fresh-shelled ready-to-eat bamboo sprouts and compare these packaging systems with vacuum packaging during storage for 28 days at 4 °C using heat-sealable polyamide and polyethylene (PA/PE) trays. Several chemical-physical parameters (moisture content, water activity, pH, headspace composition, and firmness) were monitored, as well as CIELab colorimetric parameters and microbial growth. The quantification of selected organic acids was performed via UHPLC. Mathematical kinetic models were applied to study the evolution of total phenol (TPC), flavonoid (TFC), and carotenoid content (TCC) during storage. The evolution of antioxidant potential investigated by ABTS, DPPH, and β-carotene bleaching tests was also assessed. Results showed that at the end of the storage period, significant variations in the colorimetric parameters are detectable between the sprouts apical portion and the basal one, regardless of both applied MAPs. A linear reduction in both DPPH and ABTS radical scavenging activity was evidenced during storage, regardless of the type of packaging applied. In DPPH test samples packaged in MAP after 28 days of storage, they retain good antioxidant activity, whereas in vacuum, this activity is reduced by 50% compared to the initial value (IC50 values from 24.77 to 32.74 μg/mL and from 24.77 to 71.12 μg/mL for MAP2 and vacuum, respectively). Full article
(This article belongs to the Special Issue Impact of Processing on Antioxidant Rich Foods - 2nd Edition)
Show Figures

Figure 1

16 pages, 4727 KiB  
Article
Improvement of Moso Bamboo (Phyllostachys pubescens) Properties Using a Heat Treatment Process for Landscaping Materials and Evaluation of Its Durability against Biotic/Abiotic Factors
by Yesun Kim, Byeongho Kim, Hanna Park, Yong-Hui Choi, Kyoung-Jung Kim and Se-Yeong Park
Forests 2024, 15(1), 101; https://doi.org/10.3390/f15010101 - 4 Jan 2024
Cited by 4 | Viewed by 2299
Abstract
This study aimed to assess the effectiveness of large-scale heat treatment on Moso bamboo (Phyllostachys pubescens) grown in South Korea. The process involved multiple stages, including pretreatment, boiling, steaming, heating, and cooling. Heat treatment successfully reduced the water content to below [...] Read more.
This study aimed to assess the effectiveness of large-scale heat treatment on Moso bamboo (Phyllostachys pubescens) grown in South Korea. The process involved multiple stages, including pretreatment, boiling, steaming, heating, and cooling. Heat treatment successfully reduced the water content to below 3% and increased the specific gravity from 0.62 to 1.12, thereby enhancing dimensional stability and strength. Following an ultraviolet-accelerated weathering test, the heated Moso bamboo exhibited improved color stability (ΔE 5.84) compared to untreated bamboo (ΔE 9.92). Furthermore, the heat-treated bamboo demonstrated high resistance against wood-rot fungi (weight loss < 10%) and termites (weight loss approximately 2%). In contrast to small lab-scale drying processes, this study employed a pilot-scale kiln for mass production, resulting in large-sized Moso bamboo with enhanced properties. This study revealed that distinct results, including extractives and lignin-degraded compounds, persisted in heated Moso bamboo cells after the heat treatment. The overall improvement in deterioration resistance, achieved through heat treatment, significantly contributes to the durability and longevity of bamboo materials in outdoor settings, such as landscape facilities. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

