
Citation: Ganchenko, G.S.; Alekseev,

M.S.; Moroz, I.A.; Mareev, S.A.;

Shelistov, V.S.; Demekhin, E.A.

Electrokinetic and Electroconvective

Effects in Ternary Electrolyte Near

Ion-Selective Microsphere.

Membranes 2023, 13, 503. https://

doi.org/10.3390/membranes13050503

Academic Editor: Tongwen Xu

Received: 19 April 2023

Revised: 5 May 2023

Accepted: 8 May 2023

Published: 10 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

membranes

Article

Electrokinetic and Electroconvective Effects in Ternary
Electrolyte Near Ion-Selective Microsphere
Georgy S. Ganchenko 1,*, Maxim S. Alekseev 1,2, Ilya A. Moroz 2 , Semyon A. Mareev 2 , Vladimir S. Shelistov 1

and Evgeny A. Demekhin 1,3

1 Laboratory of Micro- and Nanoscale Electro- and Hydrodynamics, Financial University under the
Government of the Russian Federation, 53 Leningradsky Prospect str., Moscow 125167, Russia

2 Membrane Institute, Kuban State University, 149 Stavropolskaya str., Krasnodar 350040, Russia
3 Laboratory of General Aeromechanics, Institute of Mechanics, Moscow State University,

1 Michurinsky Prospect, Moscow 119192, Russia
* Correspondence: gsganchenko@fa.ru

Abstract: The paper presents theoretical and experimental investigations of the behavior of an
electrolyte solution with three types of ions near an ion-selective microparticle with electrokinetically
and pressure-driven flow. A special experimental cell has been developed for the investigations. An
anion-selective spherical particle composed of ion-exchange resin is fixed in the center of the cell.
An enriched region with a high salt concentration appears at the anode side of the particle when
an electric field is turned on, according to the nonequilibrium electrosmosis behavior. A similar
region exists near a flat anion-selective membrane. However, the enriched region near the particle
produces a concentration jet that spreads downstream akin to a wake behind an axisymmetrical body.
The fluorescent cations of Rhodamine-6G dye are chosen as the third species in the experiments.
The ions of Rhodamine-6G have a 10-fold lower diffusion coefficient than the ions of potassium
while bearing the same valency. This paper shows that the concentration jet behavior is described
accurately enough with the mathematical model of a far axisymmetric wake behind a body in a fluid
flow. The third species also forms an enriched jet, but its distribution turns out to be more complex.
The concentration of the third species increases in the jet with an increase in pressure gradient. The
pressure-driven flow stabilizes the jet, yet electroconvection has been observed near the microparticle
for sufficiently strong electric fields. The electrokinetic instability and the electroconvection partially
destroy the concentration jet of salt and the third species. The conducted experiments show good
qualitative agreement with the numerical simulations. The presented results could be used in
future for implementing microdevices based on membrane technology for solving problems of
detection and preconcentration, and thus simplifying chemical and medical analyses utilizing the
superconcentration phenomenon. Such devices are called membrane sensors, and are actively being
studied.

Keywords: electrophoresis; ion-selective surface; ternary electrolyte; numerical modeling

1. Introduction

The application of microfluidic technologies presents a very promising direction for
prospective medical diagnostic systems [1–3]. However, the introduction of such tech-
nologies is associated with the problem of low analyte concentrations in human biological
liquids. It is often necessary to pre-concentrate the analyte in the proximity of a microsensor
to obtain sufficient sensing accuracy. Ion-selective surfaces play a key role in attempts
to solve this problem [4,5], since the effect of concentration polarization can occur near
such surfaces under the external electric field [6–8]. Concentration polarization allows
controlling both the electrolyte as a whole and its individual components: ions and other
suspended particles. At the same time, it is known [9–11] that the phenomenon of concen-
tration polarization at sufficiently strong external electric fields can lead to electrokinetic
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instability and generate complex nonstationary electroconvective regimes, up to stochastic
ones [12–16]. This phenomenon is actively used in microfluidic devices based on ion-
exchange membranes and/or granules [17] for sequencing macromolecules (including
DNA), for separation of dispersed particles by size and electrical conductivity, for creat-
ing new biomaterials, in micro-pumps and micromixers, etc. [18]. The electroconvection
makes it difficult to conduct experimental studies without in-depth theoretical analysis. In
this regard, mathematical modeling plays a significant role in the study of the processes
described above, as it provides a detailed analysis with relatively small effort.

In the current literature, two qualitatively different schemes of pre-concentration
of the electrolyte can be distinguished. The first concept is based on using a complex
planar system of channels, ion-exchange membranes and electrodes [5,19]. The second
concept of the device design is based on using a spherical geometry [20,21]. The first
approach is characterized by a high degree of analyte concentration, and the second one
is distinguished by simplicity and versatility, because in such geometry one device can
simultaneously perform the roles of a micro-pump [22], a micromixer [20,23], a microreactor,
and a microseparator [21].

