Mechanical and Antibacterial Properties of Bamboo Charcoal/ZnO-Modified Bamboo Fiber/Polylactic Acid Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Bamboo Fiber Complexes
2.3. Preparation of BPC
2.4. Preparation of Culture Medium
2.5. Characterization
2.5.1. Conformal Testing of BPCs
2.5.2. Mechanical Properties Testing of BPCs
2.5.3. Antibacterial Performance Testing of BPCs
3. Results and Analysis
3.1. Performance Analysis of BPC
3.1.1. FTIR Analysis
3.1.2. FE-SEM Analysis
3.1.3. XRD Analysis
3.2. Mechanical Property Analysis of BPCs
3.3. Analysis of Antibacterial Properties of BPCs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, S.H.; Md Tahir, P.; Osman Al-Edrus, S.S.; Uyup, M.K.A. Bamboo Resources, Trade, and Utilisation. In Multifaceted Bamboo: Engineered Products and Other Applications; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–14. [Google Scholar]
- Chen, F.; He, Y.; Wei, X.; Han, S.; Ji, J.; Wang, G. Advances in strength and toughness of hierarchical bamboo under humidity and heat. J. For. Eng. 2023, 8, 10–18. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Yao, L.; Zhang, Q. Experimental study and numerical simulation on the macro and micro mechanical properties of bamboo. J. For. Eng. 2022, 7, 31–37. (In Chinese) [Google Scholar] [CrossRef]
- Khalil, H.A.; Bhat, I.; Jawaid, M.; Zaidon, A.; Hermawan, D.; Hadi, Y. Bamboo fibre reinforced biocomposites: A review. Mater. Des. 2012, 42, 353–368. [Google Scholar] [CrossRef]
- Zhang, B. Resource recycling of renewable bamboo material in building field. New Chem. Mater. 2016, 44, 30–32. [Google Scholar]
- Bari, E.; Morrell, J.J.; Sistani, A.; Firoozbehi, F.; Haghdoost, Y.; Najafian, M.; Ghorbani, A. Assessment of physical and mechanical properties of bamboo-plastic composites. Polym. Compos. 2019, 40, 2834–2839. [Google Scholar] [CrossRef]
- Kim, B.J.; Yao, F.; Han, G.; Wu, Q. Performance of bamboo plastic composites with hybrid bamboo and precipitated calcium carbonate fillers. Polym. Compos. 2012, 33, 68–78. [Google Scholar] [CrossRef]
- Sukmawan, R.; Takagi, H.; Nakagaito, A.N. Strength evaluation of cross-ply green composite laminates reinforced by bamboo fiber. Compos. Part B Eng. 2016, 84, 9–16. [Google Scholar] [CrossRef]
- Besi, M.K.S. A review on mechanical properties of bamboo fiber reinforced polymer composite. Aust. J. Basic Appl. Sci. 2013, 7, 247–253. [Google Scholar]
- Qian, S.; Sheng, K.; Yao, W.; Yu, H. Poly (lactic acid) biocomposites reinforced with ultrafine bamboo-char: Morphology, mechanical, thermal, and water absorption properties. J. Appl. Polym. Sci. 2016, 133, 20. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, X.; Ma, X.; Fang, J. Influence of carbon black on the properties of plasticized poly (lactic acid) composites. Polym. Degrad. Stab. 2008, 93, 1044–1052. [Google Scholar] [CrossRef]
- Tan, M.A.; Yeoh, C.K.; Teh, P.L.; Rahim, N.A.A.; Song, C.C.; Voon, C.H. Effect of zinc oxide suspension on the overall filler content of the PLA/ZnO composites and cPLA/ZnO composites. e-Polymers 2023, 23, 20228113. [Google Scholar] [CrossRef]
- Hu, H.; Pan, Z.; Chen, B.; Zhao, Y.; Ren, X. Research progress in bio-based material modification of polylactic acid. Mod. Chem. Res. 2022, 17, 77–80. Available online: https://kns-cnki-net-443.webvpn.zafu.edu.cn/KXReader/Detail?invoice=PL762EnyJbR74A4klCvkztw%2BLvGIHbM10g%2FmBdWx84xHY6DgTAl36xiAOKmb3Z9AHwR3oi7SPwuJlrXJKjcwtMOjTUAAl3nN%2BBcRUEKL9E7SPP4S3BTLbV74v%2FlXvqBhqp9CDDd6yBLnrAeeFAG52BlS7PfvuH52TjfAMN92R%2FY%3D&DBCODE=CJFQ&FileName=ZJTY202217024&TABLEName=cjfdlast2022&nonce=946602D948FA47F28D74AA8FBAE5DBB8&TIMESTAMP=1707807440382&uid= (accessed on 8 February 2024). (In Chinese).
