Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,856)

Search Parameters:
Keywords = bacterial identification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3364 KiB  
Article
Microbial Load and Diversity of Bacteria in Wild Animal Carcasses Sold as Bushmeat in Ghana
by Daniel Oduro, Winnifred Offih-Kyei, Joanita Asirifi Yeboah, Rhoda Yeboah, Caleb Danso-Coffie, Emmanuel Boafo, Vida Yirenkyiwaa Adjei, Isaac Frimpong Aboagye and Gloria Ivy Mensah
Pathogens 2025, 14(8), 754; https://doi.org/10.3390/pathogens14080754 (registering DOI) - 31 Jul 2025
Viewed by 149
Abstract
The demand for wild animal meat, popularly called “bushmeat”, serves as a driving force behind the emergence of infectious diseases, potentially transmitting a variety of pathogenic bacteria to humans through handling and consumption. This study investigated the microbial load and bacterial diversity in [...] Read more.
The demand for wild animal meat, popularly called “bushmeat”, serves as a driving force behind the emergence of infectious diseases, potentially transmitting a variety of pathogenic bacteria to humans through handling and consumption. This study investigated the microbial load and bacterial diversity in bushmeat sourced from a prominent bushmeat market in Kumasi, Ghana. Carcasses of 61 wild animals, including rodents (44), antelopes (14), and African civets (3), were sampled for microbiological analysis. These samples encompassed meat, intestines, and anal and oral swabs. The total aerobic bacteria plate count (TPC), Enterobacteriaceae count (EBC), and fungal counts were determined. Bacterial identification was conducted using MALDI-TOF biotyping. Fungal counts were the highest across all animal groups, with African civets having 11.8 ± 0.3 log10 CFU/g and 11.9 ± 0.2 log10 CFU/g in intestinal and meat samples, respectively. The highest total plate count (TPC) was observed in rodents, both in their intestines (10.9 ± 1.0 log10 CFU/g) and meat (10.9 ± 1.9 log10 CFU/g). In contrast, antelopes exhibited the lowest counts across all categories, particularly in EBC from intestinal samples (6.1 ± 1.5 log10 CFU/g) and meat samples (5.6 ± 1.2 log10 CFU/g). A comprehensive analysis yielded 524 bacterial isolates belonging to 20 genera, with Escherichia coli (18.1%) and Klebsiella spp. (15.5%) representing the most prevalent species. Notably, the detection of substantial microbial contamination in bushmeat underscores the imperative for a holistic One Health approach to enhance product quality and mitigate risks associated with its handling and consumption. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

11 pages, 415 KiB  
Article
A Nosocomial Outbreak of Burkholderia cepacia complex Linked to Contaminated Intravenous Medications in a Tertiary Care Hospital
by Hanife Nur Karakoc Parlayan, Firdevs Aksoy, Masite Nur Ozdemir, Esra Ozkaya and Gurdal Yilmaz
Antibiotics 2025, 14(8), 774; https://doi.org/10.3390/antibiotics14080774 (registering DOI) - 31 Jul 2025
Viewed by 199
Abstract
Objectives: Burkholderia cepacia complex (Bcc), a Gram-negative organism, is a well-recognized cause of hospital outbreaks, often linked to a contaminated shared source, such as multidose medications. In this study, we report an outbreak of Bcc infections in a tertiary care hospital, associated with [...] Read more.
Objectives: Burkholderia cepacia complex (Bcc), a Gram-negative organism, is a well-recognized cause of hospital outbreaks, often linked to a contaminated shared source, such as multidose medications. In this study, we report an outbreak of Bcc infections in a tertiary care hospital, associated with the intrinsic contamination of a prepared solution used in interventional radiology (IR) procedures. Additionally, we provide a detailed explanation of the interventions implemented to control and interrupt the outbreak. Methods: Records from the infection control committee from 1 January 2023 to 31 October 2024 were screened to identify cases with Bcc growth in cultured blood, urine, or respiratory samples. Clinical and laboratory data were collected in March 2025. Bacterial identification was performed using conventional methods and MALDI-TOF (Bruker Daltonics, Bremen, Germany). Controls were matched to cases by ward, date of initial growth, and duration of hospitalization. Demographic and clinical data of these patients were systematically collected and analyzed. Microbiological cultures were obtained from environmental objects of concern and certain medications. Results: A total of 82 Burkholderia species were identified. We enrolled 77 cases and 77 matched controls. The source of contamination was identified in ready-to-use intravenous medications (remifentanil and magnesium preparations) in the IR department. These preparations were compounded in advance by the team and were used repeatedly. Although the outbreak originated from contaminated IV medications used in IR, secondary transmission likely affected 28 non-IR patients via fomites, shared environments, and possible lapses in isolation precautions. The mortality rate among the cases was 16.9%. Infection with Bcc was associated with prolonged intensive care unit stays (p = 0.018) and an extended overall hospitalization duration (p < 0.001); however, it was not associated with increased mortality. The enforcement of contact precautions and comprehensive environmental decontamination successfully reduced the incidence of the Bcc outbreak. No pathogens were detected in cultures obtained after the disinfection. Conclusions: The hospital transmission of Bcc is likely driven by cross-contamination, invasive medical procedures, and the administration of contaminated medications. Implementing stringent infection control measures such as staff retraining, updated policies on medication use, enhanced environmental decontamination, and strict adherence to isolation precautions has proven effective in curbing the spread of virulent and transmissible Bcc. Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
Show Figures