In this paper, mathematical modeling and an experimental study of the analyte con-
centration in a microdevice based on an ion-selective microsphere will be presented. Within
the framework of our study, spherical membranes may be used in the future for creating
microdevices. One potential application of the geometry we are studying is connected to
the problems of preconcentration and detection in membrane technology, which are atypi-
cal in this field but have nevertheless been actively researched recently [5]. Such devices
are known as membrane sensors, which can significantly simplify chemical and medical
analyses by utilizing the effect of superconcentration [1]. In research carried out by [1,5],
the authors considered the use of flat membranes; however, our study focuses on a simpler
formulation to examine the nature of the superconcentration effect. Superconcentration
effect in an identical system has been experimentally studied before [24] but for an AC
field, however, the difference in mobility and ion charge still remains the main source of
the superconcentration effect. Membrane systems are known to split water at overlimiting
conditions [25]. However, such conditions usually occur at high electric current regimes,
which are beyond the scope of our current research. This is because overlimiting regimes
are known to initiate instabilities which can lead to liquid mixing and consequently, lower
concentration levels. In the future, we intend to evaluate the efficiency of using spherical
membranes compared to their flat counterparts for membrane sensors.

2. Statement
2.1. Geometric Characteristics

This paper considers a cell consisting of a spherical hollow chamber made of a solid
dielectric material with a round inlet and outlet (Figure 1). The cell is connected to external
reservoirs filled with electrolyte, into which the electrodes are placed. The electrolyte
contains cations and anions of a salt and charged species of an analyte. The inlet-side
reservoir is connected to a pump that creates additional pressure. An ion-selective spherical
particle is anchored to the center of the chamber. The method of particle anchoring in
the experimental installation will be described in the corresponding section, while the
mathematical model neglects its particular realization.

An axisymmetric formulation is considered in the mathematical model. The axis of
symmetry connects the centers of the inlet and the outlet. The spherical chamber is assumed
to be composed of an ideal dielectric with some uniform surface charge. The ion-selective
particle is assumed to be partially selective, that is, allowing both counter- and co-ions to
move through it. The hydrodynamics inside the particle are neglected.

The particle is assumed to be perfectly homogeneous, without any imperfections,
thus it consists of the gel phase only. It should be mentioned that real resins may have
macropores filled with uncharged solution. There are several modeling approaches to
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describe such systems [26]. In the current paper, the complex structure of a real ion-
exchange particle is not taken into account for the sake of simplicity.
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Figure 1. Schematic of the cell specifying the main areas near the anion-selective microgranule. The
shades of yellow qualitatively specify a typical distribution of concentration.

For the sake of certainty, the particle is assumed to be anion-selective. The influence
of inlet and outlet channels is ignored: the influence of the electric field and additional
pressure is described with constant of potential and pressure differences at the inlet and
the outlet parts of the chamber.

2.2. Dimensional Formulation

The concentration process of ions and analyte is considered. Locally, the concentration
density may exceed the initial one by at least one order of magnitude. Nevertheless, we
have chosen a low enough range of the initial concentrations to meet a highly diluted
electrolyte assumption [9]. This is also the case for the third species concentration, because
the concentration of analytes in human liquids is several orders lower than the salt concen-
tration [4]. In addition, the analyte concentration is not known to exceed maximum salt
concentration density even for million-fold preconcentration [19].

The direct interaction of ions and chemical reactions are neglected. In this case, the
behavior of the electrolyte is described by the system of Nernst–Planck equations with
respect to the density of ion concentrations

∂C̃±

∂t̃
+ Ũ · ∇C̃± =

z±D̃± F̃
R̃T̃

∇ ·
(
C̃±∇Φ̃

)
+ D̃±∇2C̃±. (1)

The presence of a third charged species is assumed in a salt electrolyte, which renders
the electrolyte ternary.

∂C̃a

∂t̃
+ Ũ · ∇C̃a =

zaD̃a F̃
R̃T̃

∇ ·
(
C̃a∇Φ̃

)
+ D̃a∇2C̃a. (2)

The system is supplemented by the Poisson equation on the electric potential and the
Stokes equations on the velocity field.

ε̃∇2Φ̃ = −F̃
(
z+C̃+ + z−C̃− + zaC̃a

)
, (3)

∇Π̃− µ̃∇2Ũ = −F̃
(
z+C̃+ + z−C̃− + zaC̃a

)
∇Φ̃, (4)

∇ · Ũ = 0. (5)

The unknowns are as follows: the molar concentration densities of the salt and the
analyte ions, C̃±, C̃a, the electric potential, Φ̃, the pressure, Π̃, and the velocity field, Ũ.
Here, F̃ is the Faraday number, R̃ is the universal gas constant, and T̃ is the absolute
temperature. The variables denoted with tildes are dimensional. In contrast, the variables
without tildes are dimensionless. The base electrolyte is assumed to be symmetric, i.e., it has
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the same diffusion coefficient, D̃+ = D̃− = D̃, and the same absolute value of the valences,
z+ = −z− = 1, for cations and anions. µ̃ is the dynamic viscosity of the electrolyte, ε̃ is
its electrical permeability. The system of equations is solved in a spherical axisymmetric
formulation. We will consider the case of za = 1, so the only difference between salt ions
and the analyte species is the diffusion coefficient of the latter, D̃a.