13 pages, 4113 KiB  
Article
Synergistic Effect of Combined Treatment with Allicin and Antioxidant of Bamboo Leaves and Preservation of Bullfrogs (Lithobates catesbeiana) during Refrigeration Storage
by Weiqing Lan, Bingjie Zhang, Jintao Du, Shengyun Zhu, Xiao Xu and Jing Xie
Foods 2023, 12(18), 3467; https://doi.org/10.3390/foods12183467 - 18 Sep 2023
Cited by 1 | Viewed by 1524
Abstract
The effects of allicin and antioxidant of bamboo leaves (AOB) on the quality of bullfrogs (Lithobates catesbeiana) during refrigerated storage (4 °C) were investigated. The quality changes in samples treated with deionized water (CK), allicin solution (All), antioxidant of bamboo leaves [...] Read more.
The effects of allicin and antioxidant of bamboo leaves (AOB) on the quality of bullfrogs (Lithobates catesbeiana) during refrigerated storage (4 °C) were investigated. The quality changes in samples treated with deionized water (CK), allicin solution (All), antioxidant of bamboo leaves (AOB), and allicin solution combined with AOB solution (AA) in microbiological, physicochemical, and sensory evaluation were analyzed, respectively. The results demonstrated that combination treatment inhibited the increase in total viable counts, delayed the decrease in amino acid content, and retarded the sensory deterioration. Preservative treatment has an inhibitory effect on the early storage of PBC, which can reduce PBC by about 1.0 log CFU/g. The reduction in thiobarbituric acid (TBA) content and total volatile basic nitrogen (TVB-N) content indicated that combination treatment could better restrain the lipid oxidation and degradation of protein than the CK group and single-treatment group. In addition, the TVB-N content in the AA group still did not exceed the threshold on the 14th day. As a consequence, combination treatment prolonged the shelf life of bullfrogs for another six days. Therefore, allicin and AOB with excellent antioxidant and antimicrobial activity could be an effective approach to delay the biochemical reaction of refrigerated bullfrogs. This study has provided a potential approach for increasing the shelf life of bullfrogs and preserving their quality during refrigerated storage. Full article
Show Figures

Figure 1

23 pages, 5081 KiB  
Article
Succession of Fungal Community during Outdoor Deterioration of Round Bamboo
by Xiaojiao An, Shuaibo Han, Xin Ren, John Sichone, Zhiwei Fan, Xinxing Wu, Yan Zhang, Hui Wang, Wei Cai and Fangli Sun
J. Fungi 2023, 9(6), 691; https://doi.org/10.3390/jof9060691 - 20 Jun 2023
Cited by 3 | Viewed by 2133
Abstract
Bamboo’s mechanical and aesthetic properties are significantly influenced by fungi. However, few studies have been conducted to investigate the structure and dynamics of fungal communities in bamboo during its natural deterioration. In this study, fungal community succession and characteristic variations of round bamboo [...] Read more.
Bamboo’s mechanical and aesthetic properties are significantly influenced by fungi. However, few studies have been conducted to investigate the structure and dynamics of fungal communities in bamboo during its natural deterioration. In this study, fungal community succession and characteristic variations of round bamboo in roofed and unroofed environments over a period of 13 weeks of deterioration were deciphered using high-throughput sequencing and multiple characterization methods. A total of 459 fungal Operational Taxonomic Units (OTUs) from eight phyla were identified. The fungal community’s richness of roofed bamboo samples showed an increasing trend, whereas that of unroofed bamboo samples presented a declining trend during deterioration. Ascomycota and Basidiomycota were the dominant phyla throughout the deterioration process in two different environments: Basidiomycota was found to be an early colonizer of unroofed bamboo samples. Principal Coordinates Analysis (PCoA) analysis suggested that the deterioration time had a greater impact on fungal community variation compared to the exposure conditions. Redundancy analysis (RDA) further revealed that temperature was a major environmental factor that contributed to the variation in fungal communities. Additionally, the bamboo epidermis presented a descending total amount of cell wall components in both roofed and unroofed conditions. The correlation analysis between the fungal community and relative abundance of three major cell wall components elucidated that Cladosporium was negatively correlated with hemicellulose in roofed samples, whereas they presented a positive correlation with hemicellulose and a negative correlation with lignin in unroofed samples. Furthermore, the contact angle decreased during the deterioration process in the roofed as well as unroofed samples, which could arise from the degradation of lignin. Our findings provide novel insights into the fungal community succession on round bamboo during its natural deterioration and give useful information for round bamboo protection. Full article
Show Figures

