Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = axisymmetric wake

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3897 KiB  
Article
Electrokinetic and Electroconvective Effects in Ternary Electrolyte Near Ion-Selective Microsphere
by Georgy S. Ganchenko, Maxim S. Alekseev, Ilya A. Moroz, Semyon A. Mareev, Vladimir S. Shelistov and Evgeny A. Demekhin
Membranes 2023, 13(5), 503; https://doi.org/10.3390/membranes13050503 - 10 May 2023
Cited by 4 | Viewed by 1743
Abstract
The paper presents theoretical and experimental investigations of the behavior of an electrolyte solution with three types of ions near an ion-selective microparticle with electrokinetically and pressure-driven flow. A special experimental cell has been developed for the investigations. An anion-selective spherical particle composed [...] Read more.
The paper presents theoretical and experimental investigations of the behavior of an electrolyte solution with three types of ions near an ion-selective microparticle with electrokinetically and pressure-driven flow. A special experimental cell has been developed for the investigations. An anion-selective spherical particle composed of ion-exchange resin is fixed in the center of the cell. An enriched region with a high salt concentration appears at the anode side of the particle when an electric field is turned on, according to the nonequilibrium electrosmosis behavior. A similar region exists near a flat anion-selective membrane. However, the enriched region near the particle produces a concentration jet that spreads downstream akin to a wake behind an axisymmetrical body. The fluorescent cations of Rhodamine-6G dye are chosen as the third species in the experiments. The ions of Rhodamine-6G have a 10-fold lower diffusion coefficient than the ions of potassium while bearing the same valency. This paper shows that the concentration jet behavior is described accurately enough with the mathematical model of a far axisymmetric wake behind a body in a fluid flow. The third species also forms an enriched jet, but its distribution turns out to be more complex. The concentration of the third species increases in the jet with an increase in pressure gradient. The pressure-driven flow stabilizes the jet, yet electroconvection has been observed near the microparticle for sufficiently strong electric fields. The electrokinetic instability and the electroconvection partially destroy the concentration jet of salt and the third species. The conducted experiments show good qualitative agreement with the numerical simulations. The presented results could be used in future for implementing microdevices based on membrane technology for solving problems of detection and preconcentration, and thus simplifying chemical and medical analyses utilizing the superconcentration phenomenon. Such devices are called membrane sensors, and are actively being studied. Full article
Show Figures

Figure 1

21 pages, 13350 KiB  
Article
Wall-Modeled Large Eddy Simulation and Detached Eddy Simulation of Wall-Mounted Separated Flow via OpenFOAM
by Xiang Ren, Hua Su, Hua-Hua Yu and Zheng Yan
Aerospace 2022, 9(12), 759; https://doi.org/10.3390/aerospace9120759 - 27 Nov 2022
Cited by 15 | Viewed by 5488
Abstract
Considering grid requirements of high Reynolds flow, wall-modeled large eddy simulation (WMLES) and detached eddy simulation (DES) have become the main methods to deal with near-wall turbulence. However, the flow separation phenomenon is a challenge. Three typical separated flows, including flow over a [...] Read more.
Considering grid requirements of high Reynolds flow, wall-modeled large eddy simulation (WMLES) and detached eddy simulation (DES) have become the main methods to deal with near-wall turbulence. However, the flow separation phenomenon is a challenge. Three typical separated flows, including flow over a cylinder at ReD = 3900 based on the cylinder diameter, flow over a wall-mounted hump at Rec = 9.36 × 105 based on the hump length, and transonic flow over an axisymmetric bump with shock-induced separation at Rec = 2.763 × 106 based on the bump length, are used to verify WMLES, shear stress transport k-ω DES (SST-DES), and Spalart–Allmaras DES (SA-DES) methods in OpenFOAM. The three flows are increasingly challenging, namely laminar boundary layer separation, turbulent boundary layer separation, and turbulent boundary layer separation under shock interference. The results show that WMLES, SST-DES, and SA-DES methods in OpenFOAM can easily predict the separation position and wake characteristics in the flow around the cylinder, but they rely on the grid scale and turbulent inflow to accurately simulate the latter two flows. The grid requirements of Larsson et al. (δ/Δx,δ/Δy,δ/Δz(12,50,20)) are the basis for simulating turbulent boundary layers upstream of flow separation. A finer mesh (δ/Δx,δ/Δy,δ/Δz(40,75,40)) is required to accurately predict the separation and reattachment. The WMLES method is more sensitive to grid scales than the SA-DES method and fails to obtain flow separation under a coarser grid, while SST-DES method can only describe the vortices generated by the separating shear layer, but not within the turbulent boundary layer, and overestimates the separation-reattachment zone based on the grid system in this paper. Full article
Show Figures

