Epidemiology of Bacterial Meningitis in the Lombardy Region, Italy, from 2014 to 2024: An Observational, Retrospective Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen Collection, Storage and Transport
2.2. Detecting and Serotyping Pathogens
2.3. Data Analysis
3. Results
3.1. Epidemiological Characteristics
3.2. SP, NM and HI Trends
3.3. Distribution of Serotypes of SP Isolates
3.4. Distribution of Serotypes of HI Isolates
3.5. Distribution of Serogroups of NM Isolates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SP | Streptococcus pneumoniae |
HI | Haemophilus influenzae |
NM | Neisseria meningitidis |
CSF | Cerebrospinal fluid |
PPV | Polysaccharide vaccine |
References
- Van Ettekoven, C.N.; Liechti, F.D.; Brouwer, M.C.; Bijlsma, M.W.; van de Beek, D. Global Case Fatality of Bacterial Meningitis During an 80-Year Period: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2024, 7, e2424802. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Akaishi, T.; Tarasawa, K.; Fushimi, K.; Yaegashi, N.; Aoki, M.; Fujimori, K. Demographic profiles and risk factors for mortality in acute meningitis: A nationwide population-based observational study. Acute Med. Surg. 2023, 11, e920. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hasbun, R. Progress and Challenges in Bacterial Meningitis: A Review. JAMA 2022, 328, 2147–2154. [Google Scholar] [CrossRef] [PubMed]
- Ganaie, F.; Saad, J.S.; McGee, L.; van Tonder, A.J.; Bentley, S.D.; Lo, S.W.; Gladstone, R.A.; Turner, P.; Keenan, J.D.; Breiman, R.F.; et al. A New Pneumococcal Capsule Type, 10D, is the 100th Serotype and Has a Large cps Fragment from an Oral Streptococcus. mBio 2020, 11, e00937-20. [Google Scholar] [CrossRef]
- Geno, K.A.; Gilbert, G.L.; Song, J.Y.; Skovsted, I.C.; Klugman, K.P.; Jones, C.; Konradsen, H.B.; Nahm, M.H. Pneumococcal capsules and their types: Past, present, and future. Clin. Microbiol. Rev. 2015, 28, 871–899. [Google Scholar] [CrossRef]
- Ulanova, M.; Tsang, R.S.W. Haemophilus influenzae serotype a as a cause of serious invasive infections. Lancet Infect. Dis. 2014, 14, 70–82. [Google Scholar] [CrossRef]
- Stephens, D.S.; Greenwood, B.; Brandtzaeg, P. Epidemic meningitis, menin-gococcaemia, and Neisseria meningitidis. Lancet 2007, 369, 2196–2210. [Google Scholar] [CrossRef]
- Marsay, L.; Dold, C.; Green, C.; Rollier, C.; Norheim, G.; Sadarangani, M.; Shanyinde, M.; Brehony, C.; Thompson, A.; Sanders, H.; et al. A novel meningococcal outer membrane vesicle vaccine with constitutive expression of FetA: A phase I clinical trial. J. Infect. 2015, 71, 326–337. [Google Scholar] [CrossRef]
- Paton, J.C.; Trappetti, C. Streptococcus pneumoniae Capsular Polysaccharide. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Tzeng, Y.; Thomas, J.; Stephens, D.S. Regulation of capsule in Neisseria meningitides. Crit. Rev. Microbiol. 2016, 42, 759–772. [Google Scholar] [CrossRef]
- Nasreen, M.; Ellis, D.; Hosmer, J.; Essilfie, A.; Fantino, E.; Sly, P.G.; McEwan, A.; Kappler, U. The DmsABC S-oxide reductase is an essential component of a novel, hypochlorite-inducible system of extracellular stress defense in Haemophilus influenzae. Front. Microbiol. 2024, 15, 1359513. [Google Scholar] [CrossRef]
- Wikivaccini. I Vaccini Offerti. Lombardy Region. 2025. Available online: https://www.wikivaccini.regione.lombardia.it/wps/portal/site/wikivaccini/DettaglioRedazionale/le-vaccinazioni-quali/vaccini (accessed on 16 July 2025).