- Guo, J.; Tsou, C.-H.; Yu, Y.; Wu, C.-S.; Zhang, X.; Chen, Z.; Yang, T.; Ge, F.; Liu, P.; Guzman, M.R.D. Conductivity and mechanical properties of carbon black-reinforced poly (lactic acid) (PLA/CB) composites. Iran. Polym. J. 2021, 30, 1251–1262. [Google Scholar] [CrossRef]
- D’Urso, L.; Acocella, M.R.; Guerra, G.; Iozzino, V.; De Santis, F.; Pantani, R. PLA melt stabilization by high-surface-area graphite and carbon black. Polymers 2018, 10, 139. [Google Scholar] [CrossRef]
- Sheng, K.; Zhang, S.; Qian, S.; Lopez, C.A.F. High-toughness PLA/Bamboo cellulose nanowhiskers bionanocomposite strengthened with silylated ultrafine bamboo-char. Compos. Part B Eng. 2019, 165, 174–182. [Google Scholar] [CrossRef]
- Song, X.; Weng, Y.; Zhang, C.; Huang, Z. Study on Modification and Properties of Polylatic Acid/Bamboo Flour Composites. China Plast. 2020, 34, 21–29. (In Chinese) [Google Scholar] [CrossRef]
- Xia, Y.; Lu, Q.; Ge, T.; Ming, L.; Qi, Y. Analysis of factors affecting the properties of polylactic acid bamboo powder composites. Agric. Dev. Equip. 2018, 80–82. Available online: https://kns-cnki-net-443.webvpn.zafu.edu.cn/kcms2/article/abstract?v=BS8_DD2Uwa5Cyh-RL5dsbzVA6to70nrA4ehqybraFONny8cCtt4lD90dx8P0nZp5mAZztowyX0Gv0NDadW4PDbLAbEajziCZhFebOnwClg0nsf6lTrbxjXSS45TPSvcwuSIUTR-XvLuClmN3CQtiA==&uniplatform=NZKPT&language=CHS (accessed on 8 February 2024).
- Tang, X.; Guan, M.; Xu, X.; Yong, C. Effect of ultrasonic-antibacterial paraffin treatment on the antifungal performance of bamboo. J. For. Eng. 2022, 7, 45–51. (In Chinese) [Google Scholar] [CrossRef]
- Yuan, T.; Yin, X.; Huang, Y.; Li, X.; Wang, X.; Chen, L.; Li, Y. Hydrothermal treatment of bamboo and its effect on nano-mechanic and anti-mildew property. J. Clean. Prod. 2022, 380, 135189. [Google Scholar] [CrossRef]
- Yang, K.; Li, X.; Wu, Y.; Zheng, X. A simple, effective and inhibitor-free thermal treatment for enhancing mold-proof property of bamboo scrimber. Eur. J. Wood Wood Prod. 2021, 79, 1049–1055. [Google Scholar] [CrossRef]
- Zhao, Z.; Qin, C.; Piao, X.; Yan, Y.; Cao, Y.; Wang, Z.; Jin, C. Improving the Hydrophobicity, Dimensional Stability and Mold Resistance of Bamboo by Paraffin/Microcrystalline Wax/Stearic Acid Modification. Constr. Build. Mater. 2023, 414, 134902. [Google Scholar] [CrossRef]
- Liu, J.; Huang, J.; Hu, Z.; Li, G.; Hu, L.; Chen, X.; Hu, Y. Chitosan-based films with antioxidant of bamboo leaves and ZnO nanoparticles for application in active food packaging. Int. J. Biol. Macromol. 2021, 189, 363–369. [Google Scholar] [CrossRef]
- Prapruddivongs, C.; Sombatsompop, N. Wood, silver-substituted zeolite and triclosan as biodegradation controllers and antibacterial agents for poly (lactic acid) (PLA) and PLA composites. J. Thermoplast. Compos. Mater. 2017, 30, 583–598. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, Y.; Fan, H.; Peng, B.; Shi, B. A novel nano-SiO2 tannage for making chrome-free leather. In Proceedings of the 32nd Congress of the International Union of Leather Technologists and Chemist Societies, IULTCS 2013, Istanbul, Turkey, 29–31 May 2013; Available online: https://scholar.google.com/scholar?hl=zh-CN&as_sdt=0%2C5&q=A+novel+nano-SiO2+tannage+for+making+chrome-free+leather&btnG= (accessed on 8 February 2024).