Figure 1

18 pages, 2018 KiB  
Article
Screening and Identification of Cadmium-Tolerant, Plant Growth-Promoting Rhizobacteria Strain KM25, and Its Effects on the Growth of Soybean and Endophytic Bacterial Community in Roots
by Jing Zhang, Enjing Yi, Yuping Jiang, Xuemei Li, Lanlan Wang, Yuzhu Dong, Fangxu Xu, Cuimei Yu and Lianju Ma
Plants 2025, 14(15), 2343; https://doi.org/10.3390/plants14152343 - 29 Jul 2025
Viewed by 278
Abstract
Cadmium (Cd) is a highly toxic heavy metal that can greatly affect crops and pose a threat to food security. Plant growth-promoting rhizobacteria (PGPR) are capable of alleviating the harm of Cd to crops. In this research, a Cd-tolerant PGPR strain was isolated [...] Read more.
Cadmium (Cd) is a highly toxic heavy metal that can greatly affect crops and pose a threat to food security. Plant growth-promoting rhizobacteria (PGPR) are capable of alleviating the harm of Cd to crops. In this research, a Cd-tolerant PGPR strain was isolated and screened from the root nodules of semi-wild soybeans. The strain was identified as Pseudomonas sp. strain KM25 by 16S rRNA. Strain KM25 has strong Cd tolerance and can produce indole-3-acetic acid (IAA) and siderophores, dissolve organic and inorganic phosphorus, and has 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Under Cd stress, all growth indicators of soybean seedlings were significantly inhibited. After inoculation with strain KM25, the heavy metal stress of soybeans was effectively alleviated. Compared with the non-inoculated group, its shoot height, shoot and root dry weight, fresh weight, and chlorophyll content were significantly increased. Strain KM25 increased the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities of soybean seedlings, reduced the malondialdehyde (MDA) content, increased the Cd content in the roots of soybeans, and decreased the Cd content in the shoot parts. In addition, inoculation treatment can affect the community structure of endophytic bacteria in the roots of soybeans under Cd stress, increasing the relative abundance of Proteobacteria, Bacteroidetes, Sphingomonas, Rhizobium, and Pseudomonas. This study demonstrates that strain KM25 is capable of significantly reducing the adverse effects of Cd on soybean plants while enhancing their growth. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