Figure 1

21 pages, 13970 KiB  
Article
Design of Energy-Saving Duct for JBC to Reduce Ship Resistance by CFD Method
by Ping-Chen Wu, Chin-Wei Chang and Yu-Chi Huang
Energies 2022, 15(17), 6484; https://doi.org/10.3390/en15176484 - 5 Sep 2022
Cited by 6 | Viewed by 3206
Abstract
The present work is to modify the stern duct of Japan bulk carrier (JBC) to reduce the ship total resistance for Froude number 0.142. The research method is to use the CFD (computational fluid dynamics) tool OpenFOAM to predict the total resistance and [...] Read more.
The present work is to modify the stern duct of Japan bulk carrier (JBC) to reduce the ship total resistance for Froude number 0.142. The research method is to use the CFD (computational fluid dynamics) tool OpenFOAM to predict the total resistance and viscous flow field around the ship hull considering the free surface. First, the V&V (verification and validation) analysis was conducted to ensure our CFD method is reliable, and to estimate its error and uncertainty range for the original JBC with and without the original stern duct. Second, the angle of attack (AoA) of the foil section of the stern duct was adjusted, thus forming a series of different ducts axisymmetric along the propeller shaft axis. The CFD simulations were performed for each duct appended behind the ship hull. By comparing the total resistance with and without the duct, the ship hull resistance reduction effect caused by the duct would be obtained. Finally, the duct with 7° AoA achieved the best resistance reduction of 2.49%. The original duct (with 20° AoA) could only provide a 0.6~0.7% reduction. The nominal wake was also analyzed with the ducts, in order to understand the detailed flow phenomena which had an essential influence on propeller inflow. Full article
Show Figures

Figure 1

20 pages, 6206 KiB  
Article
A Study of Recirculating Flow Fields Downstream of a Diverse Range of Axisymmetric Bluff Body Geometries Suitable for Flame Stabilization
by Georgios Paterakis, Konstantinos Souflas, Andreas Naxakis and Panayiotis Koutmos
Aerospace 2021, 8(11), 339; https://doi.org/10.3390/aerospace8110339 - 10 Nov 2021
Cited by 1 | Viewed by 2966
Abstract
This work investigates the non-reacting time averaged and fluctuating flow field characteristics downstream of a variety of axisymmetric baffles, operating in combination with an upstream double-cavity premixer arrangement. The study aims to broaden knowledge with respect to the impact of different bluff body [...] Read more.
This work investigates the non-reacting time averaged and fluctuating flow field characteristics downstream of a variety of axisymmetric baffles, operating in combination with an upstream double-cavity premixer arrangement. The study aims to broaden knowledge with respect to the impact of different bluff body shapes, leading and trailing edge flow contours, blockage ratios and incoming flow profiles impinging on the bluff body, on the development and properties of the downstream recirculating wake. Particle Image Velocimetry (PIV) measurements have been employed to obtain the mean and turbulent velocity fields throughout the centrally located recirculation zone and the adjacent developing toroidal shear layer. The results are helpful in demarcating the cold flow structure variations in the near wake of the examined baffles which support and, to some extent, determine the flame anchoring performance and heat release disposition in counterpart reacting configurations. Additionally, such results could also assist in the selection of the most suitable flame stabilization configuration for fuels possessing challenging combustion behavior such as multi-component heavier hydrocarbons, biofuels, or hydrogen blends. Full article
(This article belongs to the Special Issue Fluid Flow Mechanics)
Show Figures

