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Abstract: By predicting and analyzing regional land use conflicts (LUCs), the contradictory relation-
ship between urban development and land resources can be revealed, which can assist in achieving
the rational use of land resources. Taking Liyang as a case study, this paper simulated land use
in 2030 under three scenarios, namely, the natural growth scenario (NGS), economic development
scenario (EDS), and ecological protection scenario (EPS), using the CLUMondo model. The ecological
risk assessment model was used to measure the LUCs under each scenario. Through the compre-
hensive analysis of land use conversion, spatial distribution, and the change characteristics of LUCs,
optimization strategies for future land use are proposed. The results indicate that (1) the intensity of
land conversion under the three scenarios is ranked as EDS > NGS > EPS; (2) there is little change in
the LUCs under the EPS, while significant deterioration is observed under the NGS and EDS; (3) the
intensity of LUCs is positively correlated with the degree of land use conversion; and (4) in the future,
particular attention should be paid to areas around the city center, the Caoshan Development Zone
in the northwest, and Nanshan Bamboo Sea in the south, where high-intensity land use conflicts
may occur.

Keywords: land use simulation; CLUMondo model; land use/cover change (LUCC); land use
conflicts (LUCs)

1. Introduction

As a non-renewable resource necessary for human survival, land is the most basic
material for human production and life. It serves as the foundation for the development of
a country and society as a whole. As the world’s population grows rapidly and urbaniza-
tion accelerates, limited land resources are supporting larger and more intensive human
activities [1]. Inappropriate development and land use have caused a number of significant
global problems, such as vegetation destruction, land degradation, and biodiversity loss [2].
Therefore, effectively resolving the conflict between urban development and land resources
in order to achieve sustainable land use and maintain regional ecological stability has
become an important issue in today’s world [2,3]. Land use/cover change (LUCC) refers
to changes in the land surface caused by human activities [3]. It reflects the interaction
between human activities and natural factors in the regional ecological environment [1],
and it is an important factor influencing ecological processes on the Earth, such as biochem-
ical cycling, energy exchange, and soil erosion and deposition [4,5]. In 1992, the United
Nations issued “Agenda 21”, in which LUCC research was clearly identified as a priority
for the 21st century [6]. In 1995, the International Geosphere-Biosphere Programme (IGBP)
and the International Human Dimensions Programme (IHDP) on Global Environmental
Change jointly proposed the “Land Use/Cover Change Science Research Program”, mak-
ing LUCC-related issues a research priority in countries around the world [7]. In 2005, the
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Global Land Project (GLP) was launched jointly by IGBP and IHDP to better continue the
LUCC program that started a decade earlier [8]. This project emphasizes the integration of
LUCC research, which requires a comprehensive consideration of the coupling relationship
between human and natural factors, with research on the interaction between social and
ecological systems and on the connections across regions and urban-rural areas. In 2016,
the Global Land Project was changed to the Global Land Programme, which continues as a
research initiative aimed at understanding, measuring, and modeling the changes in the
coupled human-environment system [9]. After almost 30 years of development, research
on LUCC has made great progress in theory, methodology, and practice. The main research
directions include LUCC monitoring, driving mechanisms, environmental impacts, and
simulation. These fields are interrelated and complementary and together form the basic
framework of land use and land cover change research [2,10,11].

To respond in a timely manner to the environmental pressures brought by urban
development and human demands for land, land use simulation can predict future land
change trajectories and development patterns, as well as identify the most appropriate
spatial patterns of land use under different future development scenarios. This can provide
guidance to urban planning and land policy making [12,13]. At present, the main land
use change models are the Markov model, SLEUTH model, system dynamics (SD) model,
agent-based model (ABM), cellular automata (CA) model, CLUE-S model, etc. [14]. Each of
these models has its own unique characteristics and scales of applicability. The Markov
model can quantify the conversion state and conversion rate of land use types, but it cannot
describe spatial changes. The SLEUTH model is suitable for urban growth simulation
and long-term forecasting, but it takes less account of social and economic factors. The
SD model can reflect the interrelationships among the structure, function, and dynamic
behavior of complex systems, but it is difficult to handle spatial information and lacks the
ability to describe the spatial pattern of land use. The agent-based model (ABM) is limited
in its applicability to certain regions and scenarios and has difficulty representing the spatial
behavior of a subject [15,16]. The CA model is better at representing the neighborhood
effects, but its conversion rules are based on empirical statistics or expert knowledge,
making it susceptible to human factors. The CLUE-S model can simulate the changes in
multiple types of land use and reflect the situation of land use change in terms of time,
space, and quantity. It is particularly suitable for studying land use/cover change in small-
scale regions. The CLUMondo model is the latest improved version of the CLUE-S model. It
has inherited all the advantages of the CLUE-S model and addresses the shortcomings of its
inadequate consideration of macro and non-spatial factors [17]. The CLUMondo model can
convert macro factors, such as policies into land use demand parameters, comprehensively
considering direct and indirect demand for different types of land area. It can also spatially
allocate different intensities of land service demand based on land suitability and select
the allocation order according to the strength of competition. The study case in this paper
is Liyang, a county-level city in China, which is a small-scale region currently facing the
challenge of balancing the conflicting objectives of economic, environmental, and social
benefits while undergoing rapid urbanization. Therefore, the CLUMondo model was
selected for the city to perform multi-scenario land use prediction in order to explore the
possibilities of future land use changes and spatial patterns in the study area.