22 pages, 2147 KiB  
Article
Streamlining Bacillus Strain Selection Against Listeria monocytogenes Using a Fluorescence-Based Infection Assay Integrated into a Multi-Tiered Validation Pipeline
by Blanca Lorente-Torres, Pablo Castañera, Helena Á. Ferrero, Sergio Fernández-Martínez, Suleiman Adejoh Ocholi, Jesús Llano-Verdeja, Farzaneh Javadimarand, Yaiza Carnicero-Mayo, Amanda Herrero-González, Alba Puente-Sanz, Irene Sainz Machín, Isabel Karola Voigt, Silvia Guerrero Villanueva, Álvaro López García, Eva Martín Gómez, James C. Ogbonna, José M. Gonzalo-Orden, Jesús F. Aparicio, Luis M. Mateos, Álvaro Mourenza and Michal Letekadd Show full author list remove Hide full author list
Antibiotics 2025, 14(8), 765; https://doi.org/10.3390/antibiotics14080765 - 29 Jul 2025
Viewed by 250
Abstract
Background/Objectives: Listeria monocytogenes is a foodborne pathogen of major public health concern due to its ability to invade host cells and cause severe illness. This study aimed to develop and validate a multi-tiered screening pipeline to identify Bacillus strains with probiotic potential [...] Read more.
Background/Objectives: Listeria monocytogenes is a foodborne pathogen of major public health concern due to its ability to invade host cells and cause severe illness. This study aimed to develop and validate a multi-tiered screening pipeline to identify Bacillus strains with probiotic potential against L. monocytogenes. Methods: A total of 26 Bacillus isolates were screened for antimicrobial activity, gastrointestinal resilience, and host cell adhesion. A fluorescence-based infection assay using mCherry-expressing HCT 116 cells was used to assess cytoprotection against L. monocytogenes NCTC 7973. Eight strains significantly improved host cell viability and were validated by quantification of intracellular CFU. Two top candidates were tested in a murine model of listeriosis. The genome of the lead strain was sequenced to evaluate safety and biosynthetic potential. Results: B. subtilis CECT 8266 completely inhibited intracellular replication of L. monocytogenes in HCT 116 cells, reducing bacterial recovery to undetectable levels. In vivo, it decreased splenic bacterial burden by approximately 6-fold. Genomic analysis revealed eight bacteriocin biosynthetic clusters and silent antibiotic resistance genes within predicted genomic islands, as determined by CARD and Alien Hunter analysis. The strain also demonstrated bile and acid tolerance, as well as strong adhesion to epithelial cells. Conclusions: The proposed pipeline enables efficient identification of probiotic Bacillus strains with intracellular protective activity. B. subtilis CECT 8266 is a promising candidate for translational applications in food safety or health due to its efficacy, resilience, and safety profile. Full article
Show Figures

Figure 1

28 pages, 1387 KiB  
Article
Metagenomic Analysis of Ready-to-Eat Foods on Retail Sale in the UK Identifies Diverse Genes Related to Antimicrobial Resistance
by Edward Haynes, Roy Macarthur, Marc Kennedy, Chris Conyers, Hollie Pufal, Sam McGreig and John Walshaw
Microorganisms 2025, 13(8), 1766; https://doi.org/10.3390/microorganisms13081766 - 29 Jul 2025
Viewed by 124
Abstract
Antimicrobial Resistance (AMR), i.e., the evolution of microbes to become resistant to chemicals used to control them, is a global public health concern that can make bacterial diseases untreatable. Inputs including antibiotics, metals, and biocides can create an environment in the agrifood chain [...] Read more.
Antimicrobial Resistance (AMR), i.e., the evolution of microbes to become resistant to chemicals used to control them, is a global public health concern that can make bacterial diseases untreatable. Inputs including antibiotics, metals, and biocides can create an environment in the agrifood chain that selects for AMR. Consumption of food represents a potential exposure route to AMR microbes and AMR genes (ARGs), which may be present in viable bacteria or on free DNA. Ready-to-eat (RTE) foods are of particular interest because they are eaten without further cooking, so AMR bacteria or ARGs that are present may be consumed intact. They also represent varied production systems (fresh produce, cooked meat, dairy, etc.). An evidence gap exists regarding the diversity and consumption of ARGs in RTE food, which this study begins to address. We sampled 1001 RTE products at retail sale in the UK, in proportion to their consumption by the UK population, using National Diet and Nutrition Survey data. Bacterial DNA content of sample extracts was assessed by 16S metabarcoding, and 256 samples were selected for metagenomic sequencing for identification of ARGs based on consumption and likely bacterial DNA content. A total of 477 unique ARGs were identified in the samples, including ARGs that may be involved in resistance to important antibiotics, such as colistin, fluoroquinolones, and carbapenems, although phenotypic AMR was not measured. Based on the incidence of ARGs in food types, ARGs are estimated to be present in a high proportion of average diets. ARGs were detected on almost all RTE food types tested (48 of 52), and some efflux pump genes are consumed in 97% of UK diets. Full article
Show Figures