Figure 1

13 pages, 3134 KiB  
Article
Numerical Simulation of Self-Propelled Steady Jet Propulsion at Intermediate Reynolds Numbers: Effects of Orifice Size on Animal Jet Propulsion
by Houshuo Jiang
Fluids 2021, 6(6), 230; https://doi.org/10.3390/fluids6060230 - 20 Jun 2021
Cited by 9 | Viewed by 3064
Abstract
Most marine jet-propelled animals have low swimming efficiencies and relatively small jet orifices. Motivated by this, the present computational fluid dynamics study simulates the flow for a jet-propelled axisymmetric body swimming steadily at intermediate Reynolds numbers of order 1–1000. Results show that swimming-imposed [...] Read more.
Most marine jet-propelled animals have low swimming efficiencies and relatively small jet orifices. Motivated by this, the present computational fluid dynamics study simulates the flow for a jet-propelled axisymmetric body swimming steadily at intermediate Reynolds numbers of order 1–1000. Results show that swimming-imposed flow field, drag coefficients, swimming efficiencies, and performance index (a metric comparing swimming speeds sustained by differently sized orifices ejecting the same volume flow rate) all depend strongly on orifice size, and orifice size affects the configuration of oppositely signed body vorticity and jet vorticity, thereby affecting wake and efficiency. As orifice size decreases, efficiencies decrease considerably, while performance index increases substantially, suggesting that, for a given jet volume flow rate, a smaller orifice supports faster swimming than a larger one does, albeit at reduced efficiency. These results support the notion that most jet-propelled animals having relatively small jet orifices may be an adaptation to deal with the physical constraint of limited total volume of water available for jetting, while needing to compete for fast swimming. Finally, jet orifice size is discussed regarding the role of jet propulsion in jet-propelled animal ecology, particularly for salps that use two relatively large siphons to respectively draw in and expel water. Full article
(This article belongs to the Special Issue Hydrodynamics of Swimming)
Show Figures

Figure 1

12 pages, 2712 KiB  
Article
Static Pressure Distribution on Long Cylinders as a Function of the Yaw Angle and Reynolds Number
by William W. Willmarth and Timothy Wei
Fluids 2021, 6(5), 169; https://doi.org/10.3390/fluids6050169 - 22 Apr 2021
Cited by 3 | Viewed by 2888
Abstract
This paper addresses the challenges of pressure-based sensing using axisymmetric probes whose axes are at small angles to the mean flow. Mean pressure measurements around three yawed circular cylinders with aspect ratios of 28, 64, and 100 were made to determine the effect [...] Read more.
This paper addresses the challenges of pressure-based sensing using axisymmetric probes whose axes are at small angles to the mean flow. Mean pressure measurements around three yawed circular cylinders with aspect ratios of 28, 64, and 100 were made to determine the effect of changes in the yaw angle, γ, and freestream velocity on the average pressure coefficient, C¯pN, and drag coefficient, CDN. The existence of four distinct types of circumferential pressure distributions—subcritical, transitional, supercritical, and asymmetric—were confirmed, along with the appropriateness of scaling C¯pN and CDN on a streamwise Reynolds number, Resw, based on the freestream velocity and the fluid path length along the cylinder in the streamwise direction. It was found that there was a distinct difference in the values of CDN and C¯pN at identical Resw values for cylinders yawed between 5° and 30°, and for cylinders at greater than a 30° yaw. For γ < 5°, there did not appear to be any large-scale vortices in the near wake, and CDN and C¯pN appeared to become independent of Resw. Over the range of 5° ≤ γ ≤ 30°, there was a complex interplay of freestream speed, yaw angle, and aspect ratio that affected the formation and shedding of Kármán-like vortices. Full article
Show Figures