The ions and the analyte impermeability condition is accepted on the surface of the
outer dielectric sphere, r̃ = r̃1, θ0 < θ < π − θ0,

∂C̃±

∂r̃
+

z± F̃
R̃T̃

C̃±
∂Φ̃
∂r̃

= 0,
∂C̃a

∂r̃
+

za F̃
R̃T̃

C̃a
∂Φ̃
∂r̃

= 0, (6)

where r̃ is the direction along the radius, centered in the middle of the ion-selective micro-
granule, and θ is the angle (Figure 1).

A charge is assumed to be present on the surface of the spherical chamber, which
makes it possible to establish a boundary condition for the electric potential Φ̃,

ε̃
∂Φ̃
∂r̃

= −σ̃. (7)

The no-slip condition applies to the spherical chamber,

Ũ = 0. (8)

The reservoir-type boundary conditions for the molar ionic concentration are given
together with the boundary conditions for pressure and electric potential on the outlet is
r̃ = r̃1, 0 < θ < θ0 (see Figure 1),

∂C̃±

∂r̃
= 0,

∂C̃a

∂r̃
= 0, Π̃ = 0, Φ̃ = ∆Ṽ/2. (9)

The salt concentration, the pressure, and the electric potential values are fixed at the
inlet, r̃ = r̃1, π − θ0 < θ < π,

C̃+ = C̃∞, C̃a = C̃0
a , z+C̃+ + z−C̃− + zaC̃a = 0, Π̃ = ∆Π̃, Φ̃ = −∆Ṽ/2. (10)

The electrolyte flow is both electrokinetically and pressure-driven. The corresponding
forces are controlled with ∆Ṽ and ∆Π̃, respectively.

The Equations (1) and (2) are also solved inside the ion-selective particle r̃ < r̃0, where
the Poisson equation takes the form

ε̃∇2Φ̃ = −F̃
(
z+C̃+ + z−C̃− + zaC̃a

)
+ F̃Ñ. (11)

This equation includes a uniform volume charge density of Ñ that controls the selectiv-
ity of the particle. A cation-selective particle has Ñ > 0, an anion-selective one has Ñ < 0.
Higher absolute values of Ñ correspond to higher ion selectivity. Introducing Ñ in (11) is a
simple and effective way for numerical simulation of imperfectly selective membranes [27].
Physically, the volume charge is associated with the ion-exchange capacity.

The hydrodynamics inside the particle were neglected, Ũ ≡ 0. A similar method
of modeling imperfect selective surfaces has been used in solving problems in planar
geometry [28] and proven to be a good approximation for generalizing the model relative
to the perfectly selective approach [9,11,29–31].

2.3. Dimensionless Formulation

The following characteristic values have been used to make Equations (1)–(11) dimen-
sionless.
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The Equations (1)–(5) in the dimensionless form and in the axisymmetrical spherical
coordinates are as follows. Equation (1) for the ion transport turns into,

∂C+

∂t
+ U

1
r

∂C+

∂θ
+ V

∂C+

∂r
=

[
1

r2 sin θ

∂

∂θ

(
sin θC+ ∂Φ

∂θ

)
+

1
r2

∂

∂r

(
r2C+ ∂Φ

∂r

)]
+

+

[
1

r2 sin θ

∂

∂θ

(
sin θ

∂C+

∂θ

)
+

1
r2

∂

∂r

(
r2 ∂C+

∂r

)]
, (12)

∂C−

∂t
+ U

1
r

∂C−

∂θ
+ V

∂C−

∂r
= −

[
1

r2 sin θ

∂

∂θ

(
sin θC−

∂Φ
∂θ

)
+

1
r2

∂

∂r

(
r2C−

∂Φ
∂r

)]
+

+

[
1

r2 sin θ

∂

∂θ

(
sin θ

∂C−

∂θ

)
+

1
r2

∂

∂r

(
r2 ∂C−

∂r

)]
, (13)

∂Ca

∂t
+ U

1
r

∂Ca

∂θ
+ V

∂Ca

∂r
= Da

[
1

r2 sin θ

∂

∂θ

(
sin θCa

∂Φ
∂θ

)
+

1
r2

∂

∂r

(
r2Ca

∂Φ
∂r

)]
+

+ Da

[
1

r2 sin θ

∂

∂θ

(
sin θ

∂Ca

∂θ

)
+

1
r2

∂

∂r

(
r2 ∂Ca

∂r

)]
, (14)

the Poisson Equation (3) is now presented by the following equation,

ν2

r2

[
∂

∂r

(
r2 ∂Φ

∂r

)
+

1
sin θ

∂

∂θ

(
sin θ

∂Φ
∂θ

)]
= C− − C+ − Ca ≡ −ρ, (15)

outside the particle (1 < r < R) and

ν2

r2

[
∂

∂r

(
r2 ∂Φ

∂r

)
+

1
sin θ

∂

∂θ

(
sin θ

∂Φ
∂θ

)]
= C− − C+ − Ca + N, (16)

inside the particle (r < 1). The Stokes Equations (4) and (5) for creeping flow turn into the
following ones,

−1
r

∂Π
∂θ

+
∂2U
∂r2 +

2
r

∂U
∂r

+
1
r2

∂2U
∂θ2 +

cot θ

r2
∂U
∂θ
− U

r2 sin2 θ
+

2
r2

∂V
∂θ

= ρ
1
r

κ

ν2
∂Φ
∂θ

, (17)