During the process of land use, disagreements among stakeholders over the use,
allocation, quantity, and distribution methods of the land can result in land use conflicts
(LUCs) [1]. They reflect the discordance and imbalance between the allocation of land
use and the needs of social development in human-environment relationships, such as
conflicts between urban expansion and the protection of basic farmland or ecological
conservation. Severe LUCs can pose a threat to ecological and food security, thereby limiting
regional sustainable development [18]. They can also lead to disputes over land rights
and interpersonal conflicts, and they can even become important factors affecting social
stability [19]. Scholars have analyzed LUCs from the perspectives of economics, geography,
ecology, and sociology. Qualitative analysis methods commonly used include participatory
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survey methods, logical framework approaches, and game theory analysis. While these
methods assist researchers in understanding the mechanisms behind and finding solutions
to land use conflicts, quantitatively measuring such conflicts remains a challenge [20].
Commonly used quantitative analysis methods include suitability assessment [21,22],
multicriteria analysis [23–25], ecological risk assessment [1,20], and the pressure-state-
response (PSR) model [18,26–28]. Based on the theory and methods of landscape ecological
risk assessment, ecological risk assessment is a model for measuring conflicts. It constructs
a conflict index by considering risk sources, risk receptors, and risk effects. The model
creates a “comprehensive spatial conflict index = spatial complexity index + vulnerability
index − stability index” equation to quantify spatial conflicts. This method can accurately
identify conflict locations and spatial characteristics, as well as reveal regional ecological
risks caused by inappropriate spatial structures of land use. Due to various ecological
problems in Chinese cities caused by rapid urbanization, and the fact that this method can
objectively and effectively characterize the pressure of human interference and natural
degradation, this study selected the ecological risk assessment model to measure land use
conflicts in the study region.

Currently, research on land use simulation is mostly focused on revealing the char-
acteristics of land use conversion [29,30], exploring future development scenarios [31–33],
and evaluating future ecosystem services [16,34,35]. The research on land use conflict is
mainly focused on identifying the spatiotemporal evolution characteristics [36–38] and
driving factors of current land use conflicts [39,40]. Few studies have explored the possible
development trends of LUCs by land use simulation and prediction. This limits the com-
prehensive and profound analysis of land use conflict issues and also has a restrictive effect
on the formulation of future land use management policies. Especially for China, where
development is rapid and land resources are extremely scarce, spatial planning strategies
that are forward-looking and can predict land use issues are particularly important. Since
2019, territorial spatial planning has become an important development strategy in China.
Its main purpose is to coordinate land use and development intensity among different
regions based on their resource endowments and comparative advantages, so as to avoid
the escalation of regional land use conflicts and contradictions caused by the different
positioning of planning functions [41,42]. Therefore, government policies need to consider
future land management, and research on land use conflicts (LUCs) should expand to
include simulations of potential future changes.

In light of the limited focus on future land use conflicts in academic research, this
paper uses the Liyang in Jiangsu Province as a case study to provide empirical evidence
for predicting potential future trends in land use conflicts through multi-scenario land use
simulations. This paper also suggests strategies for spatial governance and optimizing land
use patterns to address and reduce land use conflicts. The research provides a valuable
reference for future studies on the sustainable use of regional land resources and territorial
spatial planning. The study’s specific research objectives include (1) studying land use
changes in Liyang in 2030 under different scenarios; (2) examining the spatial characteristics
of future land use conflicts (LUCs) in Liyang; and (3) determining strategies and key areas
for spatial optimization in Liyang.

2. Materials and Methods
2.1. Study Area

Liyang is a city at the county level in Jiangsu Province, situated between 31◦09′–31◦41′

north latitude and 119◦08′–119◦36′ east longitude. It is located at the intersection of three
provinces in the Yangtze River Delta region. It has a variety of topographical features,
including low mountains, hills, plains, and polders, and has a total area of 1535 km2. The
city is interwoven with rivers and lakes; it has low mountains and hills in the south and
northwest and plains and polders in the center (Figure 1). Since the early 1990s, tourism
has become an important industry in Liyang, not only solving people’s food and clothing
problems but also driving rapid economic and urban development. By 2020, Liyang’s
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urbanization rate had risen from less than 10% in the 1980s to 63%, and its total GDP had
increased from 28 million in the 1980s to 108.6 billion (Figure 2). In the past 40 years of its
development, Liyang’s tourism industry has become a breakthrough point for deepening
economic reform in the city. In form, the industry has transformed from scenic-spot tourism
to all-for-one tourism, emerging as a new model for tourism development. This has led to
the rapid development of the city’s tertiary industry, which increased from 15% in the 1980s
to 45% in 2020. Liyang was selected in the second batch of national all-for-one tourism
demonstration zones in 2020. In the future, Liyang will continue to leverage all-for-one
tourism as a catalyst for the city’s high-quality development. Therefore, eliminating current
and potential land use conflicts and forming a coordinated development system of urban
development and an ecosystem in the region are key considerations in Liyang’s land
use planning.
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2.2. Data Sources and Processing

The primary data used in this research were resampled to a 90 m precision raster
graphic and georeferenced using the Albers Conical Equal Area projection in ArcGIS. These
data included land use, topographic, meteorological, soil, position, and socio-economic
data, as listed in Table 1. The remote-sensing images were analyzed using ENVI5.3 to
identify seven types of land use: cultivated land, woodland, grassland, water area, rural
settlements, urban, and other construction land and unused land. Meteorological data
were initially obtained from meteorological stations and were converted into grid format
by spatial interpolation using ArcGIS 10.6. For land use simulation, all data were converted
into ASCII format in CLUMondo, and the ecological sources in the study area were set as
restricted areas.
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Table 1. Data sources and description.