- Koelman, D.L.H.; van Kassel, M.N.; Bijlsma, M.W.; Brouwer, M.C.; van de Beek, D.; van der Ende, A. Changing Epidemiology of Bacterial Meningitis Since Introduction of Conjugate Vaccines: 3 Decades of National Meningitis Surveillance in The Netherlands. Clin. Infect. Dis. 2021, 73, e1099–e1107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deal, A.; Halliday, R.; Crawshaw, A.F.; Hayward, S.E.; Burnard, A.; Rustage, K.; Carter, J.; Mehrotra, A.; Knights, F.; Campos-Matos, I.; et al. European Society of Clinical Microbiology and Infectious Diseases Study Group for Infections in Travellers and Migrants (ESGITM). Migration and outbreaks of vaccine-preventable disease in Europe: A systematic review. Lancet Infect. Dis. 2021, 21, e387–e398. [Google Scholar] [CrossRef] [PubMed]
- Thigpen, M.C.; Whitney, C.G.; Messonnier, N.E.; Zell, E.R.; Lynfield, R.; Hadler, J.L.; Harrison, L.H.; Farley, M.M.; Reingold, A.; Bennett, N.M.; et al. Emerging Infections Programs Network. Bacterial meningitis in the United States, 1998-2007. N. Engl. J. Med. 2011, 364, 2016–2025. [Google Scholar] [CrossRef] [PubMed]
- RIS-2/2024; Invasive Bacterial Diseases. Epidemiological Data. Epidemiology for Public Health, Istituto Superiore di Sanità: Rome, Italy, 2024.
- ECDC—European Centre for Disease Prevention and Control. Annual Epidemiological Report for 2022. Invasive Pneumococcal Disease. 2022. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/PNEU_AER_2022_Report.pdf (accessed on 20 July 2025).
- ECDC—European Centre for Disease Prevention and Control. Annual Epidemiological Report for 2022. Haemophilus influenzae Disease. 2022. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Haemophilus%20influenzae_AER_2022_Report-final.pdf (accessed on 20 July 2025).
- ECDC—European Centre for Disease Prevention and Control. Annual Epidemiological Report for 2022. Invasive Meningococcal Disease. 2022. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/invasive-meningococcal-disease-annual-epidmeiological-report-2022.pdf (accessed on 20 July 2025).
- Brito, C.V.B.; Formigosa, C.A.C.; Neto, O.S.M. Impact of COVID-19 pandemic on notifiable diseases in Northern Brazil. Rev. Bras. Promoç Saúde 2022, 35, 12777. [Google Scholar]
- Prasad, N.; Rhodes, J.; Deng, L.; McCarthy, N.L.; Moline, H.L.; Baggs, J.; Reddy, S.C.; Jernigan, J.; Havers, F.P.; Sosin, D.M.; et al. Changes in the Incidence of Invasive Bacterial Disease During the COVID-19 Pandemic in the United States, 2014–2020. J. Infect. Dis. 2023, 227, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Delfino, M.; Méndez, A.P.; Ferrer, M.P.; Pírez, M.C. 1320. Pneumococcal Meningitis Before and During COVID-19 Pandemic in Uruguay, South America (2017–2022). In Open Forum Infectious Diseases; Oxford University Press: Oxford, UK, 2023; Volume 10, p. ofad500.1159. [Google Scholar]
- Liechti, F.D.; Bijlsma, M.W.; Brouwer, M.C.; van Sorge, N.M.; van de Beek, D. Impact of the COVID-19 pandemic on incidence and serotype distribution of pneumococcal meningitis—A prospective, nationwide cohort study from The Netherlands. J. Infect. 2024, 88, 65–67. [Google Scholar] [CrossRef]
