Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (913)

Search Parameters:
Keywords = asymmetric operation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2421 KiB  
Article
Optimization of Cooperative Operation of Multiple Microgrids Considering Green Certificates and Carbon Trading
by Xiaobin Xu, Jing Xia, Chong Hong, Pengfei Sun, Peng Xi and Jinchao Li
Energies 2025, 18(15), 4083; https://doi.org/10.3390/en18154083 (registering DOI) - 1 Aug 2025
Abstract
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an [...] Read more.
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an effective solution to this problem. Uncertainty exists in single microgrids, so multiple microgrids are introduced to improve system stability and robustness. Electric carbon trading and profit redistribution among multiple microgrids have been challenges. To promote energy commensurability among microgrids, expand the types of energy interactions, and improve the utilization rate of renewable energy, this paper proposes a cooperative operation optimization model of multi-microgrids based on the green certificate and carbon trading mechanism to promote local energy consumption and a low carbon economy. First, this paper introduces a carbon capture system (CCS) and power-to-gas (P2G) device in the microgrid and constructs a cogeneration operation model coupled with a power-to-gas carbon capture system. On this basis, a low-carbon operation model for multi-energy microgrids is proposed by combining the local carbon trading market, the stepped carbon trading mechanism, and the green certificate trading mechanism. Secondly, this paper establishes a cooperative game model for multiple microgrid electricity carbon trading based on the Nash negotiation theory after constructing the single microgrid model. Finally, the ADMM method and the asymmetric energy mapping contribution function are used for the solution. The case study uses a typical 24 h period as an example for the calculation. Case study analysis shows that, compared with the independent operation mode of microgrids, the total benefits of the entire system increased by 38,296.1 yuan and carbon emissions were reduced by 30,535 kg through the coordinated operation of electricity–carbon coupling. The arithmetic example verifies that the method proposed in this paper can effectively improve the economic benefits of each microgrid and reduce carbon emissions. Full article
Show Figures

Figure 1

30 pages, 12322 KiB  
Article
Dynamic Modeling and Validation of Dual-Cable Double-Pendulum Systems for Gantry Cranes
by Bowen Jin, Ji Zeng, Pan Gao, He Zhang and Shenwei Ge
Machines 2025, 13(8), 676; https://doi.org/10.3390/machines13080676 (registering DOI) - 1 Aug 2025
Abstract
This paper presents a novel dynamic modeling framework for gantry crane systems based on the cart double pendulum with dual cables (CDPD) model. The CDPD model systematically incorporates the effects of dual suspension cables, equalizer beams, and closed-chain kinematic constraints, enabling an accurate [...] Read more.
This paper presents a novel dynamic modeling framework for gantry crane systems based on the cart double pendulum with dual cables (CDPD) model. The CDPD model systematically incorporates the effects of dual suspension cables, equalizer beams, and closed-chain kinematic constraints, enabling an accurate simulation of both symmetric and asymmetric lifting scenarios. Utilizing Kane’s method, the model efficiently handles redundant coordinates and holonomic constraints, resulting in a compact and numerically robust formulation. Validation results demonstrate strict energy conservation and consistency with traditional models in limiting cases. The proposed approach provides a unified and extensible foundation for the advanced analysis, control, and optimization of large-scale gantry crane operations. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