−∂Π
∂r

+
∂2V
∂r2 +

2
r

∂V
∂r

+
1
r2

∂2V
∂θ2 −

2V
r2 +

cot θ

r2
∂V
∂θ
− 2U

r2 cot θ − 2
r2

∂U
∂θ

= ρ
1
r

κ

ν2
∂Φ
∂r

, (18)

∂

∂θ
(sin θ r U) +

∂

∂r

(
sin θ r2 V

)
= 0, (19)

in the electrolyte (1 < r < R). Here, (U, V) are the velocity components. The dimensionless
parameter ν is the Debye number, which is the ratio of the Debye length λ̃D and the
microgranule radius r̃0 (ν� 1 is a small parameter of the problem, a thin electric double
layer (EDL) is considered),

ν =
λ̃D
r̃0

, λ̃D =

(
ε̃Φ̃0

F̃C̃∞

) 1
2

,

and κ is the coupling coefficient between the hydrodynamics and the electrostatics,

κ =
ε̃Φ̃2

0
µ̃D̃

.
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This quantity characterizes the physical properties of the electrolyte solution and is
fixed for a given liquid and electrolyte. The value of ν depends on two main factors. The
first one is r̃0: ν decreases with increasing the characteristic length r̃0. The second one is
C̃∞: ν decreases with increasing the characteristic concentration C̃∞. This means that ν is
different for highly diluted and moderately diluted electrolytes. Basically, a highly diluted
electrolyte is considered in this paper.

The conditions on the outer dielectric sphere, r = R = r̃1/r̃0, θ0 < θ < π − θ0,
Equations (6)–(8), turn into

∂C±

∂r̃
± C±

∂Φ
∂r

= 0,
∂Ca

∂r̃
+ Ca

∂Φ
∂r

= 0, (20)

ν
∂Φ
∂r

= −σ, (21)

U = 0, (22)

where σ = σ̃λ̃D/ε̃Φ̃0 is the dimensionless surface charge.
At the outlet, r = R, 0 < θ < θ0, the conditions (9) are now rewritten in a dimensionless

form,
∂C±

∂r
= 0,

∂Ca

∂r
= 0, Π = 0, Φ = ∆V/2, (23)

where ∆V/2 is the dimensionless potential at the outlet.
At the inlet, r = R, π − θ0 < θ < π, the salt concentration distribution along the hole,

the electroneutrality condition, the pressure and the electric potential are given,

C+ = 1, Ca = C0
a , C− = 1 + Ca, Π = ∆Π, Φ = −∆V/2. (24)

These conditions are the dimensionless version of Equations (10). The potential drop
∆V = ∆Ṽ/Φ̃0 and the pressure difference ∆Π = ∆Π̃r̃2

0/µ̃D̃ may have different signs, they
may be either co- or counter-directed. The direction depends on a vertical orientation of
the device. They give rise to the electroosmotic and the pressure-driven flow, respectively.

Thus, the system has two geometric dimensional parameters, R = r̃1/r̃0 and θ0. The
first parameter characterizes the channel width, and the second parameter characterizes
the size of the inlet and outlet. The properties of an ion-selective particle are described
by the parameter N = Ñ/C̃∞, which is associated with the capacity of the ion-exchange
material from which the particle is made. The properties of the third species of ions are
described by a single parameter Da = D̃a/D̃. For example, D̃a is about 2× 10−10 m2/s for
Rhodamine-6G cations. The initial concentration of the the third species is fixed at C0

a = 0.1.
Typical dimensional quantities are chosen equal or close to those that have been repro-

duced in the experiment. The characteristic radius of a micromolecule r̃0 is 350 µm, the typ-
ical diffusion coefficients D̃ for potassium and chlorine ions are about, D̃ ∼ 2× 10−9 m2/s,
the characteristic density of ion concentration is C̃∞ = 0.05 mol/m3 , the thermal potential
at T̃ = 300 K is approximately Φ̃0 = 25 mV. Highly diluted aqueous solutions of electrolytes
are considered, therefore, the parameters of the dynamic viscosity and the permittivity for
pure water have been taken, µ̃ = 9× 10−4 Pa·s, ε̃ = 7× 10−10 C/V·m.

The dimensional voltage varied from 0 to ∆Ṽ = 2.5 V. The value of the pressure
gradient ∆Π was adjusted to reach the flowrate from 0.04 mL/min to 0.12 mL/min. Taking
into account the geometric characteristics, the calculations have showed that the range of
∆Π from 1500 to 4500 corresponds to such flowrates.

The surface charge density of the dielectric surfaces σ̃ varies widely for different
types of materials. For example, the surface charge density of quartz glass is between
σ̃ = 10−4 C/m2 to σ̃ = 10−3 C/m2. A plastic for 3D printing and PMMA have been used
in the experiment, their surface charge values are not well investigated. We have fixed the
dimensionless surface charge at σ = 1 for our calculations; the simulations for other values
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of σ show that its influence on the processes is weak. The radius of the outer sphere and
the angle of the entrance section were fixed, R = 3 and θ0 = 30◦. The parameters κ and ν
were also fixed, κ = 0.2 (which roughly corresponds to a potassium chloride solution) and
ν = 5× 10−4. The value of N was fixed at N = −10, which corresponds to a selectivity of
more than 90% [28].