Figure 1

15 pages, 7549 KiB  
Article
Population Distribution in the Wake of a Sphere
by Taraprasad Bhowmick, Yong Wang, Michele Iovieno, Gholamhossein Bagheri and Eberhard Bodenschatz
Symmetry 2020, 12(9), 1498; https://doi.org/10.3390/sym12091498 - 11 Sep 2020
Cited by 3 | Viewed by 3301
Abstract
The physics of heat and mass transfer from an object in its wake has significant importance in natural phenomena as well as across many engineering applications. Here, we report numerical results on the population density of the spatial distribution of fluid velocity, pressure, [...] Read more.
The physics of heat and mass transfer from an object in its wake has significant importance in natural phenomena as well as across many engineering applications. Here, we report numerical results on the population density of the spatial distribution of fluid velocity, pressure, scalar concentration, and scalar fluxes of a wake flow past a sphere in the steady wake regime (Reynolds number 25 to 285). Our findings show that the spatial population distributions of the fluid and the transported scalar quantities in the wake follow a Cauchy-Lorentz or Lorentzian trend, indicating a variation in its sample number density inversely proportional to the squared of its magnitude. We observe this universal form of population distribution both in the symmetric wake regime and in the more complex three dimensional wake structure of the steady oblique regime with Reynolds number larger than 225. The population density distribution identifies the increase in dimensionless kinetic energy and scalar fluxes with the increase in Reynolds number, whereas the dimensionless scalar population density shows negligible variation with the Reynolds number. Descriptive statistics in the form of population density distribution of the spatial distribution of the fluid velocity and the transported scalar quantities is important for understanding the transport and local reaction processes in specific regions of the wake, which can be used e.g., for understanding the microphysics of cloud droplets and aerosol interactions, or in the technical flows where droplets interact physically or chemically with the environment. Full article
(This article belongs to the Special Issue Fluid Mechanics Physical Problems and Symmetry)
Show Figures

Figure 1

44 pages, 21644 KiB  
Article
Prediction of Unsteady Developed Tip Vortex Cavitation and Its Effect on the Induced Hull Pressures
by Seungnam Kim and Spyros A. Kinnas
J. Mar. Sci. Eng. 2020, 8(2), 114; https://doi.org/10.3390/jmse8020114 - 13 Feb 2020
Cited by 19 | Viewed by 4805
Abstract
Reducing the on-board noise and fluctuating pressures on the ship hull has been challenging and represent added value research tasks in the maritime industry. Among the possible sources for the unpalatable vibrations on the hull, propeller-induced pressures have been one of the main [...] Read more.
Reducing the on-board noise and fluctuating pressures on the ship hull has been challenging and represent added value research tasks in the maritime industry. Among the possible sources for the unpalatable vibrations on the hull, propeller-induced pressures have been one of the main causes due to the inherent rotational motion of propeller and its proximity to the hull. In previous work, a boundary element method, which solves for the diffraction potentials on the ship hull due to the propeller, has been used to determine the propeller induced hull pressures. The flow around the propeller was evaluated via a panel method which solves in time for the propeller loading, trailing wake, and the sheet cavities. In this article, the propeller panel method is extended so that it also solves for the shape of developed tip vortex cavities, the effects of which are also included in the evaluation of the hull pressures. The employed unsteady wake alignment scheme is first applied, in the absence of cavitation, to investigate the propeller performance in non-axisymmetric inflow, such as the inclined-shaft flow or the flow behind an upstream body. In the latter case, the propeller panel method is coupled with a Reynolds-Averaged Navier–Stokes (RANS) solver to determine the effective wake at the propeller plane. The results, including the propeller induced hull pressures, are compared with those measured in the experiments as well as with those from RANS, where the propeller is also simulated as a solid boundary. Then the methods are applied in the cases where partial cavities and developed tip vortex cavities coexist. The predicted cavity patterns, the developed tip vortex trajectories, and the propeller-induced hull pressures are compared with those measured in the experiments. Full article
Show Figures

Figure 1

21 pages, 5092 KiB  
Article
Evaluation of Tip Loss Corrections to AD/NS Simulations of Wind Turbine Aerodynamic Performance
by Wei Zhong, Tong Guang Wang, Wei Jun Zhu and Wen Zhong Shen
Appl. Sci. 2019, 9(22), 4919; https://doi.org/10.3390/app9224919 - 15 Nov 2019
Cited by 12 | Viewed by 4722
Abstract
The Actuator Disc/Navier-Stokes (AD/NS) method has played a significant role in wind farm simulations. It is based on the assumption that the flow is azimuthally uniform in the rotor plane, and thus, requires a tip loss correction to take into account the effect [...] Read more.
The Actuator Disc/Navier-Stokes (AD/NS) method has played a significant role in wind farm simulations. It is based on the assumption that the flow is azimuthally uniform in the rotor plane, and thus, requires a tip loss correction to take into account the effect of a finite number of blades. All existing tip loss corrections were originally proposed for the Blade-Element Momentum Theory (BEMT), and their implementations have to be changed when transplanted into the AD/NS method. The special focus of the present study is to investigate the performance of tip loss corrections combined in the AD/NS method. The study is conducted by using an axisymmetric AD/NS solver to simulate the flow past the experimental NREL Phase Ⅵ wind turbine and the virtual NREL 5MW wind turbine. Three different implementations of the widely used Glauert tip loss function F are discussed and evaluated. In addition, a newly developed tip loss correction is applied and compared with the above implementations. For both the small and large rotors under investigation, the three different implementations show a certain degree of difference to each other, although the relative difference in blade loads is generally no more than 4%. Their performance is roughly consistent with the standard Glauert correction employed in the BEMT, but they all tend to make the blade tip loads over-predicted. As an alternative method, the new tip loss correction shows superior performance in various flow conditions. A further investigation into the flow around and behind the rotors indicates that tip loss correction has a significant influence on the velocity development in the wake. Full article
(This article belongs to the Special Issue Wind Turbine Aerodynamics II)
Show Figures