Category Data Unit Year Data Source

Land use
Remote-sensing images - 2010, 2020 United States Geological

Survey (USGS)

Land use maps class 2010, 2020 Interpreted from
remote-sensing images

Topographic
DEM m 2010, 2020 Geospatial Data Cloud
Slope ◦ 2010, 2020

Extracted from DEM dataAspect - 2010, 2020

Meteorological Annual total precipitation mm 2010, 2020 China Meteorological Data
Service CentreAnnual average temperature ◦C 2010, 2020

Soil
Soil water content m3 2010, 2020 National Tibetan Plateau Data Center

Soil salinity % 2010, 2020 World Soil Information (ISRIC)

Position
Distance to major rivers km 2010, 2020

OpenStreetMapDistance to main traffic km 2010, 2020
Distance to township centers km 2010, 2020

Socio-economic

Population density people/km2 2010, 2020
Statistical Yearbook of Liyang CityPer capita GDP 104 yuan 2010, 2020

Fixed assets investment 108 yuan 2010, 2020
Nighttime light - 2010, 2020 National Tibetan Plateau Data Center

2.3. Methods

Figure 3 illustrates the overall research structure. The study area’s land use in 2030
was projected using the CLUMondo model under various scenarios. The ecological risk
assessment model was used to evaluate the LUCs in the region from 2010 to 2030. Some
spatial analysis approaches, such as standard deviational ellipse and hot spot analysis,
were used to quantitatively describe land use features. Based on these analyses, strategies
for land management and planning were proposed.
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2.3.1. Dynamic Degree of Land Use

The dynamic degree of land use reflects the conversion rate and intensity of land use
change in the study area [43]. The single dynamic degree indicates the conversion rate
of a certain type of land during the conversion period [44]. The calculation formula is
as follows:

Ki =
Sb − Sa

Sa
× 1

T
× 100% (1)

where K is single land use dynamic degree; i is a certain land use type; Sa is the area of a
certain land use type before the conversion; Sb is the area after the conversion; and T is the
conversion period.
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The comprehensive dynamic degree represents the change rate of all land use types
and reflects the overall land use stability in the study area [45]. A higher value indicates
more active land use changes and poorer overall stability. The formula is as follows:

S =

[
n

∑
i=1

(∆Si−j

Si

)]
× 1

T
× 100% (2)

where S is the comprehensive land use dynamic degree; Si is the total area of land use type
i; ∆Si−j is the total area of land use type i converted in and out; and T is the transfer period.

2.3.2. Land Use Conflict Assessment Model

When a land ecosystem experiences a significant disruption, its spatial pattern alters,
leading to disruptions in natural processes, reduced biodiversity, and harm to the region’s
ecological security [46]. This occurrence demonstrates the clash between the spatial ar-
rangement of land use and the natural environment. Typically, the lower the ecological risk
posed by a land use structure, the less severe the land use spatial conflict [18]. As a result,
the land use conflict assessment model was developed by drawing on the “risk source-risk
receptor-risk effect” ecological risk evaluation model. The formula is as follows:

LUCI = CI + FI − SI (3)

where LUCI is the index of land use conflict; CI is the complexity index; FI is the fragility
index; and SI is the stability index. As a reliable measure of risk sources, landscape
complexity reflects external pressures from human activities and intensive land use. The
area-weighted mean patch fractal dimension (AWMPFD) [20] is employed to describe the
intricacy of land use patches and indicate the extent to which neighboring landscapes
affect current landscape units. A higher value signifies a more complex landscape patch
boundary and a greater likelihood of disturbance from human activities [20,47]. The
calculation formula is as follows:

CI = AWMPFD =
m

∑
i=1

n

∑
j=1

[
2 ln
(
0.25Pij

)
ln
(
aij
) ×

( aij

A

)]
(4)

where Pij is the perimeter of the j-th patch of the i-th land-use type; aij is the patch area of the
j-th patch of the i-th land use type; A is the total landscape area; m is the number of patches;
and n is the number of land use types. The index values have been linearly adjusted to
fall within the [0, 1] range in order to simplify subsequent calculations. The fragility index
measures the responsiveness of spatial patches to external pressures and indicates the risk
receptors’ carrying capacity [47]. The lower the resilience of receptors, the more vulnerable
the spatial patch is to external disturbance and the higher the level of land use conflict [48].
According to the previous studies [48–51] and the characteristics of regional urbanization,
the fragility values of seven land use types in the study region were determined to be: urban
and other constructed land (7), rural settlements (6), unused (5), grassland (4), water (3),
farmland (2), and woodland (1). The calculation formula is as follows:

FI =
m

∑
i=1

n

∑
j=1

Fij ×
aij

A
(5)

where Fis is the fragility degree of the j-the patch of land-use type i; aij represents the area of
the j-th patch of land use type i; A represents the total area of the landscape; m is the number
of patches; and n stands for the number of land use types. To make calculations easier, the
results were linearly adjusted to fall within the [0, 1] range. As a key measure of the risk
effect, landscape stability is assessed using the patch density index (PD), which indicates the
degree of landscape fragmentation. A higher value signifies a more fragmented landscape,
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poorer land stability, and more severe land use conflict [1,20]. The calculation formulas are
as follows:

SI = 1− PD− PDmin
PDmax − PDmin

(6)

PD =
ni
A

(7)

where PD is the index of patch density; PDmin and PDmax represent the minimum and
maximum values of PD; ni is the number of landscape patches of land use type i; and A is
the total area of the landscape.

2.3.3. Simulation of Future Land Use

As the latest iteration in the series of Conversion of Land Use and its Effect (CLUE),
CLUMondo is a dynamic and spatially explicit land use model capable of simulating
changes in both land cover and land use intensity [52]. Its land use simulation is based on
a combination of an empirical analysis of location suitability and a dynamic assessment
of the interactions between land use systems [53]. The demand for goods and services,
spatial restrictions, and competition between different land use types are comprehensively
considered in the CLUMondo model, effectively improving on previous land use simulation
methods that focused only on the quantity of land conversion [54,55].