2.4. Numerical Method

The system of Equations (12)–(24) has a small parameter, the Debye number, at the
highest-order derivatives. As a result, there is a thin charged region with a rapid change of
the unknown functions near the surface. This causes significant difficulties in seeking a
numerical solution for the problem. These difficulties are compounded by the complexity
of the chaotic regime when the flow contains a wide range of different scales. There are
two main approaches to overcome these difficulties. The first one is a semi-analytical
approach, where the solution in the Debye layer is sought analytically as the inner expan-
sion, leaving the numerics for the diffusion region that is treated as the outer expansion.
Of course, a proper matching of the inner and outer expansions is needed. This method
has been systematically applied for charged dielectric particles by Yariv’s group (see, for
example [32]); it has also been used for ion-selective granules in [30]. The second approach
solves the entire system of Nernst–Planck–Poisson–Stokes equations numerically, without
any simplification, and relies on sophisticated tuning of the numerical scheme instead.

The problem has been solved numerically using the finite difference method on a
nonuniform grid for discretization in spatial variables r and θ. Time integration has been
carried out using a semi-implicit method. Details of the numerical simulation method can
be found in the papers [30,31]. The only difference is that for the present problem we do
not need to use the force balance equation to obtain the microparticle velocity, because
the particle is fixed. The ideas of the algorithm have been previously described in [33] for
a planar statement, except that that paper uses FFT rather than Legendre/Gegenbauer
polynomials. We rely on a step control subroutine [34] that ensures that the local error
remains constrained by an externally specified parameter. Most of our simulations use local
error 10−3, ∆t = 10−8, ∆θ = 0.0123 and ∆r varying from 3× 10−4 to 3× 10−2. We have
verified the most important calculations by doubling the number of spatial grid points and
by specifying a lower error bound.

2.5. Experimental Materials and Methods

The design of the experimental cell differs in certain aspects from the numerical
model. Visualization in a spherical chamber is a painstaking problem due to the need
to use spherical lenses and take into account optical aberrations. A cylindrical chamber
has been used instead of a spherical one to simplify the task (Figure 2). The ion-selective
microgranule has been mounted at a thin wire inserted through a special hole at the center
of the chamber. A thin layer of cyanocrylate adhesive was used for attaching ion-selective
particle to the kernel to anchor it. The influence of the kernel on the concentrations is
minimal due to insignificant size of kernel and adhesive layer compared to particle.

We have also used OPMN-P membranes (ZAO STC “Vladipor”, Vladimir, Russia) to
prevent the bubbles from entering the cylindrical chamber. Detachable reservoirs have been
used in addition to electrode chambers. It has been made possible to pump the electrolyte
individually through each section and rinse the electrode chambers from by-products that
inevitably form on electrodes during experiment. Large amounts of these by-products have
the potential to significantly reduce the system’s operating surface, leading to decreased
current. Moreover, the by-products can contaminate the main cylindrical chamber and thus
affect the comparison with theoretical results. It is especially important to eliminate the
by-products for limiting and overlimiting regimes, when their generation is highest.

The lower part of the experimental cell has been constructed through photopolymer
printing on a 3D printer AnyCubic Photon (Shenzhen Anycubic Technology Co., Ltd.,
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Shenzhen, China). The upper part was a 0.9 mm PMMA cover with high transparency to
enable visualization.
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Figure 2. Schematic of the experimental cell: 1—the electrode chambers, 2 and 3—inlets and outlets
of the electrode chambers, respectively, 4—the cylindrical chamber, 5—the output connector, 6—the
input connector, 7—the electrodes, 8—the membranes, 9—the anion-selective particle, 10—the wire
for fixing the particle, 11—the transparent PMMA cover. The arrows show the flow directions.

The fluorescent agent Rhodamine-6G (reagent grade, LenReaktiv, Saint-Peterburg,
Russia) has been used as an analyte, which was diluted in a buffer solution of potassium
chloride (analytical grade, LenReaktiv, Saint-Peterburg, Russia). In our model, potassium
chloride corresponds to the salt dissociating into cations (K+) and anions (Cl−), and cations
of Rhodamine-6G correspond to the macromolecule/third species of ions in the solution
(Figure 3). The concentration of Rhodamine-6G (10 µM) in the cylindrical chamber was
significantly lower than that of potassium chloride (100 µM). The concentration of the salt
in the electrode chambers has been kept higher than in the cylindrical chamber in order
to reduce the resistance of the system. The accuracy of the preparation of solutions was
achieved by weighing salts on laboratory scales with the accuracy of 10−4 g. The driving
force for moving the liquid through the chamber has been created by the syringe pump
Instilar Dixion 1428. The electrolyte flowrate varied from 0.04 mL/min to 0.16 mL/min in
the cylindrical chamber; it was raised to 5 mL/min in the electrode chambers. The anion-
selective particle was Anionite AV-17 with 762 ± 5 µm diameter. A potential drop has been
created by the Keithley 2400 SourceMeter current source. The Rhodamine molecules were
excited by an LED light source with an emitted wavelength of 490 nm and re-emitted light
in the wavelength range of 530–570 nm. The visualization of dye behavior was achieved
using an optical microscope consisting of the camera TOUPCAM U3CMOS1800KPA with
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20 frames-per-second framerate and a magnifying lens. Color post-processing was carried
out using the RisingView software.

