Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (716)

Search Parameters:
Keywords = asphalt concrete

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2161 KiB  
Article
Performance Degradation Behavior and Service Life Prediction of Hydraulic Asphalt Concrete Under Long-Term Water Immersion
by Xinhe Cai, Feng Li, Kangping Li, Zhiyuan Ning and Jing Dong
Materials 2025, 18(15), 3706; https://doi.org/10.3390/ma18153706 - 7 Aug 2025
Abstract
Hydraulic asphalt concrete (HAC) is susceptible to performance deterioration under long-term water immersion. This study conducted compressive, tensile, and bending tests on HAC under various immersion times (0–96 h), established a multidimensional performance evaluation method, and developed a service-life prediction model for long-term [...] Read more.
Hydraulic asphalt concrete (HAC) is susceptible to performance deterioration under long-term water immersion. This study conducted compressive, tensile, and bending tests on HAC under various immersion times (0–96 h), established a multidimensional performance evaluation method, and developed a service-life prediction model for long-term water immersion. The average relative error between test values and predicted values was less than 5%, validating the model’s effectiveness and applicability. Results indicate that the rate of mechanical property degradation exhibits stage-dependent characteristics with immersion time, and the water damage resistance of alkaline aggregate is significantly superior to that of acidic aggregate. The predictive model shows that after 192 h of immersion, the retention rate of key mechanical properties for the alkaline aggregate reaches 92.71%, while that for acidic aggregate was only 73.85%. This study establishes a predictive model that provides a theoretical basis for assessing the lifespan of HAC under long-term immersion conditions. Full article
(This article belongs to the Special Issue Advances in Material Characterization and Pavement Modeling)
Show Figures

Figure 1

38 pages, 15791 KiB  
Article
Experimental and Statistical Evaluations of Recycled Waste Materials and Polyester Fibers in Enhancing Asphalt Concrete Performance
by Sara Laib, Zahreddine Nafa, Abdelghani Merdas, Yazid Chetbani, Bassam A. Tayeh and Yunchao Tang
Buildings 2025, 15(15), 2747; https://doi.org/10.3390/buildings15152747 - 4 Aug 2025
Viewed by 209
Abstract
This research aimed to evaluate the impact of using brick waste powder (BWP) and varying lengths of polyester fibers (PFs) on the performance properties of asphalt concrete (AC) mixtures. BWP was utilized as a replacement for traditional limestone powder (LS) filler, while PFs [...] Read more.
This research aimed to evaluate the impact of using brick waste powder (BWP) and varying lengths of polyester fibers (PFs) on the performance properties of asphalt concrete (AC) mixtures. BWP was utilized as a replacement for traditional limestone powder (LS) filler, while PFs of three lengths (3 mm, 8 mm, and 15 mm) were introduced. The study employed the response surface methodology (RSM) for experimental design and analysis of variance (ANOVA) to identify the influence of BWP and PF on the selected performance indicators. These indicators included bulk density, air voids, voids in the mineral aggregate, voids filled with asphalt, Marshall stability, Marshall flow, Marshall quotient, indirect tensile strength, wet tensile strength, and the tensile strength ratio. The findings demonstrated that BWP improved moisture resistance and the mechanical performance of AC mixes. Moreover, incorporating PF alongside BWP further enhanced these properties, resulting in superior overall performance. Using multi-objective optimization through RSM-based empirical models, the study identified the optimal PF length of 5 mm in combination with BWP for achieving the best AC properties. Validation experiments confirmed the accuracy of the predicted results, with an error margin of less than 8%. The study emphasizes the intriguing prospect of BWP and PF as sustainable alternatives for improving the durability, mechanical characteristics, and cost-efficiency of asphalt pavements. Full article
(This article belongs to the Special Issue Advanced Studies in Asphalt Mixtures)
Show Figures

