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Abstract: This paper addresses the challenges of pressure-based sensing using axisymmetric probes
whose axes are at small angles to the mean flow. Mean pressure measurements around three yawed
circular cylinders with aspect ratios of 28, 64, and 100 were made to determine the effect of changes
in the yaw angle, γ, and freestream velocity on the average pressure coefficient, CpN , and drag coeffi-
cient, CDN . The existence of four distinct types of circumferential pressure distributions—subcritical,
transitional, supercritical, and asymmetric—were confirmed, along with the appropriateness of
scaling CpN and CDN on a streamwise Reynolds number, Resw, based on the freestream velocity
and the fluid path length along the cylinder in the streamwise direction. It was found that there
was a distinct difference in the values of CDN and CpN at identical Resw values for cylinders yawed
between 5◦ and 30◦, and for cylinders at greater than a 30◦ yaw. For γ < 5◦, there did not appear to
be any large-scale vortices in the near wake, and CDN and CpN appeared to become independent of
Resw. Over the range of 5◦ ≤ γ ≤ 30◦, there was a complex interplay of freestream speed, yaw angle,
and aspect ratio that affected the formation and shedding of Kármán-like vortices.

Keywords: circular cylinder; yaw angle; aspect ratio; vortex shedding; Kármán vortices

1. Introduction

The problem addressed in this investigation was that of the static pressure distribution
that developed on the surface of a long circular cylinder immersed in a laminar flow
at small angles of yaw, γ. The interest in this problem lies in the direct applicability
to the measurement of local static pressures using a static pressure probe. In situations
where the flow is not aligned with the probe axis, asymmetries in the flow may affect
the circumferential pressure distribution and measurement errors may result. There are
also hydrodynamic applications related to towed sensor arrays when there is a small
cross-current or when the towing vessel is turning. When this happens, the pressure field
along the array becomes even more complex with added noise due to the cable wake.

Another important application is the aeroacoustics generated by yawed cylinders at
high speeds. One such example is the pantographs on high-speed electric trains, i.e., the
spring-loaded connector to the power lines. This can be a major noise source [1] with all
the associated environmental and health concerns.

Because the cylinder disturbs the flow, even for γ = 0◦, it is important to understand
the relationship between the measured pressure at the cylinder surface and the actual static
pressure of the flow. It is well known that the flow over a circular cylinder that is oriented
perpendicular to the flow is not at all simple. However, the flow over a yawed cylinder is
further complicated by the lack of symmetry of the geometry.

The axial symmetry of the boundary layer formed on a cylinder aligned with the
flow was shown to be highly sensitive to small yaw angles [2,3]. This, in turn, affects the
average pressure readings by the pressure probe. Thus, unless the attitude of the probe
relative to the flow direction is known, the static pressure developed on the surface of the
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probe may not be characteristic of the static pressure in the flow. This investigation aimed
to determine the effect of changes in yaw angle and freestream velocity on the average
pressure coefficient around the circumference of a circular cylinder.

The problem of flow over yawed cylinders at an angle of attack first attracted attention
in the 1950s. At that time, research was carried out to determine the lift and drag character-
istics of an aircraft fuselage in supersonic flight. Since then, several significant works have
been published for cylinders that are yawed at relatively large angles to the flow direction.

Bursnall and Loftin [4] conducted exhaustive studies of pressure distributions around
cylinders in subsonic air flows. They investigated a range of 30◦ ≤ γ ≤ 90◦ over a Reynolds
number range of 6 × 104 ≤ ReN ≤ 6 × 105, where the Reynolds number, ReN , is based
on cylinder diameter, D, and the component of velocity normal to the cylinder axis. With
the obtained distributions, Bursnall and Loftin [4] identified three types of local pressure
profile shapes, Cp vs. θ, and related them to similar profiles obtained around a cylinder
oriented perpendicular to the flow, i.e., with γ = 90◦. Each profile shape was characteristic
of a different type of cylinder boundary layer separation, i.e., laminar separation, laminar
separation with turbulent reattachment, and turbulent separation.