- Barret, A.; François, C.; Deghmane, A.; Lefrançois, R.; Mercuriali, L.; Thabuis, A.; Marie, C.; Carraz-Billat, E.; Zanetti, L.; Parent du Chatelet, I.; et al. Increase in invasive Haemophilus influenzae type b disease in young children despite high vaccination coverage, France, 2018–2024. Vaccine 2025, 62, 127499. [Google Scholar] [CrossRef]
- Huh, H.; Sung, H. Recent Trends in Invasive Pneumococcal Disease in Korea in the Post-pneumococcal Vaccine Era. Ann. Lab. Med. 2023, 43, 1–2. [Google Scholar] [CrossRef]
- Yun, K.W.; Rhie, K.; Kang, J.A.; Kim, K.; Ahn, J.G.; Kim, Y.; Eun, B.W.; Oh, S.H.; Cho, H.-K.; Hong, J.-Y.; et al. Emergence of serotype 10A-ST11189 among pediatric invasive pneumococcal diseases, South Korea, 2014–2019. Vaccines 2021, 40, 5787–5793. [Google Scholar] [CrossRef]
- Jandova, Z.; Musilek, M.; Vackova, Z.; Kozáková, J.; Krizova, P. Serogroup and Clonal Characterization of Czech Invasive Neisseria meningitidis Strains Isolated from 1971 to 2015. PLoS ONE 2016, 11, e0167762. [Google Scholar] [CrossRef]
- Càmara, J.; Grau, I.; González-Díaz, A.; Tubau, F.; Calatayud, L.; Cubero, M.; Domínguez, M.Á.; Liñares, J.; Yuste, J.; Pallarés, R.; et al. A historical perspective of MDR invasive pneumococcal disease in Spanish adults. J. Antimicrob. Chemother. 2021, 76, 507–515. [Google Scholar] [CrossRef]
- Silva-Costa, C.; Gomes-Silva, J.; Pinho, M.; Friães, A.; Subtil-Limpo, F.; Ramirez, M.; Melo-Cristino, J.; Portuguese Group for the Study of Streptococcal Infections; Portuguese Study Group of Invasive Pneumococcal Disease of the Pediatric Infectious Disease Society. Rebound of pediatric invasive pneumococcal disease in Portugal after the COVID-19 pandemic was not associated with significant serotype changes. J. Infect. 2024, 89, 106242. [Google Scholar] [CrossRef] [PubMed]
- Azarian, T.; Mitchell, P.K.; Georgieva, M.; Thompson, C.M.; Ghouila, A.; Pollard, A.J.; von Gottberg, A.; Plessis, M.D.; Antonio, M.; Kwambana-Adams, B.A.; et al. Global emergence and population dynamics of divergent serotype 3 CC180 pneumococci. PLoS Pathog. 2018, 14, e1007438. [Google Scholar] [CrossRef] [PubMed]
- Gladstone, R.A.; Lo, S.W.; Lees, J.A.; Croucher, N.J.; Van Tonder, A.J.; Corander, J.; Page, A.J.; Marttinen, P.; Bentley, L.J.; Ochoa, T.J.; et al. International genomic definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact. eBioMedicine 2019, 43, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Stanley, S.; Silva-Costa, C.; Gomes-Silva, J.; Melo-Cristino, J.; Malley, R.; Ramirez, M. CC180 clade dynamics do not universally explain Streptococcus pneumoniae serotype 3 persistence post-vaccine: A global comparative population genomics study. eBioMedicine 2025, 117, 105781. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Groves, N.; Sheppard, C.L.; Litt, D.; Rose, S.; Silva, A.; Njoku, N.; Rodrigues, S.; AminChowdhury, Z.; Andrews, N.; Ladhani, S.; et al. Evolution of Streptococcus pneumoniae serotype 3 in England and Wales: A major vaccine evader. Genes 2019, 10, 845. [Google Scholar] [CrossRef]