100 µM KCl + 10 µ  R6G

CameraCurrent Source

0.5mM KCl

Computer

Magnifying lens 

Light filter

Anionite AB-17

Membranes

Syringe pump

Figure 3. Schematic of the experimental set-up.

3. Results and Discussion

The behavior of the electrolyte near the ion-selective microparticle exhibits a number
of bifurcations with an increase in the external electric field strength. Electrosmosis of the
first kind is realized at low voltages, when the charge is located in a thin electric double
layer [35]. This regime is typical for dielectric surfaces and particles [36]. With an increase
in the external electric field strength, electroosmosis of the second kind [37] appears: it is
characterized by complex nonlinear modes [30], instabilities and bifurcations [31].

3.1. Steady-State Regimes

First, the stationary regimes, ∂/∂t = 0, are considered. A complex system of layers
appears near the particle in the stationary regime. A special attention will be paid to the
depleted region (which occurs near the cathode side for anion-selective membranes) and
the enriched region (which occurs at the anode side). The latter is characterized by an
increased salt concentration—several times higher than in the bulk solution.

The nature of the depleted region, which also includes the space charge region, has
been studied in detail in problems with a flat-ion-selective surface [9–11]. This region
appears due to concentration polarization. It is important to note that when the space
charge region expands with an increase in the electric field strength, the influence of the
surface curvature begins to significantly affect the flow inside this zone, so some asymptotic
approximations made for a flat membrane [38] become invalid.

The enriched region on the other side of the particle is focused in the form of a
fine structure that spreads downstream. Because of this behavior, we will refer to it as a
concentration jet. For the case of an electroneutral jet, its propagation downstream can
be described qualitatively by the problem of an axisymmetric wake behind a body of
revolution in an axial flow [39],

U∞
∂K
∂x

=
1
y

∂

∂

(
y

∂K
∂y

)
, (25)
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where U∞ is a mean velocity along the axis of symmetry, x is a Cartesian coordinate
along the axis of symmetry, y is a Cartesian coordinate normal to the axis of symmetry,
K = C+ + C− + Ca is the density of salt concentration. The solution of Equation (25) is as
follows,

K = 2(1 + C0
a) +

CD
U∞

1
x− x0

exp
(
−U∞y2

4x

)
, (26)

where CD is a parameter related to the intensity of the concentration source, and x0 is
the coordinate of the location of the point source of salt. A more detailed analysis of
this solution is presented in [40]. The thickness of the mixing layer expands downstream
as yδ =

√
x/U∞, and this layer narrows with increasing U∞. This means that with an

increase in the pumping of the electrolyte the concentration jet visually becomes narrower
and retains its intensity longer downstream. It will be demonstrated further that such
a dependence is also valid for the analyte. It can be assumed that C+ ≈ K/2, taking
into account the electroneutrality in the concentration jet region C+ = C− − Ca and the
smallness of the analyte concentration.

The results of comparison of numerical simulation and analytical equation for ∆V = 100,
∆Π = 1500 are presented in Figure 4. U∞ is about 150 for this set of parameters. The
parameters CD = 538.6 and x0 = 0.622 are obtained by a linear approximation of the value
1/(K(θ = 0, r)− 2(1 + C0

a)) with respect to r.
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Figure 4. Densities of the salt concentration K at ∆V = 100, ∆Π = 1500 (a), concentration density
profiles for a numerical modeling (solid lines) and for the analytical Equation (26) (dashed lines)
along the axis of symmetry (b) and in the sections xc = 1.1 (c) and xd = 2 (d), indicated in the
picture (a).

As it can be seen, a simple analytical model achieves a good qualitative description of
the nature of the concentration jet. The obvious differences are that there is a zone of reduced
concentration on the sides of the jet. This effect occurs due to the fact that the diffusion
region arising near the front edge of the particle, beyond the depleted region, spreads
downstream, breaks off and is carried away by the flow along with the concentration jet.

The behavior of a positively charged analyte is qualitatively different from the behavior
of salt cations and cannot be described by a simple model of the type (25), see Figure 5.
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Figure 5. Densities of the third species concentration Ca for ∆V = 100, ∆Π = 1500 (a), concentration
density profiles for a numerical modeling along the axis of symmetry (b) and in the sections xc = 1.1
(c) and xd = 2 (d), which are indicated in figure (a).

The diffusion layer for the analyte on the front side of the particle also has a different
structure in contrast with the similar layer for cations Figure 6, since it has a local maximum
concentration of the analyte at the outer boundary of the diffusion layer. This behavior
qualitatively corresponds to the results of the ternary electrolyte flow modeling near flat
ion-selective surfaces [41].