34 pages, 530 KiB  
Article
Optimal Governance for Post-Concession Logistics Infrastructure: A Comparative Study of Self-Operation vs. Delegation Under Information Asymmetry
by Minghua Xiong
Sustainability 2025, 17(15), 6982; https://doi.org/10.3390/su17156982 (registering DOI) - 31 Jul 2025
Abstract
Public–private partnership (PPP) logistics infrastructure projects have become increasingly prevalent globally. Consequently, the effective management of these projects as their concession periods expire presents a crucial challenge for governments, vital for the sustainable management of PPP logistics infrastructure. This study addresses this challenge [...] Read more.
Public–private partnership (PPP) logistics infrastructure projects have become increasingly prevalent globally. Consequently, the effective management of these projects as their concession periods expire presents a crucial challenge for governments, vital for the sustainable management of PPP logistics infrastructure. This study addresses this challenge by focusing on the pivotal post-concession decision: whether the government should self-operate the mature logistics infrastructure or re-delegate its management to a private entity. Our theoretical model, built on a principal–agent framework, first establishes a social welfare baseline under government self-operation and then analyzes delegated operation under symmetric information, identifying efficiency frontiers. Under symmetric information, we find that government self-operation is more advantageous when its own operational efficiency is sufficiently high, irrespective of the private enterprise’s efficiency; conversely, delegating to an efficient private enterprise is optimal only when government operational efficiency is low. We also demonstrate that if the government can directly specify the demand quantity and service level and delegates operation via a fixed fee, the enterprise can be incentivized to align with the social optimum. However, under asymmetric information, potential welfare gains from delegation are inevitably offset by informational rent and output distortion. We further uncover non-monotonic impacts of parameters like the proportion of low-cost firms on social welfare loss and demonstrate how information asymmetry can indirectly compromise the long-term resilience of the infrastructure. Ultimately, our work asserts that delegation is only superior if its potential efficiency gains sufficiently offset the inherent losses stemming from information asymmetry. Full article
(This article belongs to the Section Sustainable Transportation)
79 pages, 12542 KiB  
Article
Evolutionary Game-Theoretic Approach to Enhancing User-Grid Cooperation in Peak Shaving: Integrating Whole-Process Democracy (Deliberative Governance) in Renewable Energy Systems
by Kun Wang, Lefeng Cheng and Ruikun Wang
Mathematics 2025, 13(15), 2463; https://doi.org/10.3390/math13152463 - 31 Jul 2025
Viewed by 78
Abstract
The integration of renewable energy into power grids is imperative for reducing carbon emissions and mitigating reliance on depleting fossil fuels. In this paper, we develop symmetric and asymmetric evolutionary game-theoretic models to analyze how user–grid cooperation in peak shaving can be enhanced [...] Read more.
The integration of renewable energy into power grids is imperative for reducing carbon emissions and mitigating reliance on depleting fossil fuels. In this paper, we develop symmetric and asymmetric evolutionary game-theoretic models to analyze how user–grid cooperation in peak shaving can be enhanced by incorporating whole-process democracy (deliberative governance) into decision-making. Our framework captures excess returns, cooperation-driven profits, energy pricing, participation costs, and benefit-sharing coefficients to identify equilibrium conditions under varied subsidy, cost, and market scenarios. Furthermore, this study integrates the theory, path, and mechanism of deliberative procedures under the perspective of whole-process democracy, exploring how inclusive and participatory decision-making processes can enhance cooperation in renewable energy systems. We simulate seven scenarios that systematically adjust subsidy rates, cost–benefit structures, dynamic pricing, and renewable-versus-conventional competitiveness, revealing that robust cooperation emerges only under well-aligned incentives, equitable profit sharing, and targeted financial policies. These scenarios systematically vary these key parameters to assess the robustness of cooperative equilibria under diverse economic and policy conditions. Our findings indicate that policy efficacy hinges on deliberative stakeholder engagement, fair profit allocation, and adaptive subsidy mechanisms. These results furnish actionable guidelines for regulators and grid operators to foster sustainable, low-carbon energy systems and inform future research on demand response and multi-source integration. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