Bursnall and Loftin [4] used their data to calculate the normal drag coefficients, CDN ,
and plotted their results against ReN . However, it was argued [4] that the characteristic
length of the cylinder should be D/sinγ, thereby leading to the definition of a streamwise
Reynolds number, Resw:

Resw =
U∞D

ν sin γ

where U∞ is the freestream velocity and ν is the kinematic viscosity. It was further shown [5]
that the use of Resw allowed the normal drag coefficient, CDN , to collapse onto a single curve.
This suggests that inviscid sweepback theory, the idea that only the flow normal to the axis
of a yawed cylinder affects the transverse and drag forces, may be applicable for yawed
cylinder flows. Accordingly, when integrating pressures around the cylinder to calculate
the drag, the axial flow pressure contributions will cancel, leaving only the contributions
from the normal flow. When inviscid sweepback theory is valid, it is physically reasonable
to define the drag and pressure coefficients as follows:

CDN =
FD

1
2 ρU2

N DL
=

FD
1
2 ρU2

∞ sin2γ DL

and
CpN =

p − p∞
1
2 ρU2

N
=

p − p∞
1
2 ρU2

∞ sin2γ

where FD, U∞, UN , and L are the drag force, freestream velocity, velocity normal to the
cylinder, and cylinder length, respectively. Furthermore, it is expected that plots of each of
these coefficients against Resw should collapse onto a single curve that is identical to that
obtained from a cylinder oriented perpendicular to the flow.

One of the earliest studies [6] of yawed cylinder wakes used the flow over an impul-
sively started cylinder as a model. The idea was that the flow field at a particular position
along the length of the yawed cylinder will have a one-to-one correspondence with the
flowfield at some instant of time in the impulsively started cylinder case. However, vorticity
measurements in the wake of yawed cylinders [7], led to the conclusion that this model is
not correct. It was suggested that a combination of impulse flow theory with the dynamics
of a Kármán vortex street would provide a quantitatively more accurate description.

More recently, there have been several studies on flow past yawed cylinders [8–13]
addressing a variety of aspects of the flow. Wall pressure spectra [8] were of interest in
the context of flow noise associated with towed sensor arrays. A detailed computational
study [9] examined the time-dependent flow past an infinite cylinder, i.e., one with periodic
end conditions, for 30◦ < γ < 90◦ (using the present convention that γ = 0◦ corresponds to
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the cylinder axis aligned with the flow). Studies around slotted [10] and rectangular [11]
cylinders were also examined.

There are two recent studies [12,13] that are closely related to the present work, both
of which focused on the transverse or normal forces acting on cylinders with a small
γ. Divaret et al. [12] conducted both computational and experimental studies of flows
around cylinders for γ from 0◦ to 15◦. They measured and computed flow fields at several
stations along a cylinder’s length from the nose to an L/D of 29. They also measured
pressure distributions around a cylinder’s circumference at L/D = 23. In the context of this
present study, the limitation of the paper by Divaret et al. [12] is that only the γ = 5◦ case
was presented.

Ersdal and Faltinsen [13] examined the normal forces on stationary and oscillating
cylinders with aspect ratios from 10.5 to 31.3 for γ between 0◦ and 20◦ for stationary cases
and 4◦ and 50◦ for cases where the cylinder was subjected to harmonic oscillation normal
to its axis. They developed a set of empirical normal drag coefficient models based on their
measurements for a fixed γ at Resw = 2 × 105 and 3.4 × 105. In addition, they examined the
effect on drag coefficient when the cylinder boundary layer transitioned from laminar to
turbulent. They showed that CDN decreased from ≈1.2 to 0.8 as a result of this transition.

It is widely understood that for small γ, something analogous to a Kármán vortex
street forms on the leeward side of the cylinder. The key difference is that the vortices
actually remain attached to the cylinder close to the nose. This is discussed in detail in
Thomson and Morrison [5]. What is unclear is how far along the length of the cylinder this
attached vortex phenomenon extends and over what range of yaw angles. For very small
angles, the development of any type of organized shed vorticity will be affected by the
boundary layer developing along the cylinder’s length. These effects will depend not only
on the sweep angle but also on the flow speed and cylinder aspect ratio.

Clearly, there are many unexplored areas of investigation in the study of yawed
cylinder flow. Therefore, this investigation aimed to develop further insight into this
complex flow. Specifically, the research objectives of this investigation were as follows:

- Test whether inviscid sweepback theory, combined with the Cp vs. Re and CD vs. Re
curves for cylinders aligned perpendicular to the flow are sufficient to predict CpN
and CDN at various values of Resw for a wide range of γ.

- Determine a lower limit where the sweepback formulae are no longer valid, i.e., to
explore whether it is possible to extend the current limit of γ = 30◦ down to an as yet
undetermined lower limit.