Figure 1

31 pages, 1741 KiB  
Review
Recycled Concrete Aggregate in Asphalt Mixtures: A Review
by Juan Gabriel Bastidas-Martínez, Hugo Alexander Rondón-Quintana and Luis Ángel Moreno-Anselmi
Recycling 2025, 10(4), 155; https://doi.org/10.3390/recycling10040155 - 2 Aug 2025
Viewed by 111
Abstract
Effective management and handling of construction and demolition waste (CDW) can yield significant technical and environmental benefits for road pavement construction. This article aims to provide a comprehensive and up-to-date chronological review of studies on the mechanical performance of asphalt mixtures—primarily hot mix [...] Read more.
Effective management and handling of construction and demolition waste (CDW) can yield significant technical and environmental benefits for road pavement construction. This article aims to provide a comprehensive and up-to-date chronological review of studies on the mechanical performance of asphalt mixtures—primarily hot mix asphalt (HMA)—incorporating recycled concrete aggregate (RCA). Since the main limitation of RCA is the presence of residual adhered mortar, the review also includes studies that applied various surface treatments (mechanical, chemical, and thermal, among others) to enhance mixture performance. The article summarizes the experimental procedures used and highlights the key findings and conclusions of the reviewed research. Although the results are varied and sometimes contradictory—mainly due to the source variability and heterogeneity of RCA—the use of these materials is technically viable. Moreover, their application can provide environmental, social, and economic advantages, particularly in the construction of low-traffic roadways. Finally, the article identifies research gaps and offers recommendations for future researches. Full article
(This article belongs to the Special Issue Recycled Materials in Sustainable Pavement Innovation)
Show Figures

Figure 1

14 pages, 2350 KiB  
Article
Temporal Deformation Characteristics of Hydraulic Asphalt Concrete Slope Flow Under Different Test Temperatures
by Xuexu An, Jingjing Li and Zhiyuan Ning
Materials 2025, 18(15), 3625; https://doi.org/10.3390/ma18153625 - 1 Aug 2025
Viewed by 217
Abstract
To investigate temporal deformation mechanisms of hydraulic asphalt concrete slope flow under evolving temperatures, this study developed a novel temperature-controlled slope flow intelligent test apparatus. Using this apparatus, slope flow tests were conducted at four temperature levels: 20 °C, 35 °C, 50 °C, [...] Read more.
To investigate temporal deformation mechanisms of hydraulic asphalt concrete slope flow under evolving temperatures, this study developed a novel temperature-controlled slope flow intelligent test apparatus. Using this apparatus, slope flow tests were conducted at four temperature levels: 20 °C, 35 °C, 50 °C, and 70 °C. By applying nonlinear dynamics theory, the temporal evolution of slope flow deformation and its nonlinear mechanical characteristics under varying temperatures were thoroughly analyzed. Results indicate that the thermal stability of hydraulic asphalt concrete is synergistically governed by the phase-transition behavior between asphalt binder and aggregates. Temporal evolution of slope flow exhibits a distinct three-stage pattern as follows: rapid growth (0~12 h), where sharp temperature rise disrupts the primary skeleton of coarse aggregates; decelerated growth (12~24 h), where an embryonic secondary skeleton forms and progressively resists deformation; stabilization (>24 h), where reorganization of coarse aggregates is completed, establishing structural equilibrium. The thermal stability temperature influence factor (δ) shows a nonlinear concave growth trend with increasing test temperature. Dynamically, this process transitions sequentially through critical stability, nonlinear stability, period-doubling oscillatory stability, and unsteady states. Full article
(This article belongs to the Special Issue Advances in Material Characterization and Pavement Modeling)
Show Figures

Figure 1

19 pages, 5548 KiB  
Article
Predicting Asphalt Pavement Friction by Using a Texture-Based Image Indicator
by Bingjie Lu, Zhengyang Lu, Yijiashun Qi, Hanzhe Guo, Tianyao Sun and Zunduo Zhao
Lubricants 2025, 13(8), 341; https://doi.org/10.3390/lubricants13080341 - 31 Jul 2025
Viewed by 146
Abstract
Pavement skid resistance is of vital importance for road safety. The objective of this study is to propose and validate a texture-based image indicator to predict pavement friction. This index enables pavement friction to be predicted easily and inexpensively using digital images, with [...] Read more.
Pavement skid resistance is of vital importance for road safety. The objective of this study is to propose and validate a texture-based image indicator to predict pavement friction. This index enables pavement friction to be predicted easily and inexpensively using digital images, with predictions correlated to Dynamic Friction Tester (DFT) measurements. Three different types of asphalt surfaces (Dense-Grade Asphalt Concrete, Open-Grade Friction Course, and Chip Seal) were evaluated subject to various tire polishing cycles. Images were taken with corresponding friction coefficients obtained using DFT in the laboratory. The aggregate protrusion area is proposed as the indicator. Statistical models are established for each asphalt surface type to correlate the proposed indicator with friction coefficients. The results show that the adjusted R-squared values of all relationships are above 0.90. Compared to other image-based indicators in the literature, the proposed image indicator more accurately reflects the changes in pavement friction with the number of polishing cycles, proving its cost-effective use for considering pavement friction in the mix design stage. Full article
(This article belongs to the Special Issue Tire/Road Interface and Road Surface Textures)
Show Figures