1. Scenario settings

Three simulation scenarios were established to examine the future development trend
of land systems in the study region under different conditions, based on government plan-
ning, economic development objectives, and environmental protection demands [56–58].

The natural growth scenario (NGS) refers to a situation where the study area would not
experience sudden natural disasters, such as droughts and floods, in the next decade or so,
and was not strongly interfered with by external factors. The future transformation followed
the trend of land use change in the past (2010 to 2020). According to the government’s plan,
the urbanization rate will reach 80% by 2030 (17% higher than in 2002), and the city’s GDP
will need to increase by about 250 billion yuan (about 140 billion yuan higher than in 2020)
(Table S1).

The economic development scenario (EDS) focused on economic benefits by expanding
the area of built-up land, especially the urban area, traffic land, and industry land. As a
result, under this scenario, the growth rate of rural areas was set to be roughly equivalent
to that under the NGS, while the growth rate of urban and other construction land was
increased by 30% compared to the NGS.

The ecological protection scenario (EPS) aimed to enhance the ecological environment
and the services it provides. It took into account the need for strict ecological boundaries
and restoration efforts in government planning. This scenario assumed that the area of
ecological land in the study area would increase by 10% by 2030. In addition, important
ecological sources in this study area include the planned ecological red line area, so these
large ecological patches were set aside as conservation areas that could not be converted.

The simulation of different scenarios was realized by different parameter settings, in-
cluding by adding constraint conditions and defining the conversion matrix and conversion
resistance coefficient.

2. Parameter setting for CLUMondo model

Based on previous studies [1,14,32,34,43,59–63] and data availability, 14 independent
variables were selected to explain the location suitability of land use (Table S2). A total of
2 factors with high correlation values (above 0.8) were eliminated, and a total of 12 driving
factors of LUCC were determined, as shown in Figure S1. Logistic regression analyses
were carried out for each land use type and driving factor to obtain “AUC” values, which
represent the accuracy of the calculated regression (Table S3).

Six land use service demands (crop production, woodland area, grassland area, water
area, rural settlements area, and urban and other construction land area) were calculated
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independently under different scenarios (Table S4). The annual changes in each service
were determined by linear interpolation between the corresponding data in 2010 and 2020.
The NGS projected the future land system using the same trend as before. The grey theory is
known for its unique ability to make accurate predictions using limited data and uncertain
factors [64]. The GM (1.1) model is often used as a forecasting tool within the grey theory
and was used in this scenario to calculate the demand for land use services. In EDS, the
change rate of rural settlements was set according to the previous decade. The change rate
of urban and other construction land was set 30% higher than before, as the construction of
characteristic towns, tourism facilities, and transport networks will be greatly developed
for all-for-one tourism in the future. In EPS, the areas of woodland, grassland, and water
in 2030 were set to increase by 10%. Ecological sources are large patches that provide
important ecosystem services, and these should be well-conserved. Identified in a previous
study [65], they were determined to be spatial restrictions for the land use simulation under
the EPS (Figure S2).

Conversion resistance is a measure of how easily land can be converted. It ranges from
0, which means easy conversion, to 1, which means the change is irreversible. This reflects
the convertibility of the land. Each land use type was assigned a specific resistance value
under different simulation scenarios, as shown in Table S5. The conversion matrix shows
the potential for different types of land use to be converted into one another. The values in
the matrix are defined as ‘1’ for allowed conversion, and ‘0’ for not allowed conversion. In
this study, the simulations under the NGS and EDS had the same conversion matrix, with
the matrix having different values of ecological land than those of the matrix under the
EPS, as shown in Table S6.

3. Model validation

The accuracy of the CLUMondo model was checked by comparing its 2020 simulation
with the actual land use map from 2020. First, based on the 2010 land use map and the
natural growth scenario parameter setting, the 2020 land use simulation was carried out.
Then, the Map Comparison Kit (MCK) was used to perform a cell-by-cell comparison using
the Kappa algorithm. Kappa statistics, including Kappa, Kappa Histo (KHisto), and Kappa
Location (KLoc), were calculated for the whole map and each land use type. Generally, a
Kappa value greater than 0.75 indicates good agreement between the two maps and high
reliability of the land use simulation. A Kappa value between 0.4 and 0.75 indicates fair
agreement, while a value less than 0.4 indicates poor agreement [66,67].

2.3.4. Spatial Autocorrelation Analysis

Spatial autocorrelation analysis was used to determine the heterogeneity of the spatial
distribution of LUCs, including the global spatial autocorrelation index Moran’s I and the
local spatial autocorrelation index LISA [68–70]. Moran’s I indicates the extent to which
similar values of a variable are clustered together in space. The value range of Moran’s I is
−1–1. If a Moran’s I value is greater than 0, the spatial correlation is positive, meaning that
the locations with similar attributes of the variable are clustered together. When Moran’s I
is less than 0, it indicates that there is a negative spatial correlation, meaning that locations
with similar values for a variable are spread out or dispersed in space. If Moran’s I is
equal to 0, it means that there is no spatial correlation. LISA measures the degree of spatial
clustering of a specific location surrounded by similar or dissimilar values. The result is
shown in a map of high and low clustering, which is useful for identifying the spatial
pattern of local autocorrelation. The calculation formulas are as follows:

Moran′s I =
n

∑n
i=1 ∑n

j=1 Wij
×

∑n
i=1 ∑n

j=1 Wij(xi − x)

∑n
i=1(xi − x)2 (8)

LISA =
n(xi − x)

∑i(xi − x)2 ∑
i

Wij(xi − x) (9)
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where n is the total number of conflict cells; xi and xj represent the values of a variable x at
two different spatial locations i and j; x represents the average value of the variable; and
Wij is the spatial adjacency matrix.