−1.25 −1.2 −1.15 −1.1 −1.05 −1

x

0

0.5

1

C
+
, 
C

a
/C

a0

1

2

Figure 6. Distributions of the concentration densities of salt cations C+ (curve 1) and analyte ions
Ca/C0

a (curve 2) at ∆V = 100, ∆Π = 1500 on the axis of symmetry y = 0.

The concentration of the analyte in the jet increases with increasing the pressure,
(Figure 7), and the jet itself becomes thinner and diffuses slower downstream.

The maximum of the analyte concentration occurs exactly at r = 1, θ = 0, inside the
Debye layer. In order to compare the theoretical results with the experiments, we measured
the concentration at the point r = 1.1, θ = 0. This comparison is presented in Figure 8. The
experimental concentration jet appears blurry due to the fact that two-dimensional sections
of the axisymmetric formulation are obtained directly with numerical modeling, while the
experimental images represent two-dimensional projections of the actual three-dimensional
distribution of Rhodamine particles through the entire volume of the cell. For the same
reason, the experimental images lack the depleted regions in front of the particle and to the
sides of the concentration jet.
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Figure 7. The density of the analyte concentration Ca at ∆V = 100. The concentration density profiles
along the axis of symmetry (a) and in sections x = 1.1 (b) and x = 2 (c). Curve 1 corresponds to
∆Π = 1500; curve 2, to ∆Π = 4500.
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Figure 8. The analyte concentration densities Ca at ∆ = 100 and different values of ∆Π: (a) for
∆Π = 1500, (b) for ∆Π = 4500. Dashed blur lines are the visible boundaries of the diffusion layers.
The image of Rhodamine at a potential difference 100 V between the electrodes and different flowrates:
(c) for Q̃ = 0.04 mL/min, (d) for Q̃ = 0.12 mL/min.

The parameter ∆Π has been selected so that the values of the flowrate coincide in the
experiment and the numerical simulation. In contrast, it is not possible to compare the
magnitude of the electrical potential drop directly, since in the experimental set-up the
electrode chambers are separated from the main chamber with membranes and it is very
difficult to determine the potential drop on these membranes. In order to qualitatively
evaluate and compare the strengths of external electric fields, the critical ∆V and the
difference in electrical potentials at the electrodes at which electroconvection occurs have
been considered. The critical potential difference is about 170 V in the experiments, while
the critical value of the dimensionless parameter ∆V was about 170 in the numerical
simulations.
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It is possible to observe the occurrence of a secondary solution in the numerical
modeling at values of ∆V close to the critical one. The secondary solution is characterized
by the presence of a toroidal micro-vortex in the front of the particle, Figure 9. This solution
was previously observed in the electrophoresis problem [31]. Whether this solution appears
or not depends on initial conditions and perturbations. This regime has not been observed
in experiments. Apparently, this is due to its instability: strict axial symmetry is presumably
necessary for its maintenance, which is impossible to achieve in experimental installations.
With an increase in flowrate, this solution disappears.

−2 −1 0 1 2
0

0.05

0.1

0.15

−2 −1 0 1 2

−2

−1

0

1

2

(b)(a)

Figure 9. The density of the analyte concentration Ca for ∆V = 150 and ∆Π = 1500, (a) for the
primary solution, (b) for the secondary solution.

3.2. Unsteady Regimes

The presentation of non-stationary regimes is initiated from the description of the
processes that occur immediately after the electric field is turned on. At this moment, all the
main regions begin to form around the particle. A space charge region is formed; a diffusion
zone, which is characterized by a local maximum in the analyte profile (Figure 6), comes
next. Dynamically, it appears as a wave of enriched analyte concentration that passes
downstream along the entire particle (Video S1 corresponds to ∆V = 150, ∆Π = 3000
and Video S2 corresponds to the voltage 140 V and the flowrate 0.08 mL/min in the
supplemental materials). The dependence of the analyte concentration at the point r = 1.1,
θ = 0 for ∆V = 100 and various flow values shows in Figure 10. It can be seen that
the concentration temporarily rises above its stationary value: the greater the flowrate is,
the faster the stationary regime is established. The figure also shows an increase in the
stationary value of the analyte concentration with an increase in flowrate.
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Figure 10. The dependencies of the analyte concentration at the point r = 1.1, θ = 0 for ∆V = 100
and different ∆Π, 1: ∆Π = 1500, 2: ∆Π = 3000, 3: ∆Π = 4500.
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The instabilities occur with the increase of ∆V. The primary solution loses stability
first at about ∆V = 170 for ∆Π = 1500: initial small perturbations near the ion-selective
particle grow in time. Following [31], the electric current density through the particle,
j(θ) = j+ − j− + ja, is considered in order to observe the evolution of perturbations, where

r = 1 : j± = ∓C±
∂Φ
∂r
− ∂C±

∂r
, ja = −Ca

∂Φ
∂r
− ∂Ca

∂r
.

According to [31], j(π/2) and j(π) are chosen for taking a 2D projection of the phase
space to characterize the bifurcations. Two steady-state solutions are observed. They are
presented in Figure 9 for ∆V = 150 and ∆Π = 1500. All solutions are eventually attracted
to one of the stationary points (the primary or the secondary one) depending on the initial
conditions.

