Spontaneous Bacterial Peritonitis in Advanced Cirrhosis: Diagnosis by Tm Mapping and Inflammatory Profiles of Extracellular Vesicles
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Tm Mapping
2.3. ELISA
2.4. Flow Cytometry
2.5. Cell Cultures
2.6. Western Blot for Detection of Macrophage Activation
2.7. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Diagnosis of SBP
3.3. Utility of Tm Mapping for Diagnosing SBP
3.4. Correlation Between Cytokines in Ascitic Fluid and Clinical Data
3.5. Dynamics of Macrophages in Ascitic Fluid
3.6. Contribution of EVs to Ascitic Inflammation in Clinical Settings
3.7. Contribution of EVs to Macrophage-Induced Inflammation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SBP | Spontaneous bacterial peritonitis |
Tm | Melting temperature |
E. coli | Escherichia coli |
PAMPs | Pathogen-associated molecular pattern molecules |
EVs | Extracellular vesicles |
LPS | Lipopolysaccharide |
WBC | White blood cell |
DV | Difference value |
IFN | Interferon |
ELISA | Enzyme-linked immunosorbent assay |
IL | Interleukin |
MELD-Na score | Model for End-Stage Liver Disease Sodium score |
SI | Splenic index |
TLR4 | Toll-like receptor 4 |
eGFR | Estimated glomerular filtration rate |
STAT1 | Signal transducer and activator of transcription |
IRF/STAT | Interferon regulatory factor/signal transducer and activator of transcription |
References
- Solà, E.; Solé, C.; Ginès, P. Management of Uninfected and Infected Ascites in Cirrhosis. Liver Int. 2016, 36 (Suppl. 1), 109–115. [Google Scholar] [CrossRef] [PubMed]
- Long, B.; Gottlieb, M. Emergency Medicine Updates: Spontaneous Bacterial Peritonitis. Am. J. Emerg. Med. 2023, 70, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Rimola, A.; García-Tsao, G.; Navasa, M.; Piddock, L.J.; Planas, R.; Bernard, B.; Inadomi, J.M. Diagnosis, Treatment and Prophylaxis of Spontaneous Bacterial Peritonitis: A Consensus Document. International Ascites Club. J. Hepatol. 2000, 32, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Marciano, S.; Díaz, J.M.; Dirchwolf, M.; Gadano, A. Spontaneous Bacterial Peritonitis in Patients with Cirrhosis: Incidence, Outcomes, and Treatment Strategies. Hepat. Med. 2019, 11, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Bal, C.K.; Daman, R.; Bhatia, V. Predictors of Fifty Days In-Hospital Mortality in Decompensated Cirrhosis Patients with Spontaneous Bacterial Peritonitis. World J. Hepatol. 2016, 8, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Biggins, S.W.; Angeli, P.; Garcia-Tsao, G.; Ginès, P.; Ling, S.C.; Nadim, M.K.; Wong, F.; Kim, W.R. Diagnosis, Evaluation, and Management of Ascites, Spontaneous Bacterial Peritonitis and Hepatorenal Syndrome: 2021 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2021, 74, 1014–1048. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. Electronic address: Easloffice@easloffice.eu; European Association for the Study of the Liver EASL Clinical Practice Guidelines for the Management of Patients with Decompensated Cirrhosis. J. Hepatol. 2018, 69, 406–460. [Google Scholar] [CrossRef] [PubMed]