3. Results
3.1. Validation of CLUMondo Model

The land use status in 2020 and the land use simulation of the study region in 2020 are
shown in Figure 4. The Kappa coefficients are shown in Table S7. With the exception of
the unused land, the Kappa coefficient of each land use type was greater than 0.6. This is
because the unused land represented only 2.2 percent of the area and was scattered and
susceptible to human behavior, resulting in high simulation difficulty and low simulation
accuracy. In general, the overall Kappa coefficient was greater than 0.75, and it can therefore
be considered that the CLUMondo model was reliable for simulating future land use
changes in the study area.
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3.2. Simulation Results of Future Land Use

The spatial distributions of the land use simulation for 2030 are shown in Figure 5.
The land use areas and change rate are shown in Figure 6. The area conversion graphs of
each land use type under the defined scenarios are shown in Figure 7. Generally, the water
area and rural settlements changed slightly under the three scenarios. Significant changes
occurred in the cultivated land, grassland, unused land, and urban and other construction
land. In all scenarios, there was a large decrease in cultivated and unused land, while urban
and other construction land increased significantly.
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Under the NGS, the urban and other construction land expanded mainly around the
original urban center, recording an area of 73 km2 and a growth rate of 68.69%. These
conversions were mainly derived from the cultivated land and unused land, which ac-
counted for 44.13% and 34.66%, respectively. A total of 53.74 km2 of the cultivated land
was converted into urban and other construction land (59.98%), woodland (34.34%), and
rural settlements (5.68%). A total of 28.61 km2 of the unused land was converted, of which
88.51% was converted to urban and other construction land, 10.9% to woodland, and
0.59% to cultivated land and rural settlements. The woodland increased by 9.46% and
the grassland decreased by 14.46%, while the change rates of the rural settlements and
water area were no more than 5%. Premised on the economic development of the EDS, the
expansion of built-up land around the urban center rapidly led to the formation of one
large area, with a newly added area of 107.77 km2 and a high growth rate of 101.33%. The
conversions were derived from every land use type, of which the cultivated land, grassland,
and unused land accounted for more than 90%. A total of 53.96 km2 of the cultivated land
was converted to the urban and other construction land (71.71%), woodland (27.8%), and
rural settlements (0.5%). Nearly 87% of the converted grassland became built-up land,
amounting to an area of 31.23 km2, while the remaining 13% became woodland. All of
the unused land with an area of 33.86 km2 was converted, 84.5% of which to the urban
and other construction land, 9.23% to woodland, 5.57% to rural settlements, and 0.7%
to cultivated land. The woodland and rural settlements increased by 7.08% and 3.2%,
respectively, while the water area decreased by 4.25%. The scale of built-up land expansion
under the EPS was significantly smaller than that of those under the other two scenarios.
It was because the amount and distribution of built-up land were well-controlled for the
sake of ecological protection. Further, the urban and other construction land increased by
only 25.1 km2, with a change rate of 23.58%. The conversions mainly derived from the
cultivated land (78.33%), woodland (12.96%), and unused land (8.46%). Both the woodland
and grassland increased by around 10%, while the unused land decreased by around 14%
and the cultivated land decreased by around 6%. The water area and rural settlements
remained almost unchanged.

3.3. Characteristics of Land Use Conflicts

The spatial distributions of the LUCs and the proportion of the area occupied by each
conflict level are shown in Figure 8 and Table 2. The average conflict index increased
in 2030 compared to 2020 in all scenarios, with the highest increase observed under the
EDS. In 2020, high-level conflict areas accounted for 34.3%, were mainly scattered along
rivers and traffic arteries, and were locally mixed with higher-level conflict areas, which
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accounted for 2.16%. The LUCs in 2030 under the EPS remained basically unchanged,
while there were significant changes under the NGS and EDS. The area of high-level LUCs
under the NGS increased slightly by 0.39%. The area of higher-level LUCs increased by
about 1%, forming a ring-shaped pattern around the city center. Under the EDS, the area
of high-level and higher-level LUCs increased by 1.33% and 4.7%, respectively. In terms
of the spatial distribution of the LUCs, the area of the city center changed the most. Its
inner area increased from a low to a moderate level, and its outer ring-shaped higher-level
area was more significant than it was under the NGS. In addition, the originally scattered
higher-level areas became more aggregated, and new agglomeration centers developed on
the northwestern and southern sides of the study area.

Table 2. Statistics for LUCs index measurement.

Conflict Level Conflict Index Range

Area Ratio (%)

2020
2030

NGS EDS EPS

Lower 0–0.2 10.61 11.00 11.82 10.30
Low 0.2–0.4 19.59 16.90 16.30 19.19

Moderate 0.4–0.6 33.33 34.27 29.39 33.22
High 0.6–0.8 34.30 34.69 35.63 34.78

Higher 0.8–1 2.16 3.15 6.86 2.52
Average conflict index 0.492 0.500 0.508 0.498

Figure 9 illustrates the area of each land use type in the different levels of land use
conflict. In 2020 and 2030, more than 90% of both the woodland and water area occupied
the low and lower LUC levels, indicating that these two land use types were in a stable
state. Apart from its absence under the EDS, the unused land remained in the low and
lower LUC levels in both 2020 and 2030. Over 90% of the grassland occupied the low and
moderate LUC levels, except for under the EDS, where it was around 80%. The areas of
these two types of land were small in size within the study area, so even if their changes
were significant, they did not have a great impact on the LUCs. More than 90% of the
cultivated land was distributed in the moderate and above LUC levels, with more than
50% being distributed in the high and higher levels, indicating that the cultivated land was
highly variable. The distribution of built-up land varied greatly across the different LUC
levels. In 2020, 74% of the rural settlements occupied the moderate LUC level. By 2030,
more than 50% were in the high and higher LUC levels in all scenarios, with more than 90%
occupying these levels under the EDS. The urban and other construction land accounted
for only about 6% of the high and higher LUC levels in 2020, while it increased in 2030 to
42% under the NGS, 58.85% under the EDS, and 19.42% under the EPS.