Figure 1

32 pages, 23752 KiB  
Article
Investigation of Ground Surface Temperature Increases in Urban Textures with Different Characteristics: The Case of Denizli City
by Gizem Karacan Tekin and Duygu Gökce
Sustainability 2025, 17(15), 6818; https://doi.org/10.3390/su17156818 - 27 Jul 2025
Viewed by 389
Abstract
Today, urban areas have started to grow and expand with the urbanization and industrialization processes brought about by rapid population growth. The increase in urban density brought about by this growth process has led to the destruction of natural areas and created surfaces [...] Read more.
Today, urban areas have started to grow and expand with the urbanization and industrialization processes brought about by rapid population growth. The increase in urban density brought about by this growth process has led to the destruction of natural areas and created surfaces such as concrete, asphalt, etc., that absorb solar energy. The expansion/proliferation of impervious surfaces in the city has changed the urban climate in the direction of temperature increase compared to the surrounding rural areas. When this change is combined with the temperature increases due to global climate change, it creates urban heat islands, especially in high density areas, and directly affects land surface temperatures. In this study, ground surface temperature analysis for the years 2012–2022 was carried out in order to determine the temperature changes in Denizli city. As a result of the analysis, eight urban textures with different characteristics with very high and high temperature increase were determined. Analyses were made in the context of urban heat island criteria in the determined textures, and the effect of the settlement pattern on urban heat island formation was examined by making use of the analysis results and related literature findings. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

22 pages, 12147 KiB  
Technical Note
Effects of the Aggregate Shape and Petrography on the Durability of Stone Mastic Asphalt
by Alain Stony Bile Sondey, Vincent Aaron Maleriado, Helga Ros Fridgeirsdottir, Damian Serwin, Carl Christian Thodesen and Diego Maria Barbieri
Infrastructures 2025, 10(8), 198; https://doi.org/10.3390/infrastructures10080198 - 26 Jul 2025
Viewed by 323
Abstract
Compared to traditional dense asphalt concrete mixtures, stone mastic asphalt (SMA) generally offers superior performance in terms of its mechanical resistance and extended pavement lifespan. Focusing on the Norwegian scenario, this laboratory-based study investigated the durability of SMA considering the influence of the [...] Read more.
Compared to traditional dense asphalt concrete mixtures, stone mastic asphalt (SMA) generally offers superior performance in terms of its mechanical resistance and extended pavement lifespan. Focusing on the Norwegian scenario, this laboratory-based study investigated the durability of SMA considering the influence of the aggregate shape and petrography. The rock aggregates were classified according to three different-shaped refinement stages involving vertical shaft impact crushing. Further, the aggregates were sourced from three distinct locations (Jelsa, Tau and Dirdal) characterized by different petrographic origins: granodiorite, quartz diorite and granite, respectively. Two mixtures with maximum aggregate sizes of 16 mm (SMA 16) and 11 mm (SMA 11) were designed according to Norwegian standards and investigated in terms of their durability performance. In this regard, two main functional tests were performed for the asphalt mixture, namely resistance against permanent deformation and abrasion by studded tyres, and one for the asphalt mortar, namely water sensitivity. Overall, the best test results were related to the aggregates sourced from Jelsa and Tau, thus highlighting that the geological origin exerts a major impact on SMA’s durability performance. On the other hand, the different aggregate shapes related to the crushing refinement treatments seem to play an effective but secondary role. Full article
Show Figures