- Runyon, B.A.; Canawati, H.N.; Akriviadis, E.A. Optimization of Ascitic Fluid Culture Technique. Gastroenterology 1988, 95, 1351–1355. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Linganna, M. Diagnosis and Management of Ascites, Spontaneous Bacterial Peritonitis, and Hepatorenal Syndrome. Cleve. Clin. J. Med. 2023, 90, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Shizuma, T. Spontaneous Bacterial and Fungal Peritonitis in Patients with Liver Cirrhosis: A Literature Review. World J. Hepatol. 2018, 10, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Niimi, H.; Ueno, T.; Hayashi, S.; Abe, A.; Tsurue, T.; Mori, M.; Tabata, H.; Minami, H.; Goto, M.; Akiyama, M.; et al. Melting Temperature Mapping Method: A Novel Method for Rapid Identification of Unknown Pathogenic Microorganisms within Three Hours of Sample Collection. Sci. Rep. 2015, 5, 12543. [Google Scholar] [CrossRef] [PubMed]
- Miyakoshi, A.; Niimi, H.; Ueno, T.; Wakasugi, M.; Higashi, Y.; Miyajima, Y.; Mori, M.; Tabata, H.; Minami, H.; Takaoka, A.; et al. Novel Rapid Method for Identifying and Quantifying Pathogenic Bacteria within Four Hours of Blood Collection. Sci. Rep. 2024, 14, 1199. [Google Scholar] [CrossRef] [PubMed]
- Higashi, Y.; Nakamura, S.; Niimi, H.; Ueno, T.; Matsumoto, K.; Kawago, K.; Sakamaki, I.; Kitajima, I.; Yamamoto, Y. Spondylodiscitis Due to Parvimonas Micra Diagnosed by the Melting Temperature Mapping Method: A Case Report. BMC Infect. Dis. 2017, 17, 584. [Google Scholar] [CrossRef] [PubMed]
- Ueno, T.; Niimi, H.; Yoneda, N.; Yoneda, S.; Mori, M.; Tabata, H.; Minami, H.; Saito, S.; Kitajima, I. Eukaryote-Made Thermostable DNA Polymerase Enables Rapid PCR-Based Detection of Mycoplasma, Ureaplasma and Other Bacteria in the Amniotic Fluid of Preterm Labor Cases. PLoS ONE 2015, 10, e0129032. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Aoyama, T.; Uejima, Y.; Furuichi, M.; Suganuma, E.; Takano, T.; Ikeda, M.; Mizoguchi, M.; Okugawa, S.; Moriya, K.; et al. Pyogenic Liver Abscess Due to Hypervirulent Klebsiella Pneumoniae in a 14-Year-Old Boy. J. Infect. Chemother. 2019, 25, 137–140. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, T.; Uejima, Y.; Okai, M.; Shiga, K.; Shoji, K.; Miyairi, I.; Kato, M.; Morooka, S.; Kubota, M.; Tagaya, T.; et al. Melting Temperature Mapping Method in Children: Rapid Identification of Pathogenic Microbes. J. Infect. Chemother. 2024, 30, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Piano, S.; Brocca, A.; Mareso, S.; Angeli, P. Infections Complicating Cirrhosis. Liver Int. 2018, 38 (Suppl. 1), 126–133. [Google Scholar] [CrossRef] [PubMed]
- Maccauro, V.; Airola, C.; Santopaolo, F.; Gasbarrini, A.; Ponziani, F.R.; Pompili, M. Gut Microbiota and Infectious Complications in Advanced Chronic Liver Disease: Focus on Spontaneous Bacterial Peritonitis. Life 2023, 13, 991. [Google Scholar] [CrossRef] [PubMed]
- Kronsten, V.T.; Tranah, T.H.; Pariante, C.; Shawcross, D.L. Gut-Derived Systemic Inflammation as a Driver of Depression in Chronic Liver Disease. J. Hepatol. 2022, 76, 665–680. [Google Scholar] [CrossRef] [PubMed]