18 pages, 5013 KiB  
Article
Enhancing Document Forgery Detection with Edge-Focused Deep Learning
by Yong-Yeol Bae, Dae-Jea Cho and Ki-Hyun Jung
Symmetry 2025, 17(8), 1208; https://doi.org/10.3390/sym17081208 - 30 Jul 2025
Viewed by 136
Abstract
Detecting manipulated document images is essential for verifying the authenticity of official records and preventing document forgery. However, forgery artifacts are often subtle and localized in fine-grained regions, such as text boundaries or character outlines, where visual symmetry and structural regularity are typically [...] Read more.
Detecting manipulated document images is essential for verifying the authenticity of official records and preventing document forgery. However, forgery artifacts are often subtle and localized in fine-grained regions, such as text boundaries or character outlines, where visual symmetry and structural regularity are typically expected. These manipulations can disrupt the inherent symmetry of document layouts, making the detection of such inconsistencies crucial for forgery identification. Conventional CNN-based models face limitations in capturing such edge-level asymmetric features, as edge-related information tends to weaken through repeated convolution and pooling operations. To address this issue, this study proposes an edge-focused method composed of two components: the Edge Attention (EA) layer and the Edge Concatenation (EC) layer. The EA layer dynamically identifies channels that are highly responsive to edge features in the input feature map and applies learnable weights to emphasize them, enhancing the representation of boundary-related information, thereby emphasizing structurally significant boundaries. Subsequently, the EC layer extracts edge maps from the input image using the Sobel filter and concatenates them with the original feature maps along the channel dimension, allowing the model to explicitly incorporate edge information. To evaluate the effectiveness and compatibility of the proposed method, it was initially applied to a simple CNN architecture to isolate its impact. Subsequently, it was integrated into various widely used models, including DenseNet121, ResNet50, Vision Transformer (ViT), and a CAE-SVM-based document forgery detection model. Experiments were conducted on the DocTamper, Receipt, and MIDV-2020 datasets to assess classification accuracy and F1-score using both original and forged text images. Across all model architectures and datasets, the proposed EA–EC method consistently improved model performance, particularly by increasing sensitivity to asymmetric manipulations around text boundaries. These results demonstrate that the proposed edge-focused approach is not only effective but also highly adaptable, serving as a lightweight and modular extension that can be easily incorporated into existing deep learning-based document forgery detection frameworks. By reinforcing attention to structural inconsistencies often missed by standard convolutional networks, the proposed method provides a practical solution for enhancing the robustness and generalizability of forgery detection systems. Full article
Show Figures

Figure 1

21 pages, 3051 KiB  
Article
Novel Gaussian-Decrement-Based Particle Swarm Optimization with Time-Varying Parameters for Economic Dispatch in Renewable-Integrated Microgrids
by Yuan Wang, Wangjia Lu, Wenjun Du and Changyin Dong
Mathematics 2025, 13(15), 2440; https://doi.org/10.3390/math13152440 - 29 Jul 2025
Viewed by 123
Abstract
Background: To address the uncertainties of renewable energy power generation, the disorderly charging characteristics of electric vehicles, and the high electricity cost of the power grid in expressway service areas, a method of economic dispatch optimization based on the improved particle swarm optimization [...] Read more.
Background: To address the uncertainties of renewable energy power generation, the disorderly charging characteristics of electric vehicles, and the high electricity cost of the power grid in expressway service areas, a method of economic dispatch optimization based on the improved particle swarm optimization algorithm is proposed in this study. Methods: Mathematical models of photovoltaic power generation, energy storage systems, and electric vehicles were established, thereby constructing the microgrid system model of the power load in the expressway service area. Taking the economic cost of electricity consumption in the service area as the objective function and simultaneously meeting constraints such as power balance, power grid interactions, and energy storage systems, a microgrid economy dispatch model is constructed. An improved particle swarm optimization algorithm with time-varying parameters of the inertia weight and learning factor was designed to solve the optimal dispatching strategy. The inertia weight was improved by adopting the Gaussian decreasing method, and the asymmetric dynamic learning factor was adjusted simultaneously. Findings: Field case studies demonstrate that, compared to other algorithms, the improved Particle Swarm Optimization algorithm effectively reduces the operational costs of microgrid systems while exhibiting accelerated convergence speed and enhanced robustness. Value: This study provides a theoretical mathematical reference for the economic dispatch optimization of microgrids in renewable-integrated transportation systems. Full article
Show Figures