- Zhang, H.; Lu, Y.; Zhang, G.; Li, S.; Li, X.; Liu, Y.; Yue, L. Synthesis and antibacterial properties of Ag/Cux O composite material on copper foam. Plat. Finish. 2023, 45, 31–36. [Google Scholar]
- Wang, J.; Li, J.; Zhuang, X.; Pan, X.; Yu, H.; Sun, F.; Song, J.; Jin, C.; Jiang, Y. Improved mould resistance and antibacterial activity of bamboo coated with ZnO/graphene. R. Soc. Open Sci. 2018, 5, 180173. [Google Scholar] [CrossRef]
- Zhang, H.; Hortal, M.; Jordá-Beneyto, M.; Rosa, E.; Lara-Lledo, M.; Lorente, I. ZnO-PLA nanocomposite coated paper for antimicrobial packaging application. LWT 2017, 78, 250–257. [Google Scholar] [CrossRef]
- Guan, G.; Zhang, L.; Zhu, J.; Wu, H.; Li, W.; Sun, Q. Antibacterial properties and mechanism of biopolymer-based films functionalized by CuO/ZnO nanoparticles against Escherichia coli and Staphylococcus aureus. J. Hazard. Mater. 2021, 402, 123542. [Google Scholar] [CrossRef]
- García, N.; Lamanna, M.; D’Accorso, N.; Dufresne, A.; Aranguren, M.; Goyanes, S. Biodegradable materials from grafting of modified PLA onto starch nanocrystals. Polym. Degrad. Stab. 2012, 97, 2021–2026. [Google Scholar] [CrossRef]
- Anžlovar, A.; Kržan, A.; Žagar, E. Degradation of PLA/ZnO and PHBV/ZnO composites prepared by melt processing. Arab. J. Chem. 2018, 11, 343–352. [Google Scholar] [CrossRef]
- Thanki Paragkumar, N.; Edith, D.; Jean-Luc, S. Surface characteristics of PLA and PLGA films. Appl. Surf. Sci. 2006, 253, 2758–2764. [Google Scholar] [CrossRef]
- Ahmadzadeh, Y.; Babaei, A.; Goudarzi, A. Assessment of localization and degradation of ZnO nano-particles in the PLA/PCL biocompatible blend through a comprehensive rheological characterization. Polym. Degrad. Stab. 2018, 158, 136–147. [Google Scholar] [CrossRef]
- Li, W.; He, X.; Zuo, Y.; Wang, S.; Wu, Y. Study on the compatible interface of bamboo fiber/polylactic acid composites by in-situ solid phase grafting. Int. J. Biol. Macromol. 2019, 141, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.; Sheng, K. PLA toughened by bamboo cellulose nanowhiskers: Role of silane compatibilization on the PLA bionanocomposite properties. Compos. Sci. Technol. 2017, 148, 59–69. [Google Scholar] [CrossRef]
- Tan, M.A.; Yeoh, C.K.; Teh, P.L.; Rahim, N.A.; Song, C.C.; Mansor, N.S.S.; Lim, J.H. Effect of infill density with ZnO concentration on the mechanical properties of 3D printed PLA/ZnO composites. AIP Conf. Proc. 2022, 2496, 020019. [Google Scholar] [CrossRef]
- Komal, U.K.; Lila, M.K.; Singh, I. PLA/banana fiber based sustainable biocomposites: A manufacturing perspective. Compos. Part B Eng. 2020, 180, 107535. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.; Wang, B.; Sui, X.; Zhong, Y.; Zhang, L.; Mao, Z.; Xu, H. Cellulose nanofibril-reinforced biodegradable polymer composites obtained via a Pickering emulsion approach. Cellulose 2017, 24, 3313–3322. [Google Scholar] [CrossRef]
- Nonato, R.; Mei, L.; Bonse, B.; Chinaglia, E.; Morales, A. Nanocomposites of PLA containing ZnO nanofibers made by solvent cast 3D printing: Production and characterization. Eur. Polym. J. 2019, 114, 271–278. [Google Scholar] [CrossRef]