- Haderer, M.; Neubert, P.; Rinner, E.; Scholtis, A.; Broncy, L.; Gschwendtner, H.; Kandulski, A.; Pavel, V.; Mehrl, A.; Brochhausen, C.; et al. Novel Pathomechanism for Spontaneous Bacterial Peritonitis: Disruption of Cell Junctions by Cellular and Bacterial Proteases. Gut 2022, 71, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Ñahui Palomino, R.A.; Vanpouille, C.; Costantini, P.E.; Margolis, L. Microbiota-Host Communications: Bacterial Extracellular Vesicles as a Common Language. PLoS Pathog. 2021, 17, e1009508. [Google Scholar] [CrossRef] [PubMed]
- Naito, Y.; Yoshioka, Y.; Yamamoto, Y.; Ochiya, T. How Cancer Cells Dictate Their Microenvironment: Present Roles of Extracellular Vesicles. Cell. Mol. Life Sci. 2017, 74, 697–713. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Lee, H.W. Important Predictor of Mortality in Patients with End-Stage Liver Disease. Clin. Mol. Hepatol. 2013, 19, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Vallet-Pichard, A.; Mallet, V.; Nalpas, B.; Verkarre, V.; Nalpas, A.; Dhalluin-Venier, V.; Fontaine, H.; Pol, S. FIB-4: An Inexpensive and Accurate Marker of Fibrosis in HCV Infection. Comparison with Liver Biopsy and Fibrotest: An Inexpensive and Accurate Marker of Fibrosis in HCV Infection. Comparison with Liver Biopsy and Fibrotest. Hepatology 2007, 46, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.G.; Lydecker, A.; Murray, K.; Tetri, B.N.; Contos, M.J.; Sanyal, A.J. Nash Clinical Research Network Comparison of Noninvasive Markers of Fibrosis in Patients with Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2009, 7, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Liu, J.; Liang, A.; Zhu, W.; Fu, J.; Wu, X.; Peng, Y.; Yuan, S.; Wu, X. Application of Metagenomic Next-Generation Sequencing in Optimizing the Diagnosis of Ascitic Infection in Patients with Liver Cirrhosis. BMC Infect. Dis. 2024, 24, 503. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Bao, Y.; Wu, L.; Ke, Y.; Tan, L.; Ren, H.; Song, J.; Zhang, Q.; Jin, Y. IL-8 Exacerbates CCl4-Induced Liver Fibrosis in Human IL-8-Expressing Mice via the PI3K/Akt/HIF-1α Pathway. Mol. Immunol. 2022, 152, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Aehling, N.F.; Hagenunger, A.; Krohn, S.; Zeller, K.; Jäger, K.; Herber, A.; Engelmann, C.; Berg, T. Use of Bacterial DNA Concentration in Ascites as a Marker for Spontaneous Bacterial Peritonitis. J. Clin. Exp. Hepatol. 2024, 14, 101434. [Google Scholar] [CrossRef] [PubMed]
- Suliman, M.A.; Khalil, F.M.; Alkindi, S.S.; Pathare, A.V.; Almadhani, A.A.; Soliman, N.A. Tumor Necrosis Factor-α and Interleukin-6 in Cirrhotic Patients with Spontaneous Bacterial Peritonitis. World J. Gastrointest. Pathophysiol. 2012, 3, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Mayr, U.; Lukas, M.; Elnegouly, M.; Vogt, C.; Bauer, U.; Ulrich, J.; Schmid, R.M.; Huber, W.; Lahmer, T. Ascitic Interleukin 6 Is Associated with Poor Outcome and Spontaneous Bacterial Peritonitis: A Validation in Critically Ill Patients with Decompensated Cirrhosis. J. Clin. Med. 2020, 9, 2865. [Google Scholar] [CrossRef] [PubMed]