- Bertran, M.; D’Aeth, J.C.; Abdullahi, F.; Eletu, S.; Andrews, N.J.; Ramsay, M.E.; Litt, D.J.; Ladhani, S.N. Invasive pneumococcal disease 3 years after introduction of a reduced 1+ 1 infant 13-valent pneumococcal conjugate vaccine immunisation schedule in England: A prospective national observational surveillance study. Lancet Infect. Dis. 2024, 24, 546–556. [Google Scholar] [CrossRef]
- Corcoran, M.; Mereckiene, J.; Cotter, S.; Murchan, S.; Lo, S.W.; McGee, L.; Breiman, R.F.; Cunney, R.; Humphreys, H.; Bentley, S.D.; et al. Using genomics to examine the persistence of Streptococcus pneumoniae serotype 19A in Ireland and the emergence of a sub-clade associated with vaccine failures. Vaccine 2021, 39, 5064–5073. [Google Scholar] [CrossRef]
- Miernyk, K.M.; Bulkow, L.R.; Case, S.L.; Zulz, T.; Bruce, M.G.; Harker-Jones, M.; Hurlburt, D.A.; Hennessy, T.W.; Rudolph, K.M. Population structure of invasive Streptococcus pneumoniae isolates among Alaskan children in the conjugate vaccine era, 2001 to 2013. Diagn. Microbiol. Infect. Dis. 2016, 86, 224–230. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Puzia, W.; Gawor, J.; Gromadka, R.; Żuchniewicz, K.; Wróbel-Pawelczyk, I.; Ronkiewicz, P.; Gołębiewska, A.; Hryniewicz, W.; Sadowy, E.; Skoczyńska, A. Highly Resistant Serotype 19A Streptococcus pneumoniae of the GPSC1/CC320 Clone from Invasive Infections in Poland Prior to Antipneumococcal Vaccination of Children. Infect. Dis. Ther. 2023, 12, 2017–2037. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- ECDC. Consumption of Antibacterials for Systemic Use (ATC Group J01) in the Community and Hospital Sector in Europe, Reporting Year 2018. European Centre for Disease Prevention and Control, 2020. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-consumption-europe-2018 (accessed on 23 July 2025).
- Hansen, C.B.; Fuursted, K.; Valentiner-Branth, P.; Dalby, T.; Jørgensen, C.S.; Slotved, H.C. Molecular characterization and epidemiology of Streptococcus pneumoniae serotype 8 in Denmark. BMC Infect. Dis. 2021, 21, 1–13. [Google Scholar] [CrossRef]
- Brueggemann, A.B.; Jansen van Rensburg, M.J.; Shaw, D.; McCarthy, N.D.; Jolley, K.A.; Maiden, M.C.J.; van der Linden, M.P.G.; Amin-Chowdhury, Z.; Bennett, D.E.; Borrow, R.; et al. Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: A prospective analysis of surveillance data. Lancet Digit. Health 2021, 3, 195–210. [Google Scholar]
- Shaw, D.; Abad, R.; Amin-Chowdhury, Z.; Bautista, A.; Bennett, D.; Broughton, K.; Cao, B.; Casanova, C.; Choi, E.H.; Chu, Y.-W.; et al. Trends in invasive bacterial diseases during the first 2 years of the COVID-19 pandemic: Analyses of prospective surveillance data from 30 countries and territories in the IRIS Consortium. Lancet Digit. Health 2023, 5, e582–e593. [Google Scholar] [CrossRef] [PubMed]
- Ktena, D.; Kourkouni, E.; Kontopidou, F.; Gkolfinopoulou, K.; Papadima, K.; Georgakopoulou, T.; Magaziotou, I.; Andreopoulou, A.; Tzanakaki, G.; Zaoutis, T.; et al. Population-based study of influenza and invasive meningococcal disease among Greek children during the COVID-19 pandemic. BMJ Paediatr. Open 2022, 6, e001391. [Google Scholar] [CrossRef] [PubMed]