Figure 1

17 pages, 1268 KiB  
Article
Community Composition and Diversity of β-Glucosidase Genes in Soils by Amplicon Sequence Variant Analysis
by Luis Jimenez
Genes 2025, 16(8), 900; https://doi.org/10.3390/genes16080900 - 28 Jul 2025
Viewed by 155
Abstract
Cellulose, the most abundant organic polymer in soil, is degraded by the action of microbial communities. Cellulolytic taxa are widespread in soils, enhancing the biodegradation of cellulose by the synergistic action of different cellulase enzymes. β-glucosidases are the last enzymes responsible for the [...] Read more.
Cellulose, the most abundant organic polymer in soil, is degraded by the action of microbial communities. Cellulolytic taxa are widespread in soils, enhancing the biodegradation of cellulose by the synergistic action of different cellulase enzymes. β-glucosidases are the last enzymes responsible for the degradation of cellulose by producing glucose from the conversion of the disaccharide cellobiose. Different soils from the states of Delaware, Maryland, New Jersey, and New York were analyzed by direct DNA extraction, PCR analysis, and next generation sequencing of amplicon sequences coding for β-glucosidase genes. To determine the community structure and diversity of microorganisms carrying β-glucosidase genes, amplicon sequence variant analysis was performed. Results showed that the majority of β-glucosidase genes did not match any known phylum or genera with an average of 84% of sequences identified as unclassified. The forest soil sample from New York showed the highest value with 95.62%. When identification was possible, the bacterial phyla Pseudomonadota, Actinomycetota, and Chloroflexota were found to be dominant microorganisms with β-glucosidase genes in soils. The Delaware soil showed the highest diversity with phyla and genera showing the presence of β-glucosidase gene sequences in bacteria, fungi, and plants. However, the Chloroflexota genus Kallotanue was detected in 3 out of the 4 soil locations. When phylogenetic analysis of unclassified β-glucosidase genes was completed, most sequences aligned with the Chloroflexota genus Kallotenue and the Pseudomonadota species Sphingomonas paucimobilis. Since most sequences did not match known phyla, there is tremendous potential to discover new enzymes for possible biotechnological and pharmaceutical applications. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

15 pages, 540 KiB  
Review
Achalasia and Gut Microbiota: Is Dysbiosis an Overlooked Factor in Postoperative Surgical Outcomes?
by Agostino Fernicola, Giuseppe Palomba, Armando Calogero, Antonella Sciarra, Annachiara Cavaliere, Felice Crocetto, Caterina Sagnelli, Antonio Alvigi, Raffaele Basile, Domenica Pignatelli, Andrea Paolillo, Federico Maria D’Alessio, Giacomo Benassai, Gennaro Quarto and Michele Santangelo
Surgeries 2025, 6(3), 63; https://doi.org/10.3390/surgeries6030063 - 28 Jul 2025
Viewed by 260
Abstract
Background: Esophageal achalasia is a rare motility disorder characterized by impaired lower esophageal sphincter (LES) relaxation and food stasis. Surgical interventions, including Heller myotomy with fundoplication or peroral endoscopic myotomy (POEM), effectively alleviate symptoms but induce significant anatomical and functional alterations. In [...] Read more.
Background: Esophageal achalasia is a rare motility disorder characterized by impaired lower esophageal sphincter (LES) relaxation and food stasis. Surgical interventions, including Heller myotomy with fundoplication or peroral endoscopic myotomy (POEM), effectively alleviate symptoms but induce significant anatomical and functional alterations. In various gastrointestinal surgeries, microbiota have been implicated in modulating clinical outcomes; however, their role in achalasia surgery remains unexplored. Methods: We performed a narrative literature search of various databases to identify studies exploring potential interactions between the gastroesophageal microbiota, achalasia pathophysiology, and surgical treatment, proposing clinical implications and future research avenues. Results: Chronic esophageal stasis in achalasia promotes local dysbiosis by facilitating aberrant bacterial colonization. Surgical restoration of esophageal motility and gastroesophageal transit induces substantial shifts in the microbial ecosystem. Analogous microbiota alterations following procedures such as fundoplication, gastrectomy, and bariatric surgery underscore the significant impact of mechanical modifications on microbial composition. Comprehensive microbiota profiling in patients with achalasia may enable the identification of dysbiotic phenotypes predisposed to complications, thereby providing personalized therapeutic interventions including probiotics, prebiotics, dietary modulation, or targeted antibiotic therapy. These insights hold promise for clinical benefits, including the mitigation of inflammation and infection, monitoring of surgical efficacy through microbial biomarkers, and optimization of postoperative nutritional strategies to reestablish microbial homeostasis, ultimately enhancing patient outcomes beyond conventional treatment paradigms. Conclusions: The gastroesophageal microbiota is a compelling mediator of surgical outcomes in achalasia. Future investigations integrating microbiological and inflammatory profiling are warranted to elucidate the functional role of the gastroesophageal microbiota and assess its potential as a biomarker and therapeutic target. Full article
Show Figures