- Qian, D.; Zhang, Y. Influence of Xuebijing Injection Combined with Cefoperazone Sodium and Sulbactam Sodium in Treating Hepatitis B-Induced Liver Cirrhosis Complicated by Spontaneous Bacterial Peritonitis: TNF-α, IL-18, IL-6, and Hepatic Function. Am. J. Transl. Res. 2021, 13, 2907–2914. [Google Scholar] [PubMed]
- Tang, D.; Kang, R.; Coyne, C.B.; Zeh, H.J.; Lotze, M.T. PAMPs and DAMPs: Signal 0s That Spur Autophagy and Immunity. Immunol. Rev. 2012, 249, 158–175. [Google Scholar] [CrossRef] [PubMed]
- Park, B.S.; Song, D.H.; Kim, H.M.; Choi, B.-S.; Lee, H.; Lee, J.-O. The Structural Basis of Lipopolysaccharide Recognition by the TLR4-MD-2 Complex. Nature 2009, 458, 1191–1195. [Google Scholar] [CrossRef] [PubMed]
- Barton, G.M.; Kagan, J.C. A Cell Biological View of Toll-like Receptor Function: Regulation through Compartmentalization. Nat. Rev. Immunol. 2009, 9, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Hu, J.; Pan, J.; Song, X.; Zhou, Y.; Zhang, J.; Yang, Y.; Shi, X.; Yang, J.; Sun, M. LPS Exposure Alleviates Multiple Tissues Damage by Facilitating Macrophage Efferocytosis. Int. Immunopharmacol. 2024, 135, 112283. [Google Scholar] [CrossRef] [PubMed]
- Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S.-A.; Mardani, F.; Seifi, B.; Mohammadi, A.; Afshari, J.T.; Sahebkar, A. Macrophage Plasticity, Polarization, and Function in Health and Disease. J. Cell. Physiol. 2018, 233, 6425–6440. [Google Scholar] [CrossRef] [PubMed]
- Orecchioni, M.; Ghosheh, Y.; Pramod, A.B.; Ley, K. Macrophage Polarization: Different Gene Signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. Alternatively Activated Macrophages. Front. Immunol. 2019, 10, 1084. [Google Scholar] [CrossRef] [PubMed]
- Villard, A.; Boursier, J.; Andriantsitohaina, R. Bacterial and Eukaryotic Extracellular Vesicles and Nonalcoholic Fatty Liver Disease: New Players in the Gut-Liver Axis? Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 320, G485–G495. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-S.; Lee, W.-H.; Choi, E.-J.; Choi, J.-P.; Heo, Y.J.; Gho, Y.S.; Jee, Y.-K.; Oh, Y.-M.; Kim, Y.-K. Extracellular Vesicles Derived from Gram-Negative Bacteria, Such as Escherichia Coli, Induce Emphysema Mainly via IL-17A-Mediated Neutrophilic Inflammation. J. Immunol. 2015, 194, 3361–3368. [Google Scholar] [CrossRef] [PubMed]
- Natsui, K.; Tsuchiya, A.; Imamiya, R.; Osada-Oka, M.; Ishii, Y.; Koseki, Y.; Takeda, N.; Tomiyoshi, K.; Yamazaki, F.; Yoshida, Y.; et al. Escherichia Coli-Derived Outer-Membrane Vesicles Induce Immune Activation and Progression of Cirrhosis in Mice and Humans. Liver Int. 2023, 43, 1126–1140. [Google Scholar] [CrossRef] [PubMed]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [PubMed]
- Seki, E.; Schnabl, B. Role of Innate Immunity and the Microbiota in Liver Fibrosis: Crosstalk between the Liver and Gut: Toll-like Receptors, Microbiota and Liver Fibrosis. J. Physiol. 2012, 590, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, Y.; Fu, M.; Xin, H.-B. Polarizing Macrophages in Vitro. Methods Mol. Biol. 2018, 1784, 119–126. [Google Scholar] [PubMed]