- Fazio, C.; Daprai, L.; Neri, A.; Tirani, M.; Vacca, P.; Arghittu, M.; Ambrosio, L.; Cereda, D.; Gramegna, M.; Palmieri, A.; et al. Reactive vaccination as control strategy for an outbreak of invasive meningococcal disease caused by Neisseria meningitidis C:P1.5-1,10-8:F3-6:ST-11(cc11), Bergamo province, Italy, December 2019 to January 2020. Eurosurveillance 2022, 27, 2100919. [Google Scholar] [CrossRef]
- Jbari, S.; Lahmini, W.; Boussaa, S.; Bourrous, M. Impact of COVID-19 pandemic on pediatric meningitis incidence in central Morocco. Sci. Afr. 2022, 16, e01213. [Google Scholar] [CrossRef]
- Parikh, S.R.; Campbell, H.; Bettinger, J.A.; Harrison, L.H.; Marshall, H.S.; Martinon-Torres, F.; Safadi, M.A.; Shao, Z.; Zhu, B.; von Gottberg, A.; et al. The everchanging epidemiology of meningococcal disease worldwide and the potential for prevention through vaccination. J. Infect. 2020, 81, 483–498. [Google Scholar] [CrossRef]
- Knol, M.J.; Ruijs, W.L.M.; Antonise-Kamp, L.; de Melker, H.E.; van der Ende, A. Implementation of MenACWY vaccination because of ongoing increase in serogroup W invasive meningococcal disease, the Netherlands, 2018. Eurosurveillance 2018, 23, 18-00158. [Google Scholar] [CrossRef]
- Jolley, K.A.; Kalmusova, J.; Feil, E.J.; Gupta, S.; Musilek, M.; Kriz, P.; Maiden, M.C. Carried meningococci in the Czech Republic: A diverse recombining population. J. Clin. Microbiol. 2000, 38, 4492–4498. [Google Scholar] [CrossRef]
- McMillan, M.; Walters, L.; Mark, T.; Lawrence, A.; Leong, L.E.X.; Sullivan, T.; Rogers, G.B.; Andrews, R.M.; Marshall, H.S. B Part of It study: A longitudinal study to assess carriage of Neisseria meningitidis in first year university students in South Australia.Hum. Vaccines Immunother. 2019, 15, 987–994. [Google Scholar] [CrossRef]
- Langereis, J.D.; de Jonge, M.I. Invasive disease caused by non typeable Haemophilus influenzae. Emerg. Infect. Dis. 2015, 21, 1711–1718. [Google Scholar] [CrossRef]
- Slack, M.; Cripps, A.; Grimwood, K.; Mackenzie, G.; Ulanova, M. Invasive Haemophilus influenzae infections after 3 decades of Hib protein conjugate vaccine use. Clin. Microbiol. Rev. 2021, 34, e0002821. [Google Scholar] [CrossRef] [PubMed]
- McTaggart, L.R.; Cronin, K.; Seo, C.Y.; Wilson, S.; Patel, S.N.; Kus, J.V. Increased Incidence of Invasive Haemophilus influenzae Disease Driven by Non-Type B Isolates in Ontario, Canada, 2014 to 2018. Microbiol. Spectr. 2021, 9, e0080321. [Google Scholar] [CrossRef] [PubMed]
- LaCross, N.C.; Marrs, C.F.; Patel, M.; Sandstedt, S.A.; Gilsdorf, J.R. High genetic diversity of nontypeable Haemophilus influenzae isolates from two children attending a day care center. J. Clin. Microbiol. 2008, 46, 3817–3821. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.; González-Díaz, A.; Machado, M.P.; Duarte, S.; Vieira, L.; Carriço, J.A.; Marti, S.; Bajanca-Lavado, M.P.; Gomes, J.P. Insights into the population structure and pan-genome of Haemophilus influenzae. Infect. Gene Evol. 2019, 67, 126–135. [Google Scholar] [CrossRef]