Figure 1

28 pages, 7673 KiB  
Article
Non-Empirical BEM Corrections Relating to Angular and Axial Momentum Conservation
by Søren Hjort
Energies 2019, 12(2), 320; https://doi.org/10.3390/en12020320 - 20 Jan 2019
Cited by 6 | Viewed by 4803
Abstract
The Blade-Element Momentum (BEM) model for Horizontal-Axis Wind Turbines (HAWTs), although extremely useful, is known to be approximate due to model formulation insufficiencies, for which add-ons and corrections have been formulated over the past many decades. Scrutiny of the axial and azimuthal momentum [...] Read more.
The Blade-Element Momentum (BEM) model for Horizontal-Axis Wind Turbines (HAWTs), although extremely useful, is known to be approximate due to model formulation insufficiencies, for which add-ons and corrections have been formulated over the past many decades. Scrutiny of the axial and azimuthal momentum conservation properties reveals momentum simplifications and absence of momentum sources not included in momentum theory underlying the standard BEM. One aspect relates to azimuthal momentum conservation, the wake swirl. This correction can be expressed analytically. Another aspect relates to axial momentum conservation, the wake expansion. This correction is not analytically quantifiable. The latter correction term is therefore quantified from postprocessing a large number of axisymmetric Actuator Disk (AD) Navier-Stokes computations with systematic variation of disk loading and tip-speed ratio. The new momentum correction terms are then included in the BEM model, and results benchmarked against references. The corrected BEM is derived by re-visiting the governing equations. For a disk represented by a constant-circulation set of blades, the corrected BEM contains no approximation to the underlying conservation laws. The study contributes by bridging the gap between BEM and the axisymmetric AD method for all disk load levels and tip speed ratios relevant for a wind turbine. The wake swirl correction leads to higher power efficiency at lower tip-speed ratios. The wake expansion correction causes a redistribution of the potential for power extraction, which increases on the inner part of the rotor and decreases on the outer part of the rotor. The overall rotor-averaged value of Betz limit is unaffected by the new corrections, but exceeding Betz locally on the inner- and mid-section of the rotor is shown to be possible. The two corrections significantly improve the axi-symmetric static BEM modelling accuracy for the radial distributions as well as for the rotor-integrated quantities, by reducing errors, approximately one order of magnitude. The relevance of these corrections for modern multi-MW rotors is quantified and discussed. Full article
(This article belongs to the Special Issue Recent Advances in Aerodynamics of Wind Turbines)
Show Figures