- Mohd Yasin, Z.N.; Mohd Idrus, F.N.; Hoe, C.H.; Yvonne-Tee, G.B. Macrophage Polarization in THP-1 Cell Line and Primary Monocytes: A Systematic Review. Differentiation 2022, 128, 67–82. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Sica, A.; Sozzani, S.; Allavena, P.; Vecchi, A.; Locati, M. The Chemokine System in Diverse Forms of Macrophage Activation and Polarization. Trends Immunol. 2004, 25, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Holdbrooks, A.T.; Liu, Y.; Reynolds, S.L.; Yanagisawa, L.L.; Benveniste, E.N. SOCS3 Deficiency Promotes M1 Macrophage Polarization and Inflammation. J. Immunol. 2012, 189, 3439–3448. [Google Scholar] [CrossRef] [PubMed]
- McCormick, S.M.; Heller, N.M. Regulation of Macrophage, Dendritic Cell, and Microglial Phenotype and Function by the SOCS Proteins. Front. Immunol. 2015, 6, 549. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Qin, S.; He, J.; Xiao, J.; Li, Q.; Mao, Y.; Zhao, L. New Insights into Checkpoint Inhibitor Immunotherapy and Its Combined Therapies in Hepatocellular Carcinoma: From Mechanisms to Clinical Trials. Int. J. Biol. Sci. 2022, 18, 2775–2794. [Google Scholar] [CrossRef] [PubMed]
- Fede, G.; D’Amico, G.; Arvaniti, V.; Tsochatzis, E.; Germani, G.; Georgiadis, D.; Morabito, A.; Burroughs, A.K. Renal Failure and Cirrhosis: A Systematic Review of Mortality and Prognosis. J. Hepatol. 2012, 56, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Georgopoulou, G.-A.; Papasotiriou, M.; Bosgana, P.; de Lastic, A.-L.; Koufou, E.-E.; Papachristou, E.; Goumenos, D.S.; Davlouros, P.; Kourea, E.; Zolota, V.; et al. Altered Expression of Intestinal Tight Junctions in Patients with Chronic Kidney Disease: A Pathogenetic Mechanism of Intestinal Hyperpermeability. Biomedicines 2024, 12, 368. [Google Scholar] [CrossRef] [PubMed]
n = 29 Numbers or Median (Range) | |
---|---|
Age (years) | 69 (48–94) |
Gender (male/female) | 17/12 |
Etiology (HBV/HCV/MASH/Alc/others) | 2/3/8/9/7 |
Child–Pugh score | 10 (8–14) |
Grade A/B/C | 0/8/21 |
MELD-Na score | 10.1 (0.8–23.8) |
Fib-4 index | 6.83 (1.46–41.51) |
Antibiotic therapy 1 | 10 |
Complications | |
Varices (absent/present) | 17/12 |
HCC (absent/present) | 21/8 |
Hepatic encephalopathy (absent/present) | 22/7 |
Symptoms | |
Fever (absent/present) | 14/15 |
Abdominal pain (absent/present) | 24/5 |
Diarrhea (absent/present) | 23/6 |
Nausea/Vomiting (absent/present) | 27/2 |
Laboratory data | |
WBC (/μL) | 5940 (2640–21,900) |
CRP (mg/dL) | 1.58 (0.14–18.9) |
Platelets (×104 /μL) | 8.5 (1.5–22.6) |
Albumin (g/dL) | 2.2 (1.0–3.2) |
Creatinine (mg/dL) | 1.08 (0.57–8.18) |
Ascites paracentesis | |
WBC (/μL) | 330 (30–13740) |
Albumin (g/dL) | 0.6 (0.1–1.8) |
SAAG | 1.6 (0.8–2.4) |
Case | Clinical Presentation | Conventional Methods | Tm Mapping Method | Results of ELISA | |||
---|---|---|---|---|---|---|---|
Bacterial Name | Ascites-WBC (/μL) | Bacterial Name | Bacterial Concentrations (/mL) | LPS (ng/mL) | EVs (×106 Particles/mL) | ||