2. Materials and Methods
2.1. Wind Tunnel and Model

Mean pressure measurements were made separately on three yawed circular cylinders
in The University of Michigan closed-circuit wind tunnel. The test section measured
2.13 m wide, 1.52 m high, and 7.62 m long. The maximum wind speed in the tunnel was
approximately 76 m/s. A 15:1 contraction ratio diffuser accelerated the flow from a settling
chamber fitted with a series of screens to ensure a centerline turbulence intensity of less
than 0.6%.

The cylinders were assembled from two lengths of aluminum tubing on either end of a
cylindrical pressure tap segment and an elliptical nose piece. An assembly drawing appears
in Figure 1. The nose piece was machined from a section of a 2.54 cm diameter cylindrical
aluminum bar stock to form one half of an ellipsoid of revolution with a major-to-minor
axis ratio of 4.5.

The measuring station, i.e., the cylindrical pressure tap segment, was machined from
a 12.7 cm length of 2.54 cm O.D. brass tube. Twenty-four 0.16 cm diameter pressure taps
were drilled radially into the tube at 15◦ intervals at a fixed distance from one end. Clear
plastic tubing was used to connect the pressure taps to a transducer. Both ends of the
measuring station were machined to fit snugly inside the aluminum tubes.
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Figure 1. Schematic diagram of the cylinder assembly. The flow was obliquely right-to-left as
indicated. Pressure taps appeared as a ring of dots toward the aft of the measuring station; the lines
extending back from the measuring station represent the connectors to which the flexible pressure
lines were attached.

Three interchangeable sections of aluminum tubing—60 cm, 152 cm, and 243 cm long
and 2.54 cm in diameter, D—were placed upstream of the measuring station. An additional
137 cm length of aluminum tube was placed downstream of the measuring station. The
distances from the tip of the elliptical nose to the pressure taps, L, for the three cylinders
were 71.1 cm, 163 cm, and 254 cm, to provide aspect ratios, L/D, of 28, 64, and 100,
respectively. These will be referred to as the ‘short,’ ‘medium,’ and ‘long’ cylinders. The
overall cylinder lengths were 208 cm, 300 cm, and 291 cm.

To eliminate sagging of the medium and long cylinders, three 30.5 cm long spars were
placed 61 cm downstream of the pressure taps were spaced circumferentially 120◦ apart.
These are shown in Figure 1. A length of steel piano wire, 0.04 cm in diameter, was pulled
in tension from the elliptical nose over each spar and attached to the downstream end of
the cylinder, as shown in Figure 1. The tension could be adjusted using turnbuckles fixed at
the downstream attachment point. The straightness, yaw, and angle of attack were checked
by measuring the distance from the cylinder to the wind tunnel wall and floor for several
streamwise locations.

2.2. Pressure Measurements

Pressure data were collected for the twenty-four circumferential pressure taps on each
cylinder as a function of γ and Resw. Pressure taps can be seen as a ring of dots around
the measuring station in the schematic in Figure 1. In addition, a pitot-static probe was
positioned close to the cylinder mounting point in the test section in order to determine the
wind tunnel speed in the vicinity of the pressure measurement station. In total, there were
twenty-six separate pressure measurements.

Pressure measurements were made using a Setra Systems Model 237 low-range pres-
sure transducer mounted to an in-house scanivalve. This is illustrated in Figure 2. Each
of the twenty-six pressure lines was connected to 236 mL glass pharmaceutical bottles
to mechanically filter the pressure fluctuations [14]. These lines were connected to both
the scanivalve and a bank of oil manometers (S.G. = 0.826). Visual observation of the
manometers indicated that pressure fluctuations above 0.2 Hz were effectively filtered by
the volume of air in the pharmaceutical bottles. As such, transducer measurements were
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averaged over 3 to 5 s by leaving the scanivalve connected to each line for that amount of
time. To place this sampling time in context, the Kármán vortex shedding frequency for the
lowest speed was over 150 Hz. With a sampling time of 5 s for this lowest speed, the pres-
sure was averaged over 750 vortex shedding periods. The mean pressure measurements
were highly resolved.

Figure 2. Schematic drawing of the pressure data acquisition system. The bottle was used as a large
reservoir to mechanically dampen the pressure fluctuations. The pressure could be monitored using
an oil manometer bank.