Figure 1

17 pages, 3422 KiB  
Article
Research on Bamboo Furniture Design Based on D4S (Design for Sustainability)
by Wenxin Deng, Hong Lin and Mu Jiang
Sustainability 2023, 15(11), 8832; https://doi.org/10.3390/su15118832 - 30 May 2023
Cited by 14 | Viewed by 7220
Abstract
D4S (design for sustainability) is derived from the concept of “sustainable development”. The situation of energy and material resources directly dependent on human beings is deteriorating in the face of the major global problems threatening human development, such as population increase, desertification of [...] Read more.
D4S (design for sustainability) is derived from the concept of “sustainable development”. The situation of energy and material resources directly dependent on human beings is deteriorating in the face of the major global problems threatening human development, such as population increase, desertification of the land, climate warming, forest reduction, extinction of species, and energy scarcity. Design plays a very important role in social development. On the one hand, design changes people’s lives. On the other hand, ecological damage, waste of resources, and environmental pollution also arise as a result of design activities. In this context, the concept of sustainable design comes into being. Based on D4S theory, this paper discusses the characteristics of bamboo and its application as a sustainable environmental material in furniture design. The status quo and problems of sustainable furniture design are analyzed using the sustainable design method, and the characteristics and processing technology of bamboo are preliminarily discussed, which provide a useful reference for sustainable design research related to bamboo furniture products. Secondly, the sustainable design strategy of bamboo furniture is put forward, sustainable design methods and principles of bamboo furniture are summarized, and sustainable design is explored through the practice of bamboo furniture design. Finally, an inventory of bamboo furniture design stage is compiled, which is scored according to design, plan implementation, and waste disposal to judge whether bamboo furniture meets the goal of sustainable development. Full article
Show Figures

Figure 1

15 pages, 7297 KiB  
Article
The Influence of Impregnation Methods and Curing Conditions on the Physical and Multiscale Mechanical Properties of Furfurylated Bamboo
by Wanju Li, Qingsong Bai, Guijun Xie, Yongjian Cao and Jie Gao
Forests 2023, 14(5), 970; https://doi.org/10.3390/f14050970 - 8 May 2023
Cited by 1 | Viewed by 2108
Abstract
Furfurylation is an effective and green method for wood or bamboo modification that can significantly improve its physical and mechanical properties and the resistance against biological deterioration and the attack of subterranean termites. To elucidate the effect of furfurylation on the physical and [...] Read more.
Furfurylation is an effective and green method for wood or bamboo modification that can significantly improve its physical and mechanical properties and the resistance against biological deterioration and the attack of subterranean termites. To elucidate the effect of furfurylation on the physical and multiscale mechanical properties of bamboo, the conditions of the furfurylation process were modified to cause an independent variation of the physical and multiscale mechanical properties in differently-treated bamboo samples. This was achieved by impregnating bamboo samples with solutions containing 15%, 30%, 50%, or 70% furfuryl alcohol (FA) by either of the two impregnation processes, vacuum pressure (V-P) and soaking (S) impregnation, while applying different curing conditions (wet- or dry-curing). The physical properties we measured included the absorption rate, weight percent gain (WPG), swelling efficiency (SE), and anti-swelling efficiency (ASE); the macro-mechanical properties involved the modulus of rupture (MOR), the modulus of elasticity (MOE), parallel-to-grain compressive strength (CS), and tensile strength (TS); the micro-mechanical properties included the tensile strength of bamboo’s vascular bundle and hardness and the indentation modulus of bamboo’s fiber cell walls. Finally, the correlation between the different physical and mechanical properties of the modified bamboo samples was analyzed. The results indicate that V-P impregnation made bamboo more permissible for the penetration of FA, while wet-curing was more conducive to ensuring a high curing rate. The dimensional stability of the bamboo samples treated with a high FA concentration through V-P impregnation and of those furfurylated by the S-Wet process using either medium or high FA concentrations was significantly increased. However, the dimensional stability of the bamboo samples modified with either low or medium FA concentrations decreased in both dry and wet curing. In terms of mechanical strength, furfurylation had little effect on the macro- and micro-mechanical properties of bamboo and was slightly improved in comparison to untreated samples. The results also showed a positive correlation between the macro- and micro-mechanical strength of the modified bamboo samples and a significant negative correlation between the mechanical strength and ASE. In soaking impregnation, the WPG and ASE were positively correlated, while the WPG and CS were negatively correlated. Interestingly, the correlation between the mechanical properties and ASE was not significant. Finally, both V-P-Wet and S-Wet approaches can be recommended for bamboo furfurylation, the former being time-saving and having a high curing rate in FA resin while significantly improving the moisture absorption and mechanical strength of bamboo. The advantage of the latter process is simplicity, a high utilization rate of FA, and a significant improvement in the dimensional stability of bamboo. Full article
(This article belongs to the Special Issue Advances in Preparation and Modification of Wood-Based Materials)
Show Figures