Figure 1

22 pages, 9651 KiB  
Article
Development of an Efficient Numerical Method for Wind Turbine Flow, Sound Generation, and Propagation under Multi-Wake Conditions
by Zhenye Sun, Wei Jun Zhu, Wen Zhong Shen, Emre Barlas, Jens Nørkær Sørensen, Jiufa Cao and Hua Yang
Appl. Sci. 2019, 9(1), 100; https://doi.org/10.3390/app9010100 - 28 Dec 2018
Cited by 5 | Viewed by 3637
Abstract
The propagation of aerodynamic noise from multi-wind turbines is studied. An efficient hybrid method is developed to jointly predict the aerodynamic and aeroacoustics performances of wind turbines, such as blade loading, rotor power, rotor aerodynamic noise sources, and propagation of noise. This numerical [...] Read more.
The propagation of aerodynamic noise from multi-wind turbines is studied. An efficient hybrid method is developed to jointly predict the aerodynamic and aeroacoustics performances of wind turbines, such as blade loading, rotor power, rotor aerodynamic noise sources, and propagation of noise. This numerical method combined the simulations of wind turbine flow, noise source and its propagation which is solved for long propagation path and under complex flow environment. The results from computational fluid dynamics (CFD) calculations not only provide wind turbine power and thrust information, but also provide detailed wake flow. The wake flow is computed with a 2D actuator disc (AD) method that is based on the axisymmetric flow assumption. The relative inflow velocity and angle of attack (AOA) of each blade element form input data to the noise source model. The noise source is also the initial condition for the wave equation that solves long distance noise propagation in frequency domain. Simulations were conducted under different atmospheric conditions which showed that wake flow is an important part that has to be included in wind turbine noise propagation. Full article
(This article belongs to the Special Issue Wind Turbine Aerodynamics)
Show Figures

Figure 1

10 pages, 1004 KiB  
Article
An Analytical Model for the Effect of Vertical Wind Veer on Wind Turbine Wakes
by Mahdi Abkar, Jens Nørkær Sørensen and Fernando Porté-Agel
Energies 2018, 11(7), 1838; https://doi.org/10.3390/en11071838 - 13 Jul 2018
Cited by 74 | Viewed by 6614
Abstract
In this study, an analytical wake model for predicting the mean velocity field downstream of a wind turbine under veering incoming wind is systematically derived and validated. The new model, which is an extended version of the one introduced by Bastankhah and Porté-Agel, [...] Read more.
In this study, an analytical wake model for predicting the mean velocity field downstream of a wind turbine under veering incoming wind is systematically derived and validated. The new model, which is an extended version of the one introduced by Bastankhah and Porté-Agel, is based upon the application of mass conservation and momentum theorem and considering a skewed Gaussian distribution for the wake velocity deficit. Particularly, using a skewed (instead of axisymmetric) Gaussian shape allows accounting for the lateral shear in the incoming wind induced by the Coriolis force. This analytical wake model requires only the wake expansion rate as an input parameter to predict the mean wake flow downstream. The performance of the proposed model is assessed using the large-eddy simulation (LES) data of a full-scale wind turbine wake under the stably stratified condition. The results show that the proposed model is capable of predicting the skewed structure of the wake downwind of the turbine, and its prediction for the wake velocity deficit is in good agreement with the high-fidelity simulation data. Full article
Show Figures

Figure 1

21 pages, 8384 KiB  
Article
Development of a CFD-Based Wind Turbine Rotor Optimization Tool in Considering Wake Effects
by Jiufa Cao, Weijun Zhu, Wenzhong Shen, Jens Nørkær Sørensen and Tongguang Wang
Appl. Sci. 2018, 8(7), 1056; https://doi.org/10.3390/app8071056 - 28 Jun 2018
Cited by 9 | Viewed by 5149
Abstract
In the present study, a computational fluid dynamic (CFD)-based blade optimization algorithm is introduced for designing single or multiple wind turbine rotors. It is shown that the CFD methods provide more detailed aerodynamics features during the design process. Because high computational cost limits [...] Read more.
In the present study, a computational fluid dynamic (CFD)-based blade optimization algorithm is introduced for designing single or multiple wind turbine rotors. It is shown that the CFD methods provide more detailed aerodynamics features during the design process. Because high computational cost limits the conventional CFD applications in particular for rotor optimization purposes, in the current paper, a CFD-based 2D Actuator Disc (AD) model is used to represent turbulent flows over wind turbine rotors. With the ideal case of axisymmetric flows, the simulation time is significantly reduced with the 2D method. The design variables are the shape parameters comprising the chord, twist, and relative thickness of the wind turbine rotor blades as well as the rotational speed. Due to the wake effects, the optimized blade shapes are different for the upstream and downstream turbines. The comparative aerodynamic performance is analyzed between the original and optimized reference wind turbine rotor. The results show that the present numerical optimization algorithm for multiple turbines is efficient and more advanced than conventional methods. The current method achieves the same accuracy as 3D CFD simulations, and the computational efficiency is not significantly higher than the Blade Element Momentum (BEM) theory. The paper shows that CFD for rotor design is possible using a high-performance single personal computer with multiple cores. Full article
(This article belongs to the Special Issue Wind Turbine Aerodynamics)
Show Figures