The primary point stops attracting solutions with an increase of ∆V, when instability
of the primary solution occurs. The solution goes near the primary point, but is eventually
attracted for the ∆V = 170 to the secondary point with small oscillations (Figure 11a).
Increasing the pressure, ∆Π, stabilizes the flow: the oscillations disappear and the solution
spends more time in the vicinity of the primary point (Figure 11b,c).
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Figure 11. The two attractors in the phase space are two fixed points, corresponding to the primary
(point 1) and secondary (point 2) stationary solutions, solid lines correspond to the time evolution,
∆V = 170: (a) ∆Π = 1500, (b) ∆Π = 3000, (c) ∆Π = 4500.

Electroconvection occurs when the critical ∆V is exceeded and the secondary solution
loses stability as well. The unsteady time evolution is shown in Figure 12. High-amplitude
oscillations occur and the regime becomes irregular. The ion distribution corresponds
to the data obtained for electrophoresis simulations [31]. The distribution of analyte
during electroconvection is qualitatively different, because the analyte accumulates in the
center of the electroconvective vortex and the areas of increased and decreased analyte
concentrations alternate (Video S3, it corresponds to the parameters in Figure 12). Visually,
this picture is similar to electroconvection near a flat ion-selective membrane visualized
with Rhodamine [42].

Electroconvection has also been detected experimentally (Video S4, corresponds to the
voltage 220 V and to the flowrate 0.12 mL/min), however, the electroconvective vortices
were almost invisible. The reason for this, again, could be in deviations from axisymmetry,
because the perturbations quickly became three-dimensional while their two-dimensional
projections become chaotic.

A simulation of how an axisymmetric electroconvection might appear is possible
by considering the three-dimensionality of the concentration distribution in a cylindrical
chamber. To do this, the density of the analyte concentration along the z-axis can be
integrated in the Cartesian coordinate system. Subsequently, from the assumption of a
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linear dependence of fluorescence on the concentration of dye, we can assume what the
propagation of such toroidal electroconvective vortices along the particle would appear as
(Video S5 corresponds to parameters in Figure 12). In the real experiment, the fluorescence
does not linearly depend on the concentration of Rhodamine [19], and thus more in-depth
investigations are necessary for a detailed comparison with the numerical simulation.
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Figure 12. The time evolution (a) and a snapshot of the the analyte concentration density Ca (b) for
∆V = 200 and ∆Π = 1500.

4. Conclusions

The results of the numerical simulation and the experimental investigation of the
analyte behavior near the ion-selective microparticle in the presence of electrokinetically
and pressure-driven flow are presented in this paper. The fluorescent agent Rhodamine-6G
was used as an analyte, which was diluted in a potassium chloride solution. A special cell
was developed for the investigation. The cell for the numerical simulation had a spherical
form with a round inlet and outlet, and an ion-selective microparticle anchored in its center.
The simulations revealed the appearance of a concentration jet for both the salt ions and for
the analyte. The salt jet behavior might be described by a simple model of an axisymmetric
wake behind a body of revolution in an axial flow. The analyte jet exhibits a more complex
structure and warrants a more thorough investigation. The degree of the concentration
increased with an increase in the pressure-driven flow, while instabilities appeared with an
increase in the electric field strength.

The experimental cell was constructed through 3D photopolymer printing and con-
tained a cylindrical chamber in the middle for proper visualization. The experimental
results confirmed the presence of the analyte concentration jet and the occurrence of the
electroconvection for a sufficiently large external electric field.

The results above provide a clearer view on the superconcentration phenomenon
which allows researchers to design, improve and optimize microdevices based on mem-
brane technology. Although detection and preconcentration problems are uncommon for
membranes, they are actively being studied. The corresponding devices are known as
membrane sensors, which could be efficiently used for simplifying and improving the ac-
curacy of chemical and medical analyzes. Thus, the results of this paper provide important
information required for further studies on the efficiency of such devices.

It is important to note that the designed cell might also work as a micropump and
a micromixer, which has been demonstrated in our previous studies. The present inves-
tigation allows us to conclude that the analyte superconcentration might be observed in
the cell once the parameters are specifically chosen. The search for such parameter values
remains the topic of future investigations.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes13050503/s1, Video S1: The density of the analyte
concentration evolution for ∆V = 150, ∆Π = 3000; Video S2: The experimental video for the 140 V
voltage and 0.08 mL/min flowrate; Video S3: The density of the analyte concentration evolution for
∆V = 200, ∆Π = 1500; Video S4: The experimental video for the 220 V voltage and 0.12 mL/min
flowrate; Video S5: The mean along the z-axis density of the analyte concentration evolution for
∆V = 200, ∆Π = 1500.
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Abbreviations
The following abbreviations are used in this manuscript:

r̃0 the radius of the ion-selective granule, which is taken as a characteristic length;
r̃2

0/D̃ the characteristic time;
D̃/r̃0 the characteristic velocity;
µ̃ the liquid viscosity, which is taken as a characteristic dynamic value;
µ̃D̃/r̃2

0 the characteristic stress;
Φ̃0 = R̃T̃/F̃ the thermal potential, which is taken as a characteristic voltage;
C̃∞ the concentration of cations in the reservoir on the outside of the inlet;
D̃F̃C̃∞/r̃0 the characteristic electric current.
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