3. Results

The base data for this study were the pressure distributions around the circumference
of the cylinder as a function of yaw angle, flow speed, and axial position along the cylinder.
When examining these distributions, six different types of Cp vs. θ curves emerged, exam-
ples of which appear in Figure 3. Note that the circumferential angle, θ = 0◦, is located
on the horizontal symmetry plane of the cylinder (i.e., the plane in which the cylinder is
yawed) on what becomes the windward side when the cylinder is yawed.

According to inviscid sweepback theory, Cp vs. θ curves should resemble those ob-
served around circular cylinders that are aligned normal to the flow. Specifically, as the
Reynolds number increases, the cylinder boundary layer should progress from laminar
to turbulent with the mean separation forward of the cylinder vertical midplane for the
laminar boundary layer and aft of the cylinder midplane after the boundary layer becomes
turbulent. There should, of course, be an intermediate profile when the boundary layer is
transitional. Examples of these three pressure distributions are shown in Figure 3a. One
can see that as the cylinder boundary layer transitioned from laminar to turbulent, the
separation point moved from the front of the cylinder, θ < 90◦ and θ > 270◦, to the back,
and the pressure minima at the top and bottom of the cylinder decreased while the base
pressure behind the cylinder increased.

However, several profiles did not fit these descriptions. Examples are shown in
Figure 3b. As can be seen, two of the profiles were asymmetric, with one having lower
pressures on the top half of the cylinder, while the other had lower pressures on the bottom
half. The third profile, plotted using solid circles, did not fit into any category. The two
asymmetric profiles were consistent with the observations of Thompson and Morrison [5],
among others, of a series of Kármán-like vortices attached to the cylinder, which alternated
from side to side down the length of the yawed cylinder.

The third profile in Figure 3b was from the medium length cylinder at U∞ = 54.6 m/s
and γ = 5◦, plotted with solid circles. There are similarities between this profile and the
profile identified as transitional in Figure 3a; that profile was from the same medium
length cylinder and speed but at a higher γ of 15◦. However, the pressure minima were
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lower than even the turbulent boundary layer case and the base pressure in the range of
≈120◦ ≤ θ ≤ ≈240◦ had a distinct ‘hump’ between ≈150◦ ≤ θ ≤ ≈210◦. These features
highlight the complexity of the near-cylinder flow field. For yawed cylinders, particularly
at low γ, there was a strong axial component to the flow that allowed for a thickened
boundary layer along the length of the cylinder that may or may not be blown off by the
crossflow. As a result, the flow and pressure distributions could be difficult to interpret.
This will be discussed in Section 4.

Figure 3. Representative pressure coefficient distributions around the circular cylinder over a range
of conditions. The races include those that are (a) characteristic of those measured around cylinders
normal to the flow and (b) asymmetric or uncharacterized.

For a cylinder aligned with the flow, the pressure around the cylinder, averaged
circumferentially and over time, should be zero. With increasing γ, the magnitude of the
average pressure coefficient, Cp, should increase until the cylinder is perpendicular to the
flow. This behavior is visible in Figure 4 which shows the average pressure coefficient as a
function of the freestream speed, U∞, for the three different length cylinders over the range
of 0◦ ≤ γ ≤ 30◦. While there was a clear dependence on γ, the aspect ratio, L/D, appeared
to be an important parameter as well. There also appeared to be a weak dependence on
speed, but there were no consistent observable trends from this particular figure.

If inviscid sweepback theory were to apply for all of the conditions in this study, it
would be expected that the average pressure coefficient data, normalized by the cross-stream
dynamic pressure, CpN , would collapse onto a single curve when plotted as a function of
the streamwise Reynolds number, Resw. This was not the case, as seen in Figure 5.

An examination of Figure 5 revealed roughly two groupings of data. The first grouping
was found in the region bounded by −1.0 ≤ CpN ≤ −0.3 and 4 × 104 < Resw < 106. The
second grouping lay in the upper-right-hand portion of the plot that was roughly defined
by CpN > −0.4 and Resw > 3 × 105; however, it is important to keep in mind that the large
values of Resw were because of the 1/ sin γ dependence and not because of actual high
speeds. All of the larger yaw angle cases, i.e., γ > 5◦, were found in the first grouping.
Furthermore, within that grouping, data from the shortest cylinder, L/D = 28, appeared to
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follow one trend line, roughly along a line of CpN ≈ −0.45, while the two higher aspect
ratio cylinders, L/D = 64 and L/D = 100, appeared to collapse toward a more negative
trend line. This indicated a dependence on the aspect ratio and was consistent with a
similar observation made regarding Figure 4.