Figure 1

23 pages, 12169 KiB  
Article
Effect of Quasi-Static Door Operation on Shear Layer Bifurcations in Supersonic Cavities
by Skyler Baugher, Datta Gaitonde, Bryce Outten, Rajan Kumar, Rachelle Speth and Scott Sherer
Aerospace 2025, 12(8), 668; https://doi.org/10.3390/aerospace12080668 - 26 Jul 2025
Viewed by 172
Abstract
Span-wise homogeneous supersonic cavity flows display complicated structures due to shear layer breakdown, flow acoustic resonance, and even non-linear hydrodynamic-acoustic interactions. In practical applications, such as aircraft bays, the cavity is of finite width and has doors, both of which introduce distinctive phenomena [...] Read more.
Span-wise homogeneous supersonic cavity flows display complicated structures due to shear layer breakdown, flow acoustic resonance, and even non-linear hydrodynamic-acoustic interactions. In practical applications, such as aircraft bays, the cavity is of finite width and has doors, both of which introduce distinctive phenomena that couple with the shear layer at the cavity lip, further modulating shear layer bifurcations and tonal mechanisms. In particular, asymmetric states manifest as ‘tornado’ vortices with significant practical consequences on the design and operation. Both inward- and outward-facing leading-wedge doors, resulting in leading edge shocks directed into and away from the cavity, are examined at select opening angles ranging from 22.5° to 90° (fully open) at Mach 1.6. The computational approach utilizes the Reynolds-Averaged Navier–Stokes equations with a one-equation model and is augmented by experimental observations of cavity floor pressure and surface oil-flow patterns. For the no-doors configuration, the asymmetric results are consistent with a long-time series DDES simulation, previously validated with two experimental databases. When fully open, outer wedge doors (OWD) yield an asymmetric flow, while inner wedge doors (IWD) display only mildly asymmetric behavior. At lower door angles (partially closed cavity), both types of doors display a successive bifurcation of the shear layer, ultimately resulting in a symmetric flow. IWD tend to promote symmetry for all angles observed, with the shear layer experiencing a pitchfork bifurcation at the ‘critical angle’ (67.5°). This is also true for the OWD at the ‘critical angle’ (45°), though an entirely different symmetric flow field is established. The first observation of pitchfork bifurcations (‘critical angle’) for the IWD is at 67.5° and for the OWD, 45°, complementing experimental observations. The back wall signature of the bifurcated shear layer (impingement preference) was found to be indicative of the 3D cavity dynamics and may be used to establish a correspondence between 3D cavity dynamics and the shear layer. Below the critical angle, the symmetric flow field is comprised of counter-rotating vortex pairs at the front and back wall corners. The existence of a critical angle and the process of door opening versus closing indicate the possibility of hysteresis, a preliminary discussion of which is presented. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

17 pages, 2690 KiB  
Article
Impact Analysis of Price Cap on Bidding Strategies of VPP Considering Imbalance Penalty Structures
by Youngkook Song, Yongtae Yoon and Younggyu Jin
Energies 2025, 18(15), 3927; https://doi.org/10.3390/en18153927 - 23 Jul 2025
Viewed by 207
Abstract
Virtual power plants (VPPs) enable the efficient participation of distributed renewable energy resources in electricity markets by aggregating them. However, the profitability of VPPs is challenged by market volatility and regulatory constraints, such as price caps and imbalance penalties. This study examines the [...] Read more.
Virtual power plants (VPPs) enable the efficient participation of distributed renewable energy resources in electricity markets by aggregating them. However, the profitability of VPPs is challenged by market volatility and regulatory constraints, such as price caps and imbalance penalties. This study examines the joint impact of varying price cap levels and imbalance penalty structures on the bidding strategies and revenues of VPPs. A stochastic optimization model was developed, where a three-stage scenario tree was utilized to capture the uncertainty in electricity prices and renewable generation output. Simulations were performed under various market conditions using real-world price and generation data from the Korean electricity market. The analysis reveals that higher price cap coefficients lead to greater revenue and more segmented bidding strategies, especially under asymmetric penalty structures. Segment-wise analysis of bid price–quantity pairs shows that over-bidding is preferred under upward-only penalty schemes, while under-bidding is preferred under downward-only ones. Notably, revenue improvement tapers off beyond a price cap coefficient of 0.8, which indicates that there exists an optimal threshold for regulatory design. The findings of this study suggest the need for coordination between price caps and imbalance penalties to maintain market efficiency while supporting renewable energy integration. The proposed framework also offers practical insights for market operators and policymakers seeking to balance profitability, adaptability, and stability in VPP-integrated electricity markets. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