The global spatial autocorrelation test was performed for the LUCs in 2020 and 2030, as
shown in Table 3. The p-values were all less than 0.01, and the z-scores were all greater than
2.58, indicating that the results of the spatial autocorrelation confidence test were reliable,
i.e., the conflict levels of the different spatial units were not randomly distributed. The
value of Moran’s I was 0.76 in 2020 and increased to more than 0.8 in 2030, indicating that
the clustering of LUCs will increase in the future and that the EDS recorded the strongest
clustering effect among the three scenarios. The calculation results of the local index of
spatial autocorrelation (LISA) for the LUCs are shown in Figure 10. In 2020, hot spots
were scattered in the study area, mainly along rivers and traffic arteries. In 2030, there
were no major changes under the EPS. Under the NGS and EDS, there was an obvious
belt-shaped hot spot aggregation area around the city center, and the original hot spot areas
had all expanded. Compared to the EPS, there were also significant hotspot clustering
areas on the northwest and south sides of the city under the EDS. The cold spots were
clusters of low-level conflict, and these were mainly concentrated in large areas of water
and woodland; the overall change from 2020 to 2030 was not significant. However, the cold
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spot areas within the city center had greatly reduced by 2030 and had almost disappeared
under the NGS and EDS.
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Table 3. Global Moran’s I index of LUCs.

Spatial Autocorrelation 2020
2030

NGS EDS EPS

Moran’s I 0.76 0.874 0.884 0.866
z-score 466.102 536.148 541.98 531.312
p-value 0.000 0.000 0.000 0.000
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3.4. Comparison among the Three Scenarios

A statistical analysis of the areas of different land use types (shown in Figure 6)
revealed that the areas of cultivated land, woodland, water, and rural settlements were
relatively similar across the three scenarios. The grassland, unused land, and urban and
other construction land varied considerably in terms of area. In 2020, the area of unused
land was 33.86 km2, and by 2030, all of this had been completely converted under the
EDS, only 5.25 km2 was left under the NGS, and 29.13 km2 remained under the EPS. The
grassland occupied 88.59 km2 in 2020, and by 2030 it had increased by about 8 km2 under
the EPS, decreased by about 13 km2 under the NGS, and decreased by about 36 km2 under
the EDS. The area of urban and other construction land increased in all scenarios: 25 km2

(EPS), 73 km2 (NGS), and 107.76 km2 (EDS) respectively. Woodland, grassland, and water
are types of ecological lands that can provide ecosystem services, with a total of 406.41 km2

in 2020 in the study area. They recorded a slight increase of 6.5 km2 under the NGS, an
increase of 30.8 km2 under EPS, and a decrease of 23.12 km2 under the EDS. The built-up
land, including the rural settlements and urban and other construction land, increased
under all scenarios. Its smallest increase was 25 km2 under the EPS, while its largest
increase was under the EDS, which was 4.4 times that under the EPS. Its increase under
the NGS was three times that under the EPS. It can also be seen from the comparison of
the land use comprehensive dynamics (Table 4) that the overall average index of the EDS
was the highest, indicating that land use conversion was most active under this scenario.
For each type of land use, the highest value was 8.748, meaning that the conversion of the
urban and other construction land under the EDS was the most active. Land use types with
relatively high values also included the unused land under the NGS and EDS, the urban
and other construction land under the NGS, and the grassland under the EDS, indicating
that these land types were also highly converted. Under the EPS, the indices for all land-use
types except urban and other construction land, unused land, and woodland were less than
one. This suggests that land use change was most stable under this scenario.

Table 4. Land use comprehensive dynamic degree under different scenarios.

Scenarios

Comprehensive Dynamic Degree

Overall
Average

Cultivated
Land Woodland Grassland Water

Area
Rural Set-
tlements

Unused
Land

Urban and Other
Construction

Land

NGS 1.329 0.598 1.297 1.446 0.300 0.379 8.386 6.864
EDS 1.559 0.603 1.256 3.974 0.425 0.373 6.154 8.748
EPS 0.770 0.569 1.246 0.943 0.002 0.005 1.393 2.359

Further stand deviational ellipse analysis (Figure 11) showed that the expansion direc-
tion of built-up land in Liyang in 2030 was “northwest-southeast”, which was consistent
with 2020. As shown in Table 5, the X-axis distance, Y-axis distance, ellipticity, and ellipse
areas all increased, indicating that there was an expansion of built-up land under all of
the scenarios. The values of each parameter changed the least under the EPS, indicating
that the expansion in built-up land was the lowest under this scenario. In addition, its
mean center deviated from 2020 by only 0.31 km, indicating that the built-up land was in a
relatively stable state under the EPS. The increase in ellipse area under the EDS was 6%,
indicating that the built-up land tended to be dispersed in the expansion direction, and its
mean center was shifted 0.93 km to the southwest. The increase in ellipse area under the
NGS of 7.9% was the highest among all the scenarios, and the ellipticity of 0.3 was also the
highest, indicating that the built-up land was most discrete in the expansion direction, with
its center shifting 0.73 km to the south.
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Table 5. Parameter values of standard deviational ellipse.