- Steens, A.; Stanoeva, K.R.; Knol, M.J.; Mariman, R.; de Melker, H.E.; van Sorge, N.M. Increase in invasive disease caused by Haemophilus influenzae b, the Netherlands, 2020 to 2021. Eurosurveillance 2021, 26, 2100956. [Google Scholar] [CrossRef]
- Hong, E.; Terrade, A.; Denizon, M.; Aouiti-Trabelsi, M.; Falguières, M.; Taha, M.K.; Deghmane, A.E. Haemophilus influenzae type b (Hib) seroprevalence in France: Impact of vaccination schedules. BMC Infect. Dis. 2021, 21, 715. [Google Scholar] [CrossRef]
- Giufrè, M.; Cardines, R.; Brigante, G.; Orecchioni, F.; Cerquetti, M. Emergence of invasive Haemophilus influenzae type a disease in Italy. Clin. Infect. Dis. 2017, 64, 1626–1628. [Google Scholar] [CrossRef]
- Deghmane, A.E.; Taha, M.K. Changes in Invasive Neisseria meningitidis and Haemophilus influenzae infections in France during the COVID-19 pandemic. Microorganisms 2022, 10, 907. [Google Scholar] [CrossRef]
- Zulz, T.; Huang, G.; Rudolph, K.; DeByle, C.; Tsang, R.; Desai, S.; Massey, S.; Bruce, M.G. Epidemiology of invasive Haemophilus influenzae serotype a disease in the North American Arctic, 2006–2017. Int. J. Circumpolar Health 2022, 81, 2150382. [Google Scholar] [CrossRef]
- Soeters, H.M.; Oliver, S.E.; Plumb, I.D.; Blain, A.E.; Zulz, T.; Simons, B.C.; Barnes, M.; Farley, M.M.; Harrison, L.H.; Lynfield, R.; et al. Epidemiology of invasive Haemophilus influenzae serotype a disease—United States, 2008–2017. Clin. Infect. Dis. 2021, 73, e371–e379. [Google Scholar] [CrossRef]
- Efron, A.; Nápoli, D.; Neyro, S.; del Valle Juárez, M.; Moscoloni, M.; Eluchans, N.S.; Regueira, M.; Lavayén, S.; Faccone, D.; Santos, M.; et al. Laboratory surveillance of invasive Haemophilus influenzae disease in Argentina, 2011–2019. Rev. Argent. Microbiol. 2022, 55, 133–142. [Google Scholar] [CrossRef]
- Tønnessen, R.; García, I.; Debech, N.; Lindstrøm, J.C.; Wester, A.L.; Skaare, D. Molecular epidemiology and antibiotic resistance profiles of invasive Haemophilus influenzae from Norway 2017–2021. Front. Microbiol. 2022, 13, 973257. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peradotto, M.; Bondi, A.; Lombardi, D.; Bottino, P.; Zanotto, E.; Barbui, A.M.; Cavallo, R. The impact of COVID-19 pandemic control on vaccine-preventable invasive bacterial diseases in Piedmont (Italy). Infection 2022, 50, 767–770. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Graziani, A.; Bozza, S.; Borghi, M.; Mencacci, A.; Camilloni, B. Circulation and Seasonality of Respiratory Viruses in Hospitalized Patients during Five Consecutive Years (2019–2023) in Perugia, Italy. Viruses 2024, 16, 1394. [Google Scholar] [CrossRef]
Sample Characteristics | Overall | Years | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | |||
N (%) | 731 (10) | 62 (8.4) | 79 (10.8) | 101 (13.8) | 108 (14.7) | 79 (10.8) | 80 (10.9) | 30 (4.1) | 26 (3.5) | 48 (6.5) | 52 (7.1) | 66 (9.0) | 0.137 |
Age in years, median (IQR) | 60 (41–71) | 60 (36–71) | 60 (47–71) | 62 (43–68) | 62 (38–73) | 57 (44–73) | 57 (31–68) | 63 (32–74) | 56 (50–65) | 59 (46–71) | 57 (40–71) | 62 (41–72) | 0.846 |
Infants, n (%) | 26 (3.6) | 0 (0.0) | 3 (3.8) | 1 (0.9) | 8 (7.4) | 1 (1.2) | 5 (6.3) | 0 (0.0) | 0 (0.0) | 3 (6.2) | 5 (9.6) | 0 (0.0) | 0.011 |