Figure 1

17 pages, 4500 KiB  
Article
Finite Element Model-Based Behavior Evaluation of Pavement Stiffness Influence on Shallowly Buried Precast Arch Structures Subjected to Vehicle Load
by Van-Toan Nguyen and Jungwon Huh
Geotechnics 2025, 5(3), 50; https://doi.org/10.3390/geotechnics5030050 - 25 Jul 2025
Viewed by 241
Abstract
In this study, the behavior of a three-hinged buried precast arch structure under the impact of the design truck was studied and evaluated based on the finite element method. A three-dimensional finite element analysis model of the buried precast arch structure has been [...] Read more.
In this study, the behavior of a three-hinged buried precast arch structure under the impact of the design truck was studied and evaluated based on the finite element method. A three-dimensional finite element analysis model of the buried precast arch structure has been meticulously established, considering arch segments’ joining and surface contact and interaction between surrounding soil and concrete structures. The behavior of the arch structure was examined and compared with the influence of pavement types, number of lanes, and axle spacings. The crucial findings indicate that arch structure behavior differs depending on design truck layouts and pavement stiffness and less on multi-lane vehicle loading effects. Furthermore, the extent of pressure propagation under the wheel depends not only on the magnitude of the axle load but also on the stiffness of the pavement structures. Cement concrete pavement (CCP) allows better dispersion of wheel track pressure on the embankment than asphalt concrete pavement (ACP). Therefore, the degree of increase in arch displacement with ACP is higher than that of CCP. To enhance the coverage of the vehicle influence zone, an extension of the backfill material width should be considered from the bottom of the arch and with the prism plane created at a 45-degree transverse angle. Full article
Show Figures

Figure 1

15 pages, 2854 KiB  
Review
A Review on the Applications of Basalt Fibers and Their Composites in Infrastructures
by Wenlong Yan, Jianzhe Shi, Xuyang Cao, Meng Zhang, Lei Li and Jingyi Jiang
Buildings 2025, 15(14), 2525; https://doi.org/10.3390/buildings15142525 - 18 Jul 2025
Viewed by 363
Abstract
This article presents a review on the applications of basalt fibers and their composites in infrastructures. The characteristics and advantages of high-performance basalt fibers and their composites are firstly introduced. Then, the article discusses strengthening using basalt fiber sheets and BFRP bars or [...] Read more.
This article presents a review on the applications of basalt fibers and their composites in infrastructures. The characteristics and advantages of high-performance basalt fibers and their composites are firstly introduced. Then, the article discusses strengthening using basalt fiber sheets and BFRP bars or grids, followed by concrete structures reinforced with BFRP bars, asphalt pavements, and cementitious composites reinforced with chopped basalt fibers in terms of mechanical behaviors and application examples. The load-bearing capacity of the strengthened structures can be increased by up to 60%, compared with those without strengthening. The lifespan of the concrete structures reinforced with BFRP can be extended by up to 50 years at least in harsh environments, which is much longer than that of ordinary reinforced concrete structures. In addition, the fatigue cracking resistance of asphalt can be increased by up to 600% with basalt fiber. The newly developed technologies including anchor bolts using BFRPs, self-sensing BFRPs, and BFRP–concrete composite structures are introduced in detail. Furthermore, suggestions are proposed for the forward-looking technologies, such as long-span bridges with BFRP cables, BFRP truss structures, BFRP with thermoplastic resin matrix, and BFRP composite piles. Full article
Show Figures

Figure 1

34 pages, 17167 KiB  
Article
An Enhanced ABS Braking Control System with Autonomous Vehicle Stopping
by Mohammed Fadhl Abdullah, Gehad Ali Qasem and Mazen Farid
World Electr. Veh. J. 2025, 16(7), 400; https://doi.org/10.3390/wevj16070400 - 16 Jul 2025
Viewed by 369
Abstract
This study explores the design and implementation of a control system integrating the anti-lock braking system (ABS) with frequency-modulated continuous wave (FMCW) radar technology to enhance safety and performance in autonomous vehicles. The proposed system employs a hybrid fuzzy logic controller (FLC) and [...] Read more.
This study explores the design and implementation of a control system integrating the anti-lock braking system (ABS) with frequency-modulated continuous wave (FMCW) radar technology to enhance safety and performance in autonomous vehicles. The proposed system employs a hybrid fuzzy logic controller (FLC) and proportional-integral-derivative (PID) controller to improve braking efficiency and vehicle stability under diverse driving conditions. Simulation results showed significant enhancements in stopping performance across various road conditions. The integrated system exhibited a marked improvement in braking performance, achieving significantly shorter stopping distances across all evaluated surface conditions—including dry concrete, wet asphalt, snowy roads, and icy roads—compared with scenarios without ABS. These results highlight the system’s ability to dynamically adapt braking forces to different conditions, significantly improving safety and stability for autonomous vehicles. The limitations are acknowledged, and directions for real-world validation are outlined to ensure system robustness under diverse environmental conditions. Full article
Show Figures