Year Scenario X Distance (km) Y Distance (km) Rotation (◦) Ellipticity Area (km2)
Central Deviation

Distance (km)

2020 13.78 18.36 156.27 0.249 794.85

2030
NGS 13.85 19.72 155.09 0.300 857.71 0.31
EDS 13.79 19.45 156.30 0.291 842.41 0.93
EPS 13.88 18.55 157.00 0.251 808.73 0.73

3.5. Relationship between Land Use Conflicts and Land Use Change

Table 6 shows the quantitative changes in land use conversion from 2020 to 2030 at
each level of LUCs under different scenarios. The total areas of land use conversion were
239.36 km2 under the EDS, 203.98 km2 under the NGS, and 118.14 km2 under the EPS. The
conversion area in the high and higher levels was 68.21% in the EDS, while this was 46.07%
in the NGS and 12.87% in the EPS. As noted in Section 3.2, the average conflict index for
the EDS was 0.508, which was higher than the values for the other two scenarios, 0.500 for
the NGS and 0.498 for the EPS. This indicates that the degree of land use conversion was
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closely related to the intensity of land use conflict. Overall, the more land use conversion
that occurred in the region, the more intense the land use conflict was.

Table 6. Land use conversion area at each LUC level under different scenarios.

Land-Use Conflict Level

NGS EDS EPS

LU
Conversion
Area (km2)

Ratio (%)
LU

Conversion
Area (km2)

Ratio (%)
LU

Conversion
Area (km2)

Ratio (%)

L1 Lower 30.61 15.01 32.48 13.57 16.42 13.90
L2 Low 37.07 18.17 18.01 7.52 43.68 36.97
L3 Moderate 42.33 20.75 25.60 10.70 42.84 36.26
L4 High 73.63 36.10 100.27 41.89 15.08 12.77
L5 Higher 20.34 9.97 63.00 26.32 0.12 0.10

SUM 203.98 100 239.36 100 118.14 100

Figure 12 displays the area of each land use type that was converted at each level of
land use conflict (LUC) under different scenarios. In all scenarios, a considerable portion of
the converted area was attributed to the built-up land, woodland, and cultivated land, while
grasslands and unused land came next in terms of their contribution. The proportion of
converted cultivated land was most stable under the EPS, remaining between 30% and 50%
for all LUC levels, while it was more variable under the other two scenarios, ranging from
less than 10% to more than 40%. Under the EPS, the proportion of converted woodland
was the highest at 43.2%; this was much higher than that under the other two scenarios,
namely, 26.3% under the NGS and 22.61% under the EDS. From L1 to L5 of the land use
conflict, the converted area of woodland decreased, and this was mainly concentrated in L1
and L2. The converted area for the urban and other construction land showed the opposite
trend. From L1 to L5, the proportion of converted area for the urban and other construction
land under the EPS increased from 0.2% to 47.6% at L4 and then decreased to 13.35% at
L5. Under the NGS, it increased from 6.9% at L1 to 47% at L3 and then remained stable.
Under the EDS, it increased from 1.68% at L1 to 49% at L5. This suggests that the intensity
of conversion for urban and other construction land was closely related to the level of
land use conflict. The most typical area, in this case, was the urban-rural interface area
around the city center, which recorded the highest level of land use conflicts (Figure 8) and
significant hotspots (Figure 10). This was because this area was the main region for future
construction and expansion (Figure 5), and frequent and intense land use changes often
generate severe land use conflicts. Even though the area of other land use types that was
converted was relatively small, there was still some relationship between the amount of
land use conversion and the level of conflict over land use. The land use dynamic degree
is a measure of the intensity of change in land use. The Pearson correlation between the
dynamic values for each land use type and the average land use conflict index is shown in
Figure 13. Overall, there was a positive correlation between the land use dynamic degree
and the average land use conflict, with a correlation coefficient of 0.84 recorded. For each
land use type, there was also a positive correlation between land use dynamism and conflict,
with the exception of the woodland.
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4. Discussion
4.1. Practical Implications for Land Use

The three simulation scenarios represented different development needs. The NGS
continued the trend of previous years without external intervention. The EDS focused
on economic profit, with an emphasis on industrial development and urbanization. The
EPS focused on ecological conservation, with the setting of restricted areas. Both NGS
and EDS were characterized by an increase in land use conflicts. Considering that Liyang
has all-for-one tourism as one of its long-term development goals, the EPS may be the
most suitable choice in the future, as it can better maintain good natural resources and
the ecological environment. Multi-simulation of future land use can only provide some
reference value for policy-making; scientific strategies should also be developed from a
practical perspective and tailored to local conditions. The matters that need attention
include the following:

(1) In addition to protecting Liyang’s ecological sources as restricted areas, ecological
restoration should also be carried out in conjunction with the distribution of ecological
corridors and nodes, and ecological monitoring should be conducted in a timely manner to
ensure the ecological security pattern of Liyang is well preserved. During the development
and operation of tourism projects, tourist capacity should be reasonably controlled, and
an environmental impact assessment of tourism behavior should be carried out, so as to
achieve the coordinated development of ecological protection and tourism in the city.

(2) The cultivated land, which accounts for more than 50% of the city, is a key area
for regulating land use conflicts between urban and rural areas. In this study, under all
scenarios, the area of the converted cultivated land was more than 50 km2. It is inevitable
that urban sprawl will occupy a large amount of arable land. The resulting year-on-year
decline in grain production will put enormous pressure on maintaining food security in the
region. Therefore, it is necessary to strictly define a red line for basic farmland protection,
improve the level of agricultural mechanization, actively promote smart agriculture, and
improve the quality of existing farmland in Liyang.