Figure 4. Average pressure coefficient around the cylinder, Cp, as a function of the freestream velocity,
U∞, for the three different cylinders and range of γ examined.

All of the cases in the second grouping were for the smallest yaw angles, γ ≤ 5◦. All
of the CpN data for the two longer cylinders fell between ±0.1, irrespective of the Reynolds
number and γ. The two cases for the shortest cylinder, at γ = 2.5◦ and 5◦, exhibited
markedly different behavior. At the lowest yaw angle, γ = 2.5◦, CpN was positive with
values around +0.4, while for the γ = 5◦ case, CpN became negative with values around −0.3.
As noted previously, for γ ≥ 10◦, the normal averaged pressure coefficient for the L/D = 28
cylinder appeared to collapse toward a single curve with values averaging approximately
−0.45. However, it is perhaps worth noting that the trend toward increasingly negative
CpN values with increasing γ seemed to continue, albeit very weakly. However, for all
practical purposes, it seemed that inviscid sweepback theory applied for γ & 10◦ for this
shortest cylinder case. Moreover, as noted previously, the L/D = 28 cylinder data appeared
to collapse onto a different trend line than the two longer cylinders.

The notion of the applicability of the inviscid sweepback theory collapsing pressure
coefficient measurements onto a single curve for γ & 10◦ appeared to apply for the two
longer cylinders as well. However, the fact that there seemed to be a dependence on the
cylinder aspect ratio indicates that this may be too simplistic a conclusion. This will be
discussed in greater detail in the following section.

Similar trends can be seen in the drag coefficient perpendicular to the cylinder, CDN .
This is shown in the CDN vs. Resw plot in Figure 6 for the range of γ and the three different
cylinder lengths. Both values are shown on logarithmic scales, as is standard. For this
plot, the net pressure force that was normal to the cylinder in the horizontal plane was
computed and nondimensionalized using the cylinder-normal component of the velocity.
The solid line in the figure is a reproduction of the drag coefficient curve for a cylinder
that is oriented perpendicular to the flow. Key features of this curve are (i) the extended
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Reynolds number range, from ~100 to ~300,000, where the drag coefficient was nominally
constant with a value of 1.0, and (ii) the drag crisis around a Reynolds number of 500,000,
where the boundary layer for the cylinder aligned perpendicular to the flow transitioned
from laminar to turbulent.

Figure 5. Average pressure coefficient based on the cross-stream dynamic pressure, CpN , plotted as a
function of the streamwise Reynolds number, Resw.

Figure 6. Plot of CDN vs. Resw for the three different aspect ratio cylinders and range of yaw angles. The
solid line represents the drag coefficient for a circular cylinder that was aligned perpendicular to the flow.
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As with the CpN data that is shown in Figure 5, the drag coefficient data in Figure 6
could also be roughly divided into two groupings. The first grouping included cases where
γ & 5◦. The small yaw angle data, γ . 5◦, comprised the second grouping. The important
difference between the two groupings was that the first was clustered around the canonical
cylinder drag coefficient curve, while the second grouping was above and to the right.
For the cases where γ ≥ 10◦, the data appeared to follow the canonical CD vs. Re curve
reasonably well, including the drag crisis. Similarly, like the CpN data in Figure 5, the CDN
data for the cases where γ < 5◦ were all well separated from the canonical curve. More
detailed observations appear in the following section.

4. Discussion

Data presented in the preceding section demonstrated the complexity and richness of
yawed cylinder flows. Where previous studies have focused heavily on the effects of the
yaw angle alone, the present work indicated that flow speed and the cylinder aspect ratio
are significant parameters as well. The focus of this discussion, then, will be on parsing
where and how these different parameters are important.

Figure 7 shows schematic drawings of the three nominal types of flow as γ increases
from 0◦, i.e., cylinder aligned with the flow, to 90◦ when the cylinder is orthogonal to the
flow. At γ = 0◦, an axisymmetric boundary layer develops. This is shown in Figure 7a.
This boundary layer may become turbulent where the character of the turbulence will
depend on the flow speed, cylinder length, and radius [3]. With increasing γ, a system of
attached vortices develops on the leeward side of the cylinder [4,7], as shown in Figure 7b.
Streamwise vortices of opposite sign vorticity are alternatively arrayed down the length of
the cylinder. At a fixed location downstream of the cylinder, visualization in a cross-stream
will look like a still image of a Kármán vortex street. For γ > 60◦, opposite-signed vortices
are shed alternately from either side of the cylinder with each vortex being nominally
parallel to the cylinder axis. This is the classical Kármán vortex street shown in the side
view in Figure 7c. The open question is where the interstices are between these different
regimes. This will be examined by looking at the data with increasing γ.