- Shankar, S.; Wang, L.-F.; Rhim, J.-W. Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films. Mater. Sci. Eng. C 2018, 93, 289–298. [Google Scholar] [CrossRef]
- Ho, M.-P.; Lau, K.-T.; Wang, H.; Hui, D. Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles. Compos. Part B Eng. 2015, 81, 14–25. [Google Scholar] [CrossRef]
- Lizundia, E.; Penayo, M.C.; Guinault, A.; Vilas, J.L.; Domenek, S. Impact of ZnO nanoparticle morphology on relaxation and transport properties of PLA nanocomposites. Polym. Test. 2019, 75, 175–184. [Google Scholar] [CrossRef]
- Zou, D.; Zheng, X.; Ye, Y.; Yan, D.; Xu, H.; Si, S.; Li, X. Effect of Different Amounts of Bamboo Charcoal on Properties of Biodegradable Bamboo Charcoal/Polylactic Acid Composites. Int. J. Biol. Macromol. 2022, 216, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Jamnongkan, T.; Jaroensuk, O.; Khankhuean, A.; Laobuthee, A.; Srisawat, N.; Pangon, A.; Mongkholrattanasit, R.; Phuengphai, P.; Wattanakornsiri, A.; Huang, C.-F. A Comprehensive evaluation of mechanical, thermal, and antibacterial properties of PLA/ZnO nanoflower biocomposite filaments for 3D printing application. Polymers 2022, 14, 600. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.; Shi, P.; Zhao, T.; Yang, J.; Liu, Y. Properties of nano-ZnO modified PLA/PBS composite and foaming system. Eng. Plast. Appl. 2017, 45, 17–22. [Google Scholar]
- Prang Rocky, B.; Thompson, A.J. Investigation and comparison of antibacterial property of bamboo plants, natural bamboo fibers and commercial bamboo viscose textiles. J. Text. Inst. 2021, 112, 1159–1170. [Google Scholar] [CrossRef]
- Chong, W.J.; Shen, S.; Li, Y.; Trinchi, A.; Simunec, D.P.; Kyratzis, I.L.; Sola, A.; Wen, C. Biodegradable PLA-ZnO nanocomposite biomaterials with antibacterial properties, tissue engineering viability, and enhanced biocompatibility. Smart Mater. Manuf. 2023, 1, 100004. [Google Scholar] [CrossRef]
- Baek, Y.-W.; An, Y.-J. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci. Total Environ. 2011, 409, 1603–1608. [Google Scholar] [CrossRef]
Number | Specimen Name | PLA (wt. %) | Bamboo Powder (wt. %) | BC * (%) | ZnO * (%) |
---|---|---|---|---|---|
1 | BPC | 70 | 30 | 0 | —— |
2 | ZnO-1 | 70 | 30 | 0 | 0.3 |
3 | BC-1 | 70 | 30 | 0.3 | —— |
4 | BC-2 | 70 | 30 | 0.6 | —— |
5 | BC-3 | 70 | 30 | 0.9 | —— |
6 | BC-4 | 70 | 30 | 1.2 | —— |
7 | BC-5 | 70 | 30 | 1.5 | —— |
8 | BC/ZnO-1 | 70 | 30 | 0.6 | 0.3 |
9 | BC/ZnO-2 | 70 | 30 | 0.6 | 0.6 |
10 | BC/ZnO-3 | 70 | 30 | 0.6 | 0.9 |
11 | BC/ZnO-4 | 70 | 30 | 0.6 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Zhang, S.; Yan, S.; Pan, M.; Huang, H. Mechanical and Antibacterial Properties of Bamboo Charcoal/ZnO-Modified Bamboo Fiber/Polylactic Acid Composites. Forests 2024, 15, 371. https://doi.org/10.3390/f15020371
Liu C, Zhang S, Yan S, Pan M, Huang H. Mechanical and Antibacterial Properties of Bamboo Charcoal/ZnO-Modified Bamboo Fiber/Polylactic Acid Composites. Forests. 2024; 15(2):371. https://doi.org/10.3390/f15020371
Chicago/Turabian StyleLiu, Chunlin, Shuai Zhang, Shi Yan, Mingzhu Pan, and Hui Huang. 2024. "Mechanical and Antibacterial Properties of Bamboo Charcoal/ZnO-Modified Bamboo Fiber/Polylactic Acid Composites" Forests 15, no. 2: 371. https://doi.org/10.3390/f15020371