Figure 1

20 pages, 14699 KiB  
Article
Influence of Propulsion Type on the Stratified Near Wake of an Axisymmetric Self-Propelled Body
by Matthew C. Jones and Eric G. Paterson
J. Mar. Sci. Eng. 2018, 6(2), 46; https://doi.org/10.3390/jmse6020046 - 1 May 2018
Cited by 9 | Viewed by 4352
Abstract
To better understand the influence of swirl on the thermally-stratified near wake of a self-propelled axisymmetric vehicle, three propulsor schemes were considered: a single propeller, contra-rotating propellers (CRP), and a zero-swirl, uniform-velocity jet. The propellers were modeled using an Actuator-Line model in an [...] Read more.
To better understand the influence of swirl on the thermally-stratified near wake of a self-propelled axisymmetric vehicle, three propulsor schemes were considered: a single propeller, contra-rotating propellers (CRP), and a zero-swirl, uniform-velocity jet. The propellers were modeled using an Actuator-Line model in an unsteady Reynolds-Averaged Navier–Stokes simulation, where the Reynolds number is R e L = 3.1 × 10 8 using the freestream velocity and body length. The authors previously showed good comparison to experimental data with this approach. Visualization of vortical structures shows the helical paths of blade-tip vortices from the single propeller as well as the complicated vortical interaction between contra-rotating blades. Comparison of instantaneous and time-averaged fields shows that temporally stationary fields emerge by half of a body length downstream. Circumferentially-averaged axial velocity profiles show similarities between the single propeller and CRP in contrast to the jet configuration. Swirl velocity of the CRP, however, was attenuated in comparison to that of the single propeller case. Mixed-patch contour maps illustrate the unique temperature distribution of each configuration as a consequence of their respective swirl profiles. Finally, kinetic and potential energy is integrated along downstream axial planes to reveal key differences between the configurations. The CRP configuration creates less potential energy by reducing swirl that would otherwise persist in the near wake of a single-propeller wake. Full article
(This article belongs to the Special Issue Marine Propulsors)
Show Figures

Figure 1

16 pages, 5987 KiB  
Article
A Six Degrees of Freedom Dynamic Wire-Driven Traverse
by Thomas J. Lambert, Bojan Vukasinovic and Ari Glezer
Aerospace 2016, 3(2), 11; https://doi.org/10.3390/aerospace3020011 - 14 Apr 2016
Cited by 30 | Viewed by 8987
Abstract
A novel support mechanism for a wind tunnel model is designed, built, and demonstrated on an aerodynamic platform undergoing dynamic maneuvers, tested with periodic motions up to 20 Hz. The platform is supported by a 6-DOF (six degrees of freedom) traverse that utilizes [...] Read more.
A novel support mechanism for a wind tunnel model is designed, built, and demonstrated on an aerodynamic platform undergoing dynamic maneuvers, tested with periodic motions up to 20 Hz. The platform is supported by a 6-DOF (six degrees of freedom) traverse that utilizes eight thin wires, each mounted to a servo motor with an in-line load cell to accurately monitor or control the platform motion and force responses. The system is designed such that simultaneous control of the servo motors effects motion within ±50 mm translations, ±15° pitch, ±9° yaw, and ±8° roll at lower frequencies. The traverse tracks a desired trajectory and resolves the induced forces on the platform at 1 kHz. The effected motion of the platform is measured at 0.6 kHz with a motion capture system, which utilizes six near-infrared (NIR) cameras for full spatial and temporal resolution of the platform motion, which is used for feedback control. The traverse allows different platform model geometries to be tested, and the present work demonstrates its capabilities on an axisymmetric bluff body. Programmable timed outputs are synchronized relative to the model motion and can be used for triggering external systems and processes. In the present study, particle image velocimetry (PIV) is used to characterize the realized wakes of the platform undergoing canonical motions that are effected by this new wind tunnel traverse. Full article
(This article belongs to the Special Issue Innovations in Wind Tunnel Testing)
Show Figures

Graphical abstract

Back to TopTop