Figure 1

21 pages, 1420 KiB  
Article
Functional Characterization of a Synthetic Bacterial Community (SynCom) and Its Impact on Gene Expression and Growth Promotion in Tomato
by Mónica Montoya, David Durán-Wendt, Daniel Garrido-Sanz, Laura Carrera-Ruiz, David Vázquez-Arias, Miguel Redondo-Nieto, Marta Martín and Rafael Rivilla
Agronomy 2025, 15(8), 1794; https://doi.org/10.3390/agronomy15081794 - 25 Jul 2025
Viewed by 362
Abstract
Sustainable agriculture requires replacing agrochemicals with environmentally friendly products. One alternative is bacterial inoculants with plant-growth-promoting (PGP) activity. Bacterial consortia offer advantages over single-strain inoculants, as they possess more PGP traits and allow the exploitation of bacterial synergies. Synthetic bacterial communities (SynComs) can [...] Read more.
Sustainable agriculture requires replacing agrochemicals with environmentally friendly products. One alternative is bacterial inoculants with plant-growth-promoting (PGP) activity. Bacterial consortia offer advantages over single-strain inoculants, as they possess more PGP traits and allow the exploitation of bacterial synergies. Synthetic bacterial communities (SynComs) can be used as inoculants that are thoroughly characterized and assessed for efficiency and safety. Here, we describe the construction of a SynCom composed of seven bacterial strains isolated from the rhizosphere of tomato plants and other orchard vegetables. The strains were identified by 16S rDNA sequencing as Pseudomonas spp. (two isolates), Rhizobium sp., Ensifer sp., Microbacterium sp., Agromyces sp., and Chryseobacterium sp. The metagenome of the combined strains was sequenced, allowing the identification of PGP traits and the assembly of their individual genomes. These traits included nutrient mobilization, phytostimulation, and biocontrol. When inoculated into tomato plants in an agricultural soil, the SynCom caused minor effects in soil and rhizosphere bacterial communities. However, it had a high impact on the gene expression pattern of tomato plants. These effects were more significant at the systemic than at the local level, indicating a priming effect in the plant, as signaling through jasmonic acid and ethylene appeared to be altered. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

15 pages, 1351 KiB  
Article
Epidemiology of Bacterial Meningitis in the Lombardy Region, Italy, from 2014 to 2024: An Observational, Retrospective Study
by Maria Francesca Liporace, Federica Salari, Beatrice Silvia Orena, Michela Piccoli, Elena Tomassini, Luigi Vezzosi, Gabriele Del Castillo, Laura Daprai, Danilo Cereda, Claudia Alteri and Annapaola Callegaro
Microorganisms 2025, 13(8), 1733; https://doi.org/10.3390/microorganisms13081733 - 24 Jul 2025
Viewed by 371
Abstract
Bacterial meningitis remains a critical public health issue globally due to its high morbidity and mortality. Understanding regional epidemiological trends is essential to inform vaccination strategies and public health interventions. This observational, retrospective study analyzed cerebrospinal fluid (CSF) isolates collected from 731 confirmed [...] Read more.
Bacterial meningitis remains a critical public health issue globally due to its high morbidity and mortality. Understanding regional epidemiological trends is essential to inform vaccination strategies and public health interventions. This observational, retrospective study analyzed cerebrospinal fluid (CSF) isolates collected from 731 confirmed cases of bacterial meningitis between 2014 and 2024 in Lombardy, Italy. Pathogen identification and serotyping of Streptococcus pneumoniae (SP), Neisseria meningitidis (NM), and Haemophilus influenzae (HI) were conducted using culture-based and molecular techniques. Trends were assessed across age groups and time using Kruskal–Wallis and chi-square tests. Results: SP was the predominant pathogen (78.4%), followed by NM (13.0%) and HI (8.6%). Significant temporal variation was observed for SP and NM, while HI trends remained stable. The impact of COVID-19-related restrictions was evident in a reduction in cases during 2020–2021. SP serotypes 3 and 8, HI non-typeable strains, and NM serogroup B were most frequent. No major shifts in serotype distribution were observed. Long-term surveillance data from Lombardy underscore the dominance of vaccine-targeted serotypes, ongoing circulation of resilient clones, and post-pandemic epidemiological shifts. These findings support continuous surveillance and inform vaccine strategy adjustments at the regional and national levels. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Bacterial Infection)
Show Figures