An inherent assumption in inviscid sweepback theory is that the circumferential
vorticity, ωθ , that is associated with an axial flow along the cylinder is negligible. As γ
increases, this assumption would be increasingly valid. However, it is unreasonable to
think that this would be true for small yaw angles.

The data, particularly in Figures 5 and 6, indicated that the axial component of the
flow, i.e., the axial boundary layer, played an important role for γ less than 5◦. As noted
in Section 3, CpN was approximately zero for all small values of γ for the two longer
cylinders. It was also pointed out that the CpN data for the shortest cylinder, L/D = 28,
were approximately +0.4 for γ = 2.5◦. It is worth noting that for this cylinder and yaw
angle, the pressure taps were roughly aligned behind the cylinder nose: 1/ tan 2.5◦ = 22.9.
For all other cases studied, except for the γ = 1◦ case for the L/D = 64 cylinder, the cylinder
nose was outboard of the pressure taps.

The corresponding low yaw angle drag coefficient data, CDN , also appeared to be
in a grouping that was separate from the γ > 5◦ data. Contrary to CpN , the CDN values
were large. However, this was because sin2 γ, appearing in the coefficient’s denominator
(i.e., the cylinder-normal velocity component squared), is very small for small γ. The
key points here are that for γ < 5◦, the effects of the axial flow had a strong effect on the
pressure distribution around the cylinder, and that for aspect ratios L/D . 30, the wake of
the cylinder nose could be important.

It then appeared that γ = 5◦ was significant for all three aspect ratio cylinders. These
data appear in Figures 5 and 6 as open black, solid black, and open red circles for L/D = 28,
64, and 100, respectively. In Figure 5, these cases are clearly together with the γ < 5◦ cases.
However, in Figure 6, this distinction is not as clear; all three of these data sets lay between
the first and second groupings. Specifically, they appeared to be close to the canonical
drag coefficient curve, but the values of CDN were consistently larger than the canonical
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values at the corresponding Reynolds numbers. Furthermore, with an increasing Reynolds
number, the data did not appear to exhibit the sudden decrease in CDN at Resw ≈ 500,000
that is characteristic of the drag crisis.

Figure 7. Schematic drawings of the three categories of flow for cylinders across the range of yaw
angles: (a) boundary layer forming on a cylinder aligned with the flow, γ = 0◦; (b) top view of the
attached vortices alternating from one side of the cylinder to the other; (c) side view of the classic
Kármán vortex street for a cylinder that is oriented perpendicular to the flow, γ = 90◦.

A clue regarding why this was happening can be found in the Cp vs. θ curve in
Figure 3b for the γ = 5◦, L/D = 64 case, which was plotted using solid circles. As noted, this
pressure profile did not match any of those that are typically observed around cylinders at
high yaw angles. Those can be seen in Figure 3a. At the same time, it was very different
from what one would expect for an axisymmetric boundary layer flow. One possibility
is that this is the signature of a symmetric pair of vortices that trailed back from farther
forward on the cylinder. Alternatively, there might be some sort of complex ‘braiding’ of
vortices on each side of the cylinder into a single pair of vortices that required some length
along the cylinder to develop. Unfortunately, mean pressure measurements alone are not
sufficient to resolve this question.

In Figure 6, it can be seen that the γ = 5◦ data for L/D = 64 and 100 collapsed onto
a single curve. The L/D = 28 cylinder data at this yaw angle were taken only for the
two fastest speeds. At the corresponding Reynolds numbers, the values of CDN for the
L/D = 28 cylinder were roughly twice that for the L/D = 64 cylinder. It appeared that
L/D ≈ 1/tan γ may be an important parameter because measurements at smaller aspect
ratios will be in the shadow of the cylinder nose. This is a point for further investigation.
The key point is that there seemed to be transitions around both γ = 5◦ and L/D ≈ 28.