(3) As shown in the previous analyses, there was a significant positive correlation
between the dynamism of built-up land and the intensity of land use conflict. Regions with
high levels of conflict tended to have large amounts of built-up land being converted. This
was most typical for areas around the city center, where urban expansion led to serious land
use conflicts. As a result, it is important to strictly control the urban growth boundary and
establish an ecological buffer zone to prevent uncontrolled urban expansion. In addition,
the expansion direction of the built-up land was found to be northwest-southeast. The
Caoshan Development Zone in the northwest, Tianmu Lake, and Nanshan Bamboo Sea in
the south are the driving force of built-up land expansion, and construction in these areas
needs to be carefully managed to avoid serious land use conflicts.
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4.2. Methodological Advantages

The research idea of this paper is to carry out a dynamic analysis of current and
future land use conflicts, based on land changes from the past to the present and multi-
scenario simulations of future land use. As an empirical study, this paper complements
the lack of consideration of the future development trend of LUCs in the current research.
It also provides forward-looking strategies for territorial spatial planning that are in line
with China’s national conditions of scarce land resources and a pronounced contradiction
between people and land under rapid development.

This paper further explored the relationship between the intensity of land use changes
and land use conflicts by analyzing their characteristics. While previous studies have mostly
analyzed the relationship qualitatively, this study used Pearson’s correlation analysis to
show quantitatively and precisely that the more land use talked about, the more intense
the land use conflict.

From the perspective of dynamic land use conflict, the areas to focus on in Liyang are
suggested so that city leaders can better formulate policies and strategies when carrying out
land development. This case can also provide a reference and ideas for territorial spatial
planning at the county level.

4.3. Limitations and Future Directions

In terms of selecting drivers of land use change, this paper draws on previous studies
and selects variables that can be spatially quantified, covering geographic, meteorological,
soil, location, and socio-economic factors. However, land use change is also influenced
by many factors that are difficult to collect and quantify, such as politics, land rights, and
cultural practices. Future research should consider how these factors can be incorporated
into land use simulation models.

The configuration of the parameters of land use simulation has a direct impact on
the simulation results. In this study, although the accuracy verification met the required
threshold, there is still potential room for further refinement. For example, various policy
factors were not taken into account in the parameter settings. Further, the land use simula-
tion under the EPS defined only ecological land as restricted areas, ignoring the fact that
cultivated land can also provide a habitat for wildlife. In addition, the simulation was based
solely on the CLUMondo model, and future multi-platform verification in conjunction with
other models is required to improve the accuracy of the land use simulation.

This study measures land use conflict from a landscape ecology perspective by evaluat-
ing a region’s complexity, fragility, and stability. However, land use conflict is a multifaceted
concept that encompasses not only ecological considerations but also social, institutional,
cultural, land tenure, and structure-function conflicts [71]. The mechanisms and manifesta-
tions of land use conflicts are highly complex, and some conflicts cannot be spatially repre-
sented. Therefore, it is necessary to develop a comprehensive, multi-indicator evaluation
system that combines qualitative and quantitative evaluations from different perspectives
to measure land use conflict objectively and comprehensively.

5. Conclusions

Due to the acceleration of urbanization, human demand for land resources has con-
tinued to grow. Coupled with the growing problems of global climate change, population
growth, and environmental pollution, the globe’s limited land resources are under great
pressure. Land use conflicts reflect the mismatch and imbalance between land use allocation
and societal development needs. By predicting and analyzing regional land use conflicts,
the contradictory relationship between future urban development and land resources can
be identified, the intensification of conflicts can be prevented in a timely manner, and
the rational use of land resources can be realized. Liyang, a county-level city in China
which has adopted the all-for-one tourism approach as its development engine, is facing
conflicting trade-offs between economic, environmental, and social benefits in the process
of urbanization. Presenting Liyang as a research case, this paper used the CLUMondo
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model to simulate land use in 2030 under three scenarios, namely, the NGS, EDS, and
EPS, based on the land use map of 2020. Then, the land use conflicts under the different
scenarios were measured by calculating the complexity, vulnerability, and stability of the
region. Finally, by comparing and analyzing the characteristics of land use conversion and
land use conflict, and discussing the relationship between the two, strategies and key areas
for future land use planning were provided. The findings of the study were as follows:

(1) Under the three scenarios, there were only slight changes to the water area and
rural settlements, while the cultivated land experienced a significant decrease, and the
urban and other construction land showed a remarkable increase. Regarding their total
amount of land conversion and total dynamic degree of land use, the scenarios were ranked
as follows: EDS > NGS > EPS. The largest converted areas among all land use types were
cultivated land, woodland, unused land, and urban and construction land. The higher land
use dynamic degree included the urban and other construction land under all the scenarios,
the unused land under the NGS and EDS, and the grassland under the EDS.

(2) All of the average land use conflict indices under the three scenarios were higher
than the 2020 value, with the highest recorded under the EDS and the lowest under the
EPS. The spatial distribution of LUCs showed little change under the EPS, but significant
intensity under the NGS and EDS. Under the NGS, the most obvious high-level land use
conflict occurred around the city center area. Under the EDS, besides the city center’s
surroundings, the most obvious high-level conflict areas also included the area around the
Caoshan Development Zone in the northwest and the Nanshan Bamboo Sea in the south.

(3) The land use conflicts were found to be closely related to the land use change. In
general, the more intensive the land conversions, the higher the land use conflicts. The
Pearson correlation analysis showed that the average land use conflict index in the study
area was significantly positively correlated with the overall average land use comprehensive
dynamic degree. For each land use type, the correlation between the land use dynamics
and the average land use conflict index was positive, except for the woodland.

(4) The EPS was found to be the most suitable for the development of all-for-one
tourism in Liyang, as it recorded the least land use conflicts among the three scenarios. In
the future, particular attention should be paid to the areas around the city center, Caoshan
Development Zone, and the Nanshan Bamboo Sea, where high-intensity land use conflicts
are likely to occur. It is also necessary to protect and restore the key areas of ecological
security patterns and to ensure the quantity and quality of arable land in order to maintain
food security in the city.
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