Figure 1

26 pages, 11528 KiB  
Article
Multi-Scenario Land Use Simulation and Land Use Conflict Assessment Based on the CLUMondo Model: A Case Study of Liyang, China
by Xiangnan Fan, Yuning Cheng and Yicheng Li
Land 2023, 12(4), 917; https://doi.org/10.3390/land12040917 - 19 Apr 2023
Cited by 6 | Viewed by 2849
Abstract
By predicting and analyzing regional land use conflicts (LUCs), the contradictory relationship between urban development and land resources can be revealed, which can assist in achieving the rational use of land resources. Taking Liyang as a case study, this paper simulated land use [...] Read more.
By predicting and analyzing regional land use conflicts (LUCs), the contradictory relationship between urban development and land resources can be revealed, which can assist in achieving the rational use of land resources. Taking Liyang as a case study, this paper simulated land use in 2030 under three scenarios, namely, the natural growth scenario (NGS), economic development scenario (EDS), and ecological protection scenario (EPS), using the CLUMondo model. The ecological risk assessment model was used to measure the LUCs under each scenario. Through the comprehensive analysis of land use conversion, spatial distribution, and the change characteristics of LUCs, optimization strategies for future land use are proposed. The results indicate that (1) the intensity of land conversion under the three scenarios is ranked as EDS > NGS > EPS; (2) there is little change in the LUCs under the EPS, while significant deterioration is observed under the NGS and EDS; (3) the intensity of LUCs is positively correlated with the degree of land use conversion; and (4) in the future, particular attention should be paid to areas around the city center, the Caoshan Development Zone in the northwest, and Nanshan Bamboo Sea in the south, where high-intensity land use conflicts may occur. Full article
(This article belongs to the Special Issue Spatial Planning and Land-Use Management)
Show Figures

Figure 1

22 pages, 616 KiB  
Article
Effect of Bamboo Essential Oil on the Oxidative Stability, Microbial Attributes and Sensory Quality of Chicken Meatballs
by Jyotishka Kumar Das, Niloy Chatterjee, Srija Pal, Pramod Kumar Nanda, Annada Das, Ligen Das, Pubali Dhar and Arun K. Das
Foods 2023, 12(1), 218; https://doi.org/10.3390/foods12010218 - 3 Jan 2023
Cited by 22 | Viewed by 4614
Abstract
This study explores the efficacy of bamboo essential oil (BEO) incorporated at 15 ppm (T1, BEO-I) and 30 ppm (T2, BEO-II) on the overall physicochemical and oxidative stability, microbial deterioration, and sensory acceptability of meatballs stored for 20 days under refrigerated conditions. Analysis [...] Read more.
This study explores the efficacy of bamboo essential oil (BEO) incorporated at 15 ppm (T1, BEO-I) and 30 ppm (T2, BEO-II) on the overall physicochemical and oxidative stability, microbial deterioration, and sensory acceptability of meatballs stored for 20 days under refrigerated conditions. Analysis of various parameters, including physicochemical quality, color (CIE L*, CIE a* and CIE b*), generation of oxidative products (TBARS), microbial growth, and sensory acceptability of meatballs were evaluated at 5-day intervals. In addition, the total phenolics and flavonoid content of BEO were estimated, and fatty acids were determined by Gas chromatography (GC.) To gain insights into the biological activities of the BEO, antioxidant assays were determined in vitro using various methods. The antibacterial activity of BEO was also evaluated against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Vibrio cholera, Salmonella Typhimurium, Shigella flexneri, Proteus vulgaris, Escherichia coli and Klebsiella pneumoniae) bacterial strains. The BEO contained a good quantity of total phenolics and flavonoids. In addition, the oil exhibited very potent antioxidant activity scavenging reactive oxygen and other such species, effectively showing IC50 at a very minimal concentration. Further, the BEO exhibited a strong antibacterial effect with MICs within 2 µL and MBCs from 5 to 7 µL for Gram-positive as well as Gram-negative bacteria, respectively. At both the concentrations used, BEO did not show any negative effect on the color of cooked meatballs but rather increased the microbiological and oxidative stability during the overall storage period. Meatballs treated with BEO had considerably reduced oxidative changes in terms of TBARS levels compared to the control. The total viable microbial count was lowest in BEO-treated meatballs and the highest in control. Both control and treated meatballs had a desirable flavor and good acceptability. The sensory attributes and aroma of treated meatballs were better and acceptable during the storage study, whereas the control samples were disliked by the panelists on 15th day. From this study, it can be concluded that bamboo essential oil could be used as a benign and non-toxic preservative to improve the quality and shelf life of cooked meatballs stored under refrigerated conditions. Full article
(This article belongs to the Special Issue Latest Research on Meat Microbiology, Meat Quality and Meat Safety)
Show Figures