Figure 1

18 pages, 2215 KiB  
Article
Exploration of Phosphoproteins in Acinetobacter baumannii
by Lisa Brémard, Sébastien Massier, Emmanuelle Dé, Nicolas Nalpas and Julie Hardouin
Pathogens 2025, 14(8), 732; https://doi.org/10.3390/pathogens14080732 - 24 Jul 2025
Viewed by 348
Abstract
Acinetobacter baumannii is a multidrug-resistant bacterium that has gained significant attention in recent years due to its involvement in a growing number of hospital-acquired infections. The World Health Organization has classified it as a critical priority pathogen, underscoring the urgent need for new [...] Read more.
Acinetobacter baumannii is a multidrug-resistant bacterium that has gained significant attention in recent years due to its involvement in a growing number of hospital-acquired infections. The World Health Organization has classified it as a critical priority pathogen, underscoring the urgent need for new therapeutic strategies. Post-translational modifications (PTMs), such as phosphorylation, play essential roles in various bacterial processes, including antibiotic resistance, virulence or biofilm formation. Although proteomics has increasingly enabled their characterization, the identification of phosphorylated peptides remains challenging, primarily due to the enrichment procedures. In this study, we focused on characterizing serine, threonine, and tyrosine phosphorylation in the A. baumannii ATCC 17978 strain. We optimized three parameters for phosphopeptide enrichment using titanium dioxide (TiO2) beads (number of enrichment fractions between the phosphopeptides and TiO2 beads, the quantity peptides and type of loading buffer) to determine the most effective conditions for maximizing phosphopeptide identification. Using this optimized protocol, we identified 384 unique phosphorylation sites across 241 proteins, including 260 novel phosphosites previously unreported in A. baumannii. Several of these phosphorylated proteins are involved in critical bacterial processes such as antimicrobial resistance, biofilm formation or pathogenicity. We discuss these proteins, focusing on the potential functional implications of their phosphorylation. Notably, we identified 34 phosphoproteins with phosphosites localized at functional sites, such as active sites, multimer interfaces, or domains important for structural integrity. Our findings significantly expand the current phosphoproteomic landscape of A. baumannii and support the hypothesis that PTMs, particularly phosphorylation, play a central regulatory role in its physiology and pathogenic potential. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

25 pages, 8725 KiB  
Article
Novel 3D-Printed Replica Plate Device Ensures High-Throughput Antibacterial Screening of Halophilic Bacteria
by Kaloyan Berberov, Nikolina Atanasova, Nikolay Krumov, Boryana Yakimova, Irina Lazarkevich, Stephan Engibarov, Tsvetozara Damyanova, Ivanka Boyadzhieva and Lyudmila Kabaivanova
Mar. Drugs 2025, 23(8), 295; https://doi.org/10.3390/md23080295 - 23 Jul 2025
Viewed by 265
Abstract
Antibiotic resistance is one of the most significant public health issues today. As a consequence, there is an urgent need for novel classes of antibiotics. This necessitates the development of highly efficient screening methods for the rapid identification of antibiotic-producing bacteria. Here, we [...] Read more.
Antibiotic resistance is one of the most significant public health issues today. As a consequence, there is an urgent need for novel classes of antibiotics. This necessitates the development of highly efficient screening methods for the rapid identification of antibiotic-producing bacteria. Here, we describe a new method for high-throughput screening of antimicrobial compounds (AMC) producing halophilic bacteria. Our methodology used a newly designed 3D-printed Petri plate replicator used for drop deposition and colony replication. We employed this device in combination with a modified agar overlay assay to screen more than 7400 bacterial colonies. A total of 54 potential AMC producers were discovered at a success rate of 0.7%. Although 40% of them lost their antibacterial activity during the secondary screening, 22 strains retained inhibitory activity and were able to suppress the growth of one or more safe relatives of the ESKAPE group pathogens. The ethyl acetate extract from the most potent strain, Virgibacillus salarius POTR191, demonstrated moderate antibacterial activity against Enterococcus faecalis, Acinetobacter baumanii, and Staphylococcus epidermidis with minimal inhibitory concentrations of 128 μg/mL, 128 μg/mL, and 512 μg/mL, respectively. We propose that our replica plate assay could be used for target-based antimicrobial screening of various extremophilic bacteria. Full article
Show Figures