1 | Definite SBP | Enterococcus.faecium | 9800 | Enterococcus.faecium | 95,433 | 0.05 | 3.24 |
2 | Definite SBP | Klebsiella.pneumoniae | 13,740 | Klebsiella.pneumoniae | 2707 | 0.09 | 11.21 |
3 | Definite SBP | Klebsiella.pneumoniae | 5040 | Multiple | 19,900 | 0.07 | 148.87 |
4 | Suspected SBP | ND | 940 | Eggerthella lenta | 199 | 0.12 | 6.61 |
5 | Suspected SBP | ND | 1860 | Streptococcus mitis | 56 | NE | NE |
6 | Suspected SBP | ND | 430 | Bacillus cereus | 12.9 | <0.01 | 16.60 |
7 | Suspected SBP | ND | 920 | Multiple | 50 | 0.09 | 11.21 |
8 | Suspected SBP | ND | 410 | ND | ND | <0.01 | 1.11 |
9 | Suspected SBP | ND | 710 | Unknown | 50 | 0.05 | 15.84 |
10 | Suspected SBP | ND | 440 | Unknown | 25 | 0.07 | 10.76 |
11 | Suspected SBP | ND | 90 | Unknown | 19 | <0.01 | 4.79 |
12 | Suspected SBP | ND | 2120 | Unknown | 6 | 0.04 | 252.54 |
13 | Suspected SBP | ND | 370 | Unknown | 6 | 0.03 | 141.22 |
14 | Suspected SBP | ND | 490 | Unknown | 2 | <0.01 | 82.43 |
15 | Suspected SBP | ND | 310 | ND | ND | NE | NE |
16 | Suspected SBP | ND | 140 | ND | ND | 0.02 | 18.63 |
17 | Suspected SBP | ND | 30 | ND | ND | <0.01 | 6.08 |
18 | Suspected SBP | ND | 180 | ND | ND | <0.01 | 20.72 |
19 | Suspected SBP | ND | 1500 | ND | ND | 0.07 | 19.13 |
20 | Suspected SBP | ND | 120 | ND | ND | 0.02 | <1.00 |
21 | No SBP | ND | 260 | ND | ND | NE | NE |
22 | No SBP | ND | 250 | ND | ND | <0.01 | 61.73 |
23 | No SBP | ND | 120 | Multiple | 25 | 0.47 | 17.3 |
24 | No SBP | ND | 150 | ND | ND | <0.01 | 16.47 |
25 | No SBP | ND | 200 | ND | ND | 0.01 | 18.09 |
26 | No SBP | ND | 330 | ND | ND | <0.01 | <1.00 |
27 | No SBP | ND | 140 | ND | ND | <0.01 | 4.39 |
28 | No SBP | ND | 130 | ND | ND | 0.12 | 6.61 |
29 | No SBP | ND | 320 | ND | ND | 0.18 | 85.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murayama, A.; Tajiri, K.; Muraishi, N.; Hayashi, Y.; Minemura, M.; Niimi, H.; Yasuda, I. Spontaneous Bacterial Peritonitis in Advanced Cirrhosis: Diagnosis by Tm Mapping and Inflammatory Profiles of Extracellular Vesicles. J. Clin. Med. 2025, 14, 5096. https://doi.org/10.3390/jcm14145096
Murayama A, Tajiri K, Muraishi N, Hayashi Y, Minemura M, Niimi H, Yasuda I. Spontaneous Bacterial Peritonitis in Advanced Cirrhosis: Diagnosis by Tm Mapping and Inflammatory Profiles of Extracellular Vesicles. Journal of Clinical Medicine. 2025; 14(14):5096. https://doi.org/10.3390/jcm14145096
Chicago/Turabian StyleMurayama, Aiko, Kazuto Tajiri, Nozomu Muraishi, Yuka Hayashi, Masami Minemura, Hideki Niimi, and Ichiro Yasuda. 2025. "Spontaneous Bacterial Peritonitis in Advanced Cirrhosis: Diagnosis by Tm Mapping and Inflammatory Profiles of Extracellular Vesicles" Journal of Clinical Medicine 14, no. 14: 5096. https://doi.org/10.3390/jcm14145096
APA StyleMurayama, A., Tajiri, K., Muraishi, N., Hayashi, Y., Minemura, M., Niimi, H., & Yasuda, I. (2025). Spontaneous Bacterial Peritonitis in Advanced Cirrhosis: Diagnosis by Tm Mapping and Inflammatory Profiles of Extracellular Vesicles. Journal of Clinical Medicine, 14(14), 5096. https://doi.org/10.3390/jcm14145096