24 pages, 3714 KiB  
Article
DTCMMA: Efficient Wind-Power Forecasting Based on Dimensional Transformation Combined with Multidimensional and Multiscale Convolutional Attention Mechanism
by Wenhan Song, Enguang Zuo, Junyu Zhu, Chen Chen, Cheng Chen, Ziwei Yan and Xiaoyi Lv
Sensors 2025, 25(15), 4530; https://doi.org/10.3390/s25154530 - 22 Jul 2025
Viewed by 248
Abstract
With the growing global demand for clean energy, the accuracy of wind-power forecasting plays a vital role in ensuring the stable operation of power systems. However, wind-power generation is significantly influenced by meteorological conditions and is characterized by high uncertainty and multiscale fluctuations. [...] Read more.
With the growing global demand for clean energy, the accuracy of wind-power forecasting plays a vital role in ensuring the stable operation of power systems. However, wind-power generation is significantly influenced by meteorological conditions and is characterized by high uncertainty and multiscale fluctuations. Traditional recurrent neural network (RNN) and long short-term memory (LSTM) models, although capable of handling sequential data, struggle with modeling long-term temporal dependencies due to the vanishing gradient problem; thus, they are now rarely used. Recently, Transformer models have made notable progress in sequence modeling compared to RNNs and LSTM models. Nevertheless, when dealing with long wind-power sequences, their quadratic computational complexity (O(L2)) leads to low efficiency, and their global attention mechanism often fails to capture local periodic features accurately, tending to overemphasize redundant information while overlooking key temporal patterns. To address these challenges, this paper proposes a wind-power forecasting method based on dimension-transformed collaborative multidimensional multiscale attention (DTCMMA). This method first employs fast Fourier transform (FFT) to automatically identify the main periodic components in wind-power data, reconstructing the one-dimensional time series as a two-dimensional spatiotemporal representation, thereby explicitly encoding periodic features. Based on this, a collaborative multidimensional multiscale attention (CMMA) mechanism is designed, which hierarchically integrates channel, spatial, and pixel attention to adaptively capture complex spatiotemporal dependencies. Considering the geometric characteristics of the reconstructed data, asymmetric convolution kernels are adopted to enhance feature extraction efficiency. Experiments on multiple wind-farm datasets and energy-related datasets demonstrate that DTCMMA outperforms mainstream methods such as Transformer, iTransformer, and TimeMixer in long-sequence forecasting tasks, achieving improvements in MSE performance by 34.22%, 2.57%, and 0.51%, respectively. The model’s training speed also surpasses that of the fastest baseline by 300%, significantly improving both prediction accuracy and computational efficiency. This provides an efficient and accurate solution for wind-power forecasting and contributes to the further development and application of wind energy in the global energy mix. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