Graphical abstract

25 pages, 1495 KiB  
Article
Energy-Efficient Clustering Mechanism of Routing Protocol for Heterogeneous Wireless Sensor Network Based on Bamboo Forest Growth Optimizer
by Qing Feng, Shu-Chuan Chu, Jeng-Shyang Pan, Jie Wu and Tien-Szu Pan
Entropy 2022, 24(7), 980; https://doi.org/10.3390/e24070980 - 15 Jul 2022
Cited by 27 | Viewed by 2458
Abstract
In wireless sensor networks (WSN), most sensor nodes are powered by batteries with limited power, meaning the quality of the network may deteriorate at any time. Therefore, to reduce the energy consumption of sensor nodes and extend the lifetime of the network, this [...] Read more.
In wireless sensor networks (WSN), most sensor nodes are powered by batteries with limited power, meaning the quality of the network may deteriorate at any time. Therefore, to reduce the energy consumption of sensor nodes and extend the lifetime of the network, this study proposes a novel energy-efficient clustering mechanism of a routing protocol. First, a novel metaheuristic algorithm is proposed, based on differential equations of bamboo growth and the Gaussian mixture model, called the bamboo growth optimizer (BFGO). Second, based on the BFGO algorithm, a clustering mechanism of a routing protocol (BFGO-C) is proposed, in which the encoding method and fitness function are redesigned. It can maximize the energy efficiency and minimize the transmission distance. In addition, heterogeneous nodes are added to the WSN to distinguish tasks among nodes and extend the lifetime of the network. Finally, this paper compares the proposed BFGO-C with three classic clustering protocols. The results show that the protocol based on the BFGO-C can be successfully applied to the clustering routing protocol and can effectively reduce energy consumption and enhance network performance. Full article
(This article belongs to the Special Issue Wireless Sensor Networks and Their Applications)
Show Figures

Figure 1

17 pages, 6215 KiB  
Article
Application of Advanced Analytical Techniques in Organic Cultural Heritage: A Case Study of Ancient Architecture Relics in the Palace Museum (Beijing)
by Le Wei, Yue Ma, Zhimou Guo, Junjie Ding, Gaowa Jin, An Gu and Yong Lei
Coatings 2022, 12(5), 636; https://doi.org/10.3390/coatings12050636 - 5 May 2022
Cited by 9 | Viewed by 3214
Abstract
Multilayer objects with different interfaces are quite typical for architectural heritage, and from them may be inferred the age, production process, and deterioration mechanism through analyzing characteristic compositions with advanced analytical techniques. The Meiwu ceiling in the Hall of Mental Cultivation of the [...] Read more.
Multilayer objects with different interfaces are quite typical for architectural heritage, and from them may be inferred the age, production process, and deterioration mechanism through analyzing characteristic compositions with advanced analytical techniques. The Meiwu ceiling in the Hall of Mental Cultivation of the Palace Museum was found to contain many paper-based layers during conservation. Once several surface strata were detached, a colorful layer of printed fabric textile was discovered integrally. Through microscopic observation and micro-attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) imaging, the overall structure consisted of 11 layers, namely, bast paper, cotton wiring, xuan paper, cotton printed fabric, two yellow board papers, bamboo paper, three wood pulp paper and surface coatings, and starch was considered as an organic adhesive. For identification of the printed fabric’s color palette, ultra-performance liquid chromatography (UPLC) combined with high-resolution quadrupole time-of-flight (QTOF) technology, non-invasive macro X-ray fluorescence (MA-XRF) and desorption electrospray ionization mass spectrometry imaging (DESI-MSI) were applied in situ. Seven industrial synthetic dyes, including auramine O, malachite green, and eosin Y with corresponding by-products, as well as chromium-based pigments considered as dark draft line, were confirmed. By X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), and micro Fourier transform infrared spectroscopy (micro FTIR, other results showed chalk soil and talc for the outermost coating. According to the synthetic time of industrial dyes and degradation degree of paper, there were at least four occurrences and their specific time periods were speculated. Full article
Show Figures

Figure 1

Back to TopTop