Graphical abstract

21 pages, 12098 KiB  
Article
Genome-Wide Identification and Expression Analysis of Hsp70 Gene Family of Procambarus clarkii Reveals Its Immune Role in Response to Bacterial Challenge After Non-Lethal Heat Shock
by Xin Zhang, Xiuhong Cai, Shirui Yue, Zhangxuan Chen, Yulong Sun, Lei Cheng, Yewen Xi and Shunchang Wang
Animals 2025, 15(14), 2150; https://doi.org/10.3390/ani15142150 - 21 Jul 2025
Viewed by 291
Abstract
Water temperature significantly affects the physiological balance of aquatic organisms like crustaceans, and heat shock proteins (HSPs) are crucial for stress resistance and pathogen defense. This study conducted a genome-wide analysis to explore the functional characteristics of the Hsp70 gene family in Procambarus [...] Read more.
Water temperature significantly affects the physiological balance of aquatic organisms like crustaceans, and heat shock proteins (HSPs) are crucial for stress resistance and pathogen defense. This study conducted a genome-wide analysis to explore the functional characteristics of the Hsp70 gene family in Procambarus clarkii. Fifteen Hsp70 family members were identified, with several genes showing upregulation under non-lethal heat shock (NLHS) and pathogen challenges. RNA-Seq and qPCR analyses confirmed increased expression of certain PcHsp70s during NLHS, indicating NLHS activation of the Hsp70 family to enhance immune regulation. dsRNA-mediated silencing of Hsp70 led to downregulation of TLR pathway genes (e.g., TLR1, TLR6), suggesting Hsp70 regulates the TLR signaling pathway for immune responses. These findings reveal that NLHS-induced Hsp70 upregulation improves pathogen resistance, offering insights for addressing temperature fluctuations and disease outbreaks in aquaculture to optimize management practices. Full article
Show Figures

Figure 1

20 pages, 6178 KiB  
Article
Time Evolution of Bacterial Resistance Observed with Principal Component Analysis
by Claudia P. Barrera Patiño, Mitchell Bonner, Andrew Ramos Borsatto, Jennifer M. Soares, Kate C. Blanco and Vanderlei S. Bagnato
Antibiotics 2025, 14(7), 729; https://doi.org/10.3390/antibiotics14070729 - 20 Jul 2025
Viewed by 401
Abstract
Background/Objectives: In recent work, we have demonstrated that principal component analysis (PCA) and Fourier Transformation Infrared (FTIR) spectra are powerful tools for analyzing the changes in microorganisms at the biomolecular level to detect changes in bacteria with resistance to antibiotics. Here biochemical [...] Read more.
Background/Objectives: In recent work, we have demonstrated that principal component analysis (PCA) and Fourier Transformation Infrared (FTIR) spectra are powerful tools for analyzing the changes in microorganisms at the biomolecular level to detect changes in bacteria with resistance to antibiotics. Here biochemical structural changes in Staphylococcus aureus were analyzed over exposure time with the goal of identifying trends inside the samples that have been exposed to antibiotics for increasing amounts of time and developed resistance. Methods: All studied data was obtained from FTIR spectra of samples with induced antibiotic resistance to either Azithromycin, Oxacillin, or Trimethoprim/Sulfamethoxazole following the evolution of this development over four increasing antibiotic exposure periods. Results: The processing and data analysis with machine learning algorithms performed on this FTIR spectral database allowed for the identification of patterns across minimum inhibitory concentration (MIC) values associated with different exposure times and both clusters from hierarchical classification and PCA. Conclusions: The results enable the observation of resistance development pathways for the sake of knowing the present stage of resistance of a bacterial sample. This is carried out via machine learning methods for the purpose of faster and more effective infection treatment in healthcare settings. Full article
(This article belongs to the Section Mechanism and Evolution of Antibiotic Resistance)
Show Figures