25 pages, 1047 KiB  
Article
Integrated Blockchain and Federated Learning for Robust Security in Internet of Vehicles Networks
by Zhikai He, Rui Xu, Binyu Wang, Qisong Meng, Qiang Tang, Li Shen, Zhen Tian and Jianyu Duan
Symmetry 2025, 17(7), 1168; https://doi.org/10.3390/sym17071168 - 21 Jul 2025
Viewed by 301
Abstract
The Internet of Vehicles (IoV) operates in an environment characterized by asymmetric security threats, where centralized vulnerabilities create a critical imbalance that can be disproportionately exploited by attackers. This study addresses this imbalance by proposing a symmetrical security framework that integrates Blockchain and [...] Read more.
The Internet of Vehicles (IoV) operates in an environment characterized by asymmetric security threats, where centralized vulnerabilities create a critical imbalance that can be disproportionately exploited by attackers. This study addresses this imbalance by proposing a symmetrical security framework that integrates Blockchain and Federated Learning (FL) to restore equilibrium in the Vehicle–Road–Cloud ecosystem. The evolution toward sixth-generation (6G) technologies amplifies both the potential of vehicle-to-everything (V2X) communications and its inherent security risks. The proposed framework achieves a delicate balance between robust security and operational efficiency. By leveraging blockchain’s symmetrical and decentralized distribution of trust, the framework ensures data and model integrity. Concurrently, the privacy-preserving approach of FL balances the need for collaborative intelligence with the imperative of safeguarding sensitive vehicle data. A novel Cloud Proxy Re-Encryption Offloading (CPRE-IoV) algorithm is introduced to facilitate efficient model updates. The architecture employs a partitioned blockchain and a smart contract-driven FL pipeline to symmetrically neutralize threats from malicious nodes. Finally, extensive simulations validate the framework’s effectiveness in establishing a resilient and symmetrically secure foundation for next-generation IoV networks. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

32 pages, 10857 KiB  
Article
Improved Fault Resilience of GFM-GFL Converters in Ultra-Weak Grids Using Active Disturbance Rejection Control and Virtual Inertia Control
by Monigaa Nagaboopathy, Kumudini Devi Raguru Pandu, Ashmitha Selvaraj and Anbuselvi Shanmugam Velu
Sustainability 2025, 17(14), 6619; https://doi.org/10.3390/su17146619 - 20 Jul 2025
Viewed by 313
Abstract
Enhancing the resilience of renewable energy systems in ultra-weak grids is crucial for promoting sustainable energy adoption and ensuring a reliable power supply during disturbances. Ultra-weak grids characterized by a very low Short-Circuit Ratio, less than 2, and high grid impedance significantly impair [...] Read more.
Enhancing the resilience of renewable energy systems in ultra-weak grids is crucial for promoting sustainable energy adoption and ensuring a reliable power supply during disturbances. Ultra-weak grids characterized by a very low Short-Circuit Ratio, less than 2, and high grid impedance significantly impair voltage and frequency stability, imposing challenging conditions for Inverter-Based Resources. To address these challenges, this paper considers a 110 KVA, three-phase, two-level Voltage Source Converter, interfacing a 700 V DC link to a 415 V AC ultra-weak grid. X/R = 1 is controlled using Sinusoidal Pulse Width Modulation, where the Grid-Connected Converter operates in Grid-Forming Mode to maintain voltage and frequency stability under a steady state. During symmetrical and asymmetrical faults, the converter transitions to Grid-Following mode with current control to safely limit fault currents and protect the system integrity. After fault clearance, the system seamlessly reverts to Grid-Forming Mode to resume voltage regulation. This paper proposes an improved control strategy that integrates voltage feedforward reactive power support and virtual capacitor-based virtual inertia using Active Disturbance Rejection Control, a robust, model-independent controller, which rapidly rejects disturbances by regulating d and q-axes currents. To test the practicality of the proposed system, real-time implementation is carried out using the OPAL-RT OP4610 platform, and the results are experimentally validated. The results demonstrate improved fault current limitation and enhanced DC link voltage stability compared to a conventional PI controller, validating the system’s robust Fault Ride-Through performance under ultra-weak grid conditions. Full article
Show Figures