Young children, n (%) | 34 (4.7) | 6 (9.7) | 2 (2.5) | 6 (5.9) | 5 (4.7) | 3 (3.8) | 2 (2.5) | 2 (6.6) | 1 (3.8) | 3 (6.2) | 1 (1.9) | 3 (4.5) | 0.71 |
Older children, n (%) | 32 (4.4) | 7 (11.3) | 1 (1.3) | 3 (3.0) | 2 (1.9) | 1 (1.3) | 7 (8.8) | 2 (6.6) | 0 (0) | 0 (0) | 4 (7.7) | 5 (7.6) | 0.009 |
Adults, n (%) | 333 (45.6) | 21 (34) | 39 (49.4) | 48 (48.6) | 43 (39.8) | 42 (53.2) | 37 (46.2) | 12 (40.0) | 18 (69.2) | 22 (45.9) | 24 (46.2) | 27 (40.9) | 0.157 |
Elderly, n (%) | 306 (41.9) | 28 (45) | 34 (43.0) | 43 (41.6) | 50 (46.2) | 32 (40.5) | 29 (36.2) | 14 (46.7) | 7 (27.0) | 20 (41.7) | 18 (34.6) | 31 (47.0) | 0.744 |
Pathogens | Infants, n (%) | Young Children, n (%) | Older Children, n (%) | Adults, n (%) | Elderly, n (%) | p-Value |
---|---|---|---|---|---|---|
S. pneumoniae, n = 573 | 13 (2.3) | 15 (2.6) | 16 (2.8) | 259 (45.2) | 270 (47.1) | <0.001 |
H. influenzae, n = 63 | 8 (13.0) | 5 (8.0) | 0 (0.0) | 25 (39.5) | 25 (39.5) | <0.001 |
N. meningitidis, n = 95 | 5 (5.2) | 14 (14.7) | 16 (17.0) | 49 (51.6) | 11 (11.5) | <0.001 |
Pathogens | Years | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | ||
S. pneumoniae, n (%) | 47 (75.8) | 63 (79.7) | 82 (81.2) | 87 (80.5) | 64 (81.0) | 52 (65.0) | 23 (76.7) | 18 (69.2) | 40 (83.3) | 48 (92.3) | 49 (74.2) | 0.046 |
H. influenzae, n (%) | 3 (4.8) | 6 (7.6) | 7 (7.0) | 11 (10.2) | 2 (2.5) | 9 (11.2) | 4 (13.3) | 4 (15.4) | 5 (10.4) | 3 (5.8) | 9 (13.7) | 0.316 |
N. meningitidis, n (%) | 12 (19.4) | 10 (12.7) | 12 (11.8) | 10 (9.3) | 13 (16.5) | 19 (23.8) | 3 (10.0) | 4 (15.4) | 3 (6.3) | 1 (1.9) | 8 (12.1) | 0.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liporace, M.F.; Salari, F.; Orena, B.S.; Piccoli, M.; Tomassini, E.; Vezzosi, L.; Del Castillo, G.; Daprai, L.; Cereda, D.; Alteri, C.; et al. Epidemiology of Bacterial Meningitis in the Lombardy Region, Italy, from 2014 to 2024: An Observational, Retrospective Study. Microorganisms 2025, 13, 1733. https://doi.org/10.3390/microorganisms13081733
Liporace MF, Salari F, Orena BS, Piccoli M, Tomassini E, Vezzosi L, Del Castillo G, Daprai L, Cereda D, Alteri C, et al. Epidemiology of Bacterial Meningitis in the Lombardy Region, Italy, from 2014 to 2024: An Observational, Retrospective Study. Microorganisms. 2025; 13(8):1733. https://doi.org/10.3390/microorganisms13081733
Chicago/Turabian StyleLiporace, Maria Francesca, Federica Salari, Beatrice Silvia Orena, Michela Piccoli, Elena Tomassini, Luigi Vezzosi, Gabriele Del Castillo, Laura Daprai, Danilo Cereda, Claudia Alteri, and et al. 2025. "Epidemiology of Bacterial Meningitis in the Lombardy Region, Italy, from 2014 to 2024: An Observational, Retrospective Study" Microorganisms 13, no. 8: 1733. https://doi.org/10.3390/microorganisms13081733
APA StyleLiporace, M. F., Salari, F., Orena, B. S., Piccoli, M., Tomassini, E., Vezzosi, L., Del Castillo, G., Daprai, L., Cereda, D., Alteri, C., & Callegaro, A. (2025). Epidemiology of Bacterial Meningitis in the Lombardy Region, Italy, from 2014 to 2024: An Observational, Retrospective Study. Microorganisms, 13(8), 1733. https://doi.org/10.3390/microorganisms13081733