The interesting complexity of this flow continued to manifest with increasing yaw
angle in the range 10◦ ≤ γ ≤ 30◦. The dependence on the aspect ratio can again be seen



Fluids 2021, 6, 169 11 of 12

in Figures 5 and 6 as both CpN and the CDN for the shortest cylinder were different than
for the two longer cylinders. This was most evident in the CpN data in Figure 5. However,
close examination of Figure 6 revealed that for equivalent values of Resw, CDN was smaller
for the L/D = 28 cylinder than for the two longer ones. However, there was perhaps a more
interesting observation regarding flow speed.

Two circumferential pressure distributions for the medium length cylinder, L/D = 64,
at γ = 15◦ are shown in Figure 3. The first distribution was measured at the second-highest
speed, U∞ = 54.6 m/s, and is shown in Figure 3a with solid triangles. The second, seen in
Figure 3b as open diamonds, was obtained at the lowest speed, U∞ = 18.6 m/s. Observe
that the distribution for the lower speed was asymmetric. It was pointed out that this is
consistent with the model [7] of opposite-signed vortices attached one after the other down
the length of the yawed cylinder. In that situation, circumferential pressure measurements
would exhibit asymmetric distributions when an attached vortex was in close proximity to
the measurement station.

In comparison, observe that the corresponding pressure distribution in Figure 3a, mea-
sured at the higher speed, was symmetric. Furthermore, it was noted that the distribution
was consistent with that seen around a cylinder aligned orthogonal to the flow in which its
boundary layer was transitional. While this is, of course, a Reynolds number effect, it is not
clear that the streamwise Reynolds number, Resw, is the appropriate parameter with which
to characterize this particular phenomenon. As such, it is probably more appropriate to
say here that this is a flow speed or cross-stream momentum effect. It is hypothesized that
at the lower speed, a stable system of attached vortices formed on the leeward side of the
cylinder, but at higher speeds, the cross-stream momentum became large enough to sweep
the vortices off the cylinder, resulting in something more akin to a Kármán vortex street.

It is this interplay of yaw angle, aspect ratio, and flow speed that governed the
dynamics of the flow up to γ ≈ 60◦, where it is widely accepted that a Kármán street
comprises the cylinder wake. Evidence of this can be seen in the circumferential pressure
distribution for the shortest cylinder at γ ≈ 30◦ in Figure 3a and the normal drag coefficient
data for that case in Figure 6. In Figure 3a, the pressure distribution was consistent with
that which would be measured around a cylinder aligned perpendicular to the flow in
the Reynolds number range where Kármán vortex shedding occurs. Similarly, in Figure 6,
the drag coefficient data aligned very well with the drag curve for a cylinder aligned
perpendicular to the flow. What is abundantly clear is that the study of yawed cylinder
flows is not simply a function of the yaw angle.

5. Conclusions

A series of circumferential pressure measurements were made in a wind tunnel
around a circular cylinder over a range of yaw angles, freestream speeds, and aspect
ratios. Data were used to compute the average pressure coefficients and drag coefficients.
The primary objective of the study was to further define the parameter space in which
inviscid sweepback theory was valid and to better understand the dynamics that determine
those parameters. As such, the significant contribution of this work lies in identifying the
aspect ratio and flow speed in addition to the yaw angle as key parameters. New insights
into where and how those parameters might affect the flow can also be put forward. In
particular, detailed analysis of the measurements led to the following conclusions:

(1) Boundary-dominated flow, γ < 5◦

- For γ < 5◦, the flow was strongly influenced by the axisymmetric boundary layer.

- The cylinder aspect ratio is an important parameter for γ . tan−1
(

L
D

)
. This is the

angle at which the nose had a direct upstream influence on the rest of the body.

(2) Transition to wake-dominated flow, 5◦ ≤ γ ≤ 30◦

- For γ = 5◦, there appeared to be a transition to vortex-dominated flow irrespective of
the aspect ratio.
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- Over the range 5◦ ≤ γ ≤ 30◦, the flow was dominated by a system of strong, coherent,
alternating sign vortices; there was a complex interplay between γ, U∞, and L/D that
determined whether the vortices were attached or shed to form a Kármán vortex street.

- For a fixed yaw angle and aspect ratio, increasing the freestream speed increased the
cross-stream momentum, which in turn helped to cause the attached vortices to shed.

In closing, it should be noted that this is an incredibly rich problem. The observations
made here need to be confirmed with simultaneous flow measurements or computations.
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