Figure 1

18 pages, 4110 KiB  
Article
Characterization of Asphalt Binder and Mixture for Enhanced Railway Applications
by Ilho Na, Hyemin Park, Jihyeon Yun, Ju Dong Park and Hyunhwan Kim
Materials 2025, 18(14), 3265; https://doi.org/10.3390/ma18143265 - 10 Jul 2025
Viewed by 248
Abstract
Although asphalt mixtures can be applied to railway tracks due to their viscoelastic properties, caution is required, as their ductility and brittleness are highly sensitive to temperature variations. In recent years, interest in the application of asphalt in railway infrastructure has increased, driven [...] Read more.
Although asphalt mixtures can be applied to railway tracks due to their viscoelastic properties, caution is required, as their ductility and brittleness are highly sensitive to temperature variations. In recent years, interest in the application of asphalt in railway infrastructure has increased, driven by the development of modified mixtures and the broader availability of performance-enhancing additives. Additionally, evaluation methods for railway tracks should be adapted to account for the distinct loading mechanisms involved, which differ from those of conventional roadways. In this study, the comprehensive properties of asphalt binders, mixtures, and testing methods—including physical and engineering characteristics—were assessed to improve the performance of asphalt concrete layers for potential applications in railroad infrastructure. The results of this study indicate that (1) the higher the performance grade (PG), the higher the indirect tensile strength (ITS) value achieved by the 13 mm mixture using PG76-22, which is higher than that of the PG64-22 mixture. This indicates that higher PG grades and modification contribute to improved tensile strength, beneficial for upper layers subjected to dynamic railroad loads. (2) The tensile strength ratio (TSR) increased from the unmodified mixture to over 92% in mixtures containing crumb rubber modifier (CRM) and styrenic thermoplastic elastomer (STE), demonstrating enhanced durability under freeze–thaw conditions. (3) Wheel tracking test results showed that modified mixtures exhibited more than twice the rutting resistance compared to PG64-22. The 13 mm aggregate mixtures also generally performed better than the 19 mm mixtures, indicating reduced permanent deformation under repeated loading. (4) It was concluded that asphalt is a suitable material for railroads, as its overall characteristics comply with standard specifications. Full article
Show Figures

Figure 1

23 pages, 11832 KiB  
Article
Investigation of Flexibility Enhancement Mechanisms and Microstructural Characteristics in Emulsified Asphalt and Latex-Modified Cement
by Wen Liu, Yong Huang, Yulin He, Hanyu Wei, Ruyun Bai, Huan Li, Qiushuang Cui and Sining Li
Sustainability 2025, 17(14), 6317; https://doi.org/10.3390/su17146317 - 9 Jul 2025
Viewed by 452
Abstract
The inherent limitations of ordinary cement mortar—characterized by its high brittleness and low flexibility—result in a diminished load-bearing capacity, predisposing concrete pavements to cracking. A novel approach has been proposed to enhance material performance by incorporating emulsified asphalt and latex into ordinary cement [...] Read more.
The inherent limitations of ordinary cement mortar—characterized by its high brittleness and low flexibility—result in a diminished load-bearing capacity, predisposing concrete pavements to cracking. A novel approach has been proposed to enhance material performance by incorporating emulsified asphalt and latex into ordinary cement mortar, aiming to improve the flexibility and durability of concrete pavements effectively. To further validate the feasibility of this proposed approach, a series of comprehensive experimental investigations were conducted, with corresponding conclusions detailed herein. As outlined below, the flexibility properties of the modified cement mortar were systematically evaluated at curing durations of 3, 7, and 28 days. The ratio of flexural to compressive strength can be increased by up to 38.9% at 8% emulsified asphalt content at the age of 28 days, and by up to 50% at 8% latex content. The mechanism of emulsified asphalt and latex-modified cement mortar was systematically investigated using a suite of analytical techniques: X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TG-DTG), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Through comprehensive analyses of microscopic morphology, hydration products, and elemental distribution, the enhancement in cement mortar toughness can be attributed to two primary mechanisms. First, Ca2+ ions combine with the carbonyl groups of emulsified asphalt to form a flexible film structure during cement hydration, thereby reducing the formation of brittle hydrates. Second, active functional groups in latex form a three-dimensional network, regulating internal expansion-contraction tension in the modified mortar and extending its service life. Full article
Show Figures

Figure 1

25 pages, 11157 KiB  
Review
Reuse of Retired Wind Turbine Blades in Civil Engineering
by Xuemei Yu, Changbao Zhang, Jing Li, Xue Bai, Lilin Yang, Jihao