Figure 1

20 pages, 4119 KiB  
Article
Research on Pole-to-Ground Fault Ride-Through Strategy for Hybrid Half-Wave Alternating MMC
by Yanru Ding, Yi Wang, Yuhua Gao, Zimeng Su, Xiaoyu Song, Xiaoyin Wu and Yilei Gu
Electronics 2025, 14(14), 2893; https://doi.org/10.3390/electronics14142893 - 19 Jul 2025
Viewed by 250
Abstract
Considering the lightweight requirement of modular multilevel converter (MMC), the implementation of arm multiplexing significantly improves submodule utilization and achieves remarkable lightweight performance. However, the challenges of overvoltage and energy imbalance during pole-to-ground fault still exist. To address these issues, this paper proposes [...] Read more.
Considering the lightweight requirement of modular multilevel converter (MMC), the implementation of arm multiplexing significantly improves submodule utilization and achieves remarkable lightweight performance. However, the challenges of overvoltage and energy imbalance during pole-to-ground fault still exist. To address these issues, this paper proposes a hybrid half-wave alternating MMC (HHA-MMC) and presents its fault ride-through strategy. First, a transient equivalent model based on topology and operation principles is established to analyze fault characteristics. Depending on the arm’s alternative multiplexing feature, the half-wave shift non-blocking fault ride-through strategy is proposed to eliminate system overvoltage and fault current. Furthermore, to eliminate energy imbalance caused by asymmetric operation during non-blocking transients, dual-modulation energy balancing control based on the third-harmonic current and the phase-shifted angle is introduced. This strategy ensures capacitor voltage balance while maintaining 50% rated power transmission during the fault period. Finally, simulations and experiments demonstrate that the lightweight HHA-MMC successfully accomplishes non-blocking pole-to-ground fault ride-through with balanced arm energy distribution, effectively enhancing power supply reliability. Full article
Show Figures

Figure 1

16 pages, 1625 KiB  
Article
Flow Characteristics by Blood Speckle Imaging in Non-Stenotic Congenital Aortic Root Disease Surrounding Valve-Preserving Operations
by Shihao Liu, Justin T. Tretter, Lama Dakik, Hani K. Najm, Debkalpa Goswami, Jennifer K. Ryan and Elias Sundström
Bioengineering 2025, 12(7), 776; https://doi.org/10.3390/bioengineering12070776 - 17 Jul 2025
Viewed by 404
Abstract
Contemporary evaluation and surgical approaches in congenital aortic valve disease have yielded limited success. The ability to evaluate and understand detailed flow characteristics surrounding surgical repair may be beneficial. This study explores the feasibility and utility of echocardiographic-based blood speckle imaging (BSI) in [...] Read more.
Contemporary evaluation and surgical approaches in congenital aortic valve disease have yielded limited success. The ability to evaluate and understand detailed flow characteristics surrounding surgical repair may be beneficial. This study explores the feasibility and utility of echocardiographic-based blood speckle imaging (BSI) in assessing pre- and post-operative flow characteristics in those with non-stenotic congenital aortic root disease undergoing aortic valve repair or valve-sparing root replacement (VSRR) surgery. Transesophageal echocardiogram was performed during the pre-operative and post-operative assessment surrounding aortic surgery for ten patients with non-stenotic congenital aortic root disease. BSI, utilizing block-matching algorithms, enabled detailed visualization and quantification of flow parameters from the echocardiographic data. Post-operative BSI unveiled enhanced hemodynamic patterns, characterized by quantified changes suggestive of the absence of stenosis and no more than trivial regurgitation. Rectification of an asymmetric jet and the reversal of flow on the posterior aspect of the ascending aorta resulted in a reduced oscillatory shear index (OSI) of 0.0543±0.0207 (pre-op) vs. 0.0275±0.0159 (post-op) and p=0.0044, increased peak wall shear stress of 1.9423±0.6974 (pre-op) vs. 3.6956±1.4934 (post-op) and p=0.0035, and increased time-averaged wall shear stress of 0.6885±0.8004 (pre-op) vs. 0.8312±0.303 (post-op) and p=0.23. This correction potentially attenuates cellular alterations within the endothelium. This study demonstrates that children and young adults with non-stenotic congenital aortic root disease undergoing valve-preserving operations experience significant improvements in flow dynamics within the left ventricular outflow tract and aortic root, accompanied by a reduction in OSI. These hemodynamic enhancements extend beyond the conventional echocardiographic assessments, offering immediate and valuable insights into the efficacy of surgical interventions. Full article
Show Figures