Figure 1

24 pages, 3099 KiB  
Article
Comprehensive Assessment of Health Risks Associated with Gram-Negative Bacterial Contamination on Healthcare Personnel Gowns in Clinical Settings
by Daniela Moreno-Torres, Carlos Alberto Jiménez-Zamarripa, Sandy Mariel Munguía-Mogo, Claudia Camelia Calzada-Mendoza, Clemente Cruz-Cruz, Emilio Mariano Durán-Manuel, Antonio Gutiérrez-Ramírez, Graciela Castro-Escarpulli, Madeleine Edith Vélez-Cruz, Oscar Sosa-Hernández, Araceli Rojas-Bernabé, Beatriz Leal-Escobar, Omar Agni García-Hernández, Enzo Vásquez-Jiménez, Gustavo Esteban Lugo-Zamudio, María Concepción Tamayo-Ordóñez, Yahaira de Jesús Tamayo-Ordóñez, Dulce Milagros Razo Blanco-Hernández, Benito Hernández-Castellanos, Julio César Castañeda-Ortega, Marianela Paredes-Mendoza, Miguel Ángel Loyola-Cruz and Juan Manuel Bello-Lópezadd Show full author list remove Hide full author list
Microorganisms 2025, 13(7), 1687; https://doi.org/10.3390/microorganisms13071687 - 18 Jul 2025
Viewed by 808
Abstract
Microbiological contamination of healthcare workers’ gowns represents a critical risk for the transmission of healthcare-associated infections (HAIs). Despite their use as protective equipment, gowns can act as reservoirs of antibiotic-resistant bacteria, favouring the spread of pathogens between healthcare workers and patients. The presence [...] Read more.
Microbiological contamination of healthcare workers’ gowns represents a critical risk for the transmission of healthcare-associated infections (HAIs). Despite their use as protective equipment, gowns can act as reservoirs of antibiotic-resistant bacteria, favouring the spread of pathogens between healthcare workers and patients. The presence of these resistant bacteria on healthcare workers’ gowns highlights the urgent need to address this risk as part of infection control strategies. The aim of this work was to assess the microbiological risks associated with the contamination of healthcare staff gowns with Gram-negative bacteria, including the ESKAPE group, and their relationship with antimicrobial resistance. An observational, cross-sectional, prospective study was conducted in 321 hospital workers. The imprinting technique was used to quantify the bacterial load on the gowns, followed by bacterial identification by MALDI-TOF mass spectrometry. In addition, antimicrobial resistance profiles were analysed, and tests for carbapenemases and BLEE production were performed. The ERIC-PCR technique was also used for molecular analysis of Pantoea eucrina clones. Several Gram-negative bacteria were identified, including bacteria of the ESKAPE group. The rate of microbiological contamination of the gowns was 61.05% with no association with the sex of the healthcare personnel. It was observed that critical areas of the hospital, such as intensive care units and operating theatres, showed contamination by medically important bacteria. In addition, some strains of P. eucrina showed resistance to carbapenemics and cephalosporins. ERIC-PCR analysis of P. eucrina isolates showed genetic heterogeneity, indicating absence of clonal dissemination. Healthcare personnel gowns are a significant reservoir of pathogenic bacteria, especially in critical areas of Hospital Juárez de México. It is essential to implement infection control strategies that include improving the cleaning and laundering of gowns and ideally eliminating them from clothing to reduce the risk of transmission of nosocomial infections. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

17 pages, 2652 KiB  
Article
Spontaneous Bacterial Peritonitis in Advanced Cirrhosis: Diagnosis by Tm Mapping and Inflammatory Profiles of Extracellular Vesicles
by Aiko Murayama, Kazuto Tajiri, Nozomu Muraishi, Yuka Hayashi, Masami Minemura, Hideki Niimi and Ichiro Yasuda
J. Clin. Med. 2025, 14(14), 5096; https://doi.org/10.3390/jcm14145096 - 17 Jul 2025
Viewed by 269
Abstract
Background/Objectives: Ascites is a major complication in patients with decompensated cirrhosis. Spontaneous bacterial peritonitis (SBP), an infection of the ascitic fluid, is a life-threatening condition in patients with cirrhosis. This study aimed to assess the utility of Tm mapping, a novel high-efficacy [...] Read more.
Background/Objectives: Ascites is a major complication in patients with decompensated cirrhosis. Spontaneous bacterial peritonitis (SBP), an infection of the ascitic fluid, is a life-threatening condition in patients with cirrhosis. This study aimed to assess the utility of Tm mapping, a novel high-efficacy method for bacterial detection and quantification, in the early diagnosis of SBP and its pathogenesis. Methods: Ascitic fluid samples from 29 patients with cirrhosis were analyzed using Tm mapping for bacterial identification. Inflammatory cytokine and pathogen-associated molecular pattern levels in ascitic fluid were measured and correlated with SBP pathophysiology. Additionally, the role of ascitic macrophages was investigated in vitro. Results: Tm mapping detected bacteria more effectively than conventional culture methods. In samples where bacteria were identified, ascitic interleukin (IL)-6 levels were elevated. A positive correlation was observed between extracellular vesicle (EV) levels and IL-6, suggesting a role for EVs in peritoneal inflammation. Furthermore, EVs derived from Gram-negative bacteria induced M1 macrophage differentiation via the signal transducer and activator of transcription 1 signaling pathway. Conclusions: Tm mapping is a valuable tool for the early detection of bacteria in ascitic fluid. Additionally, EVs promote M1 macrophage differentiation, implicating them in the pathogenesis of cirrhotic complications, including SBP. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Show Figures

Figure 1

Back to TopTop