Graphical abstract

17 pages, 2497 KiB  
Article
Ratcheting of Steel Samples Undergoing Asymmetric Loading Cycles at Elevated Operating Temperatures: Analytical and Numerical Assessments
by M. Karimi and A. Varvani-Farahani
Appl. Sci. 2025, 15(14), 7864; https://doi.org/10.3390/app15147864 - 14 Jul 2025
Viewed by 259
Abstract
The present study intends to assess the ratcheting response of SA508 and SA333 steel alloys subjected to asymmetric loading cycles at various operating temperatures of 298, 573, and 623K through a hardening framework developed by Ahmadzadeh–Varvani (A-V) and the finite element analysis structured [...] Read more.
The present study intends to assess the ratcheting response of SA508 and SA333 steel alloys subjected to asymmetric loading cycles at various operating temperatures of 298, 573, and 623K through a hardening framework developed by Ahmadzadeh–Varvani (A-V) and the finite element analysis structured by the Chaboche hardening model (CH) in the ANSYS software program. The dynamic recovery terms in the A-V and CH hardening framework consisted of temperature-dependent parameters and functions to address the dynamic strain aging (DSA) phenomenon at high temperatures of 573 and 623 K. The DSA phenomenon reported at elevated temperatures was attributed to the interactions of solute atoms and dislocations with a certain temperature, resulting in higher material strength and lower ratcheting deformation. The coefficients of these frameworks were analytically determined through stress–strain hysteresis loops obtained from the strain-controlled cyclic tests. The FE analysis was applied to numerically evaluate backstress evolution through use of the CH model. Two popular nonlinear brick and tetrahedron element types were examined to study the convergence of the elemental system with various numbers of elements. This ensured the independence of the simulated results from the number of elements and their convergence. The simulated ratcheting responses for brick and tetrahedron solid elements were compared to those predicted analytically by the A-V hardening rule and experimentally measured values. The predicted and simulated ratcheting data were found to be in good agreement with the measured data. The predicted and simulated ratcheting results generated using the A-V and FEA approaches showed R2 values of 0.96 and 0.85, respectively, when compared with the experimental data. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

16 pages, 2159 KiB  
Article
A General Model Construction and Operating State Determination Method for Harmonic Source Loads
by Zonghua Zheng, Yanyi Kang and Yi Zhang
Symmetry 2025, 17(7), 1123; https://doi.org/10.3390/sym17071123 - 14 Jul 2025
Viewed by 278
Abstract
The widespread integration of power electronic devices and renewable energy sources into power systems has significantly exacerbated voltage and current waveform distortion issues, where asymmetric loads—including single-phase nonlinear equipment and unbalanced three-phase power electronic installations—serve as critical harmonic sources whose inherent nonlinear and [...] Read more.
The widespread integration of power electronic devices and renewable energy sources into power systems has significantly exacerbated voltage and current waveform distortion issues, where asymmetric loads—including single-phase nonlinear equipment and unbalanced three-phase power electronic installations—serve as critical harmonic sources whose inherent nonlinear and asymmetric characteristics increasingly compromise power quality. To enhance power quality management, this paper proposes a universal harmonic source modeling and operational state identification methodology integrating physical mechanisms with data-driven algorithms. The approach establishes an RL-series equivalent impedance model as its physical foundation, employing singular value decomposition and Z-score criteria to accurately characterize asymmetric load dynamics; subsequently applies Variational Mode Decomposition (VMD) to extract time-frequency features from equivalent impedance parameters while utilizing Density-Based Spatial Clustering (DBSCAN) for the high-precision identification of operational states in asymmetric loads; and ultimately constructs state-specific harmonic source models by partitioning historical datasets into subsets, substantially improving model generalizability. Simulation and experimental validations demonstrate that the synergistic integration of physical impedance modeling and machine learning methods precisely captures dynamic harmonic characteristics of asymmetric loads, significantly enhancing modeling accuracy, dynamic robustness, and engineering practicality to provide an effective assessment framework for power quality issues caused by harmonic source integration in distribution networks. Full article
Show Figures

Figure 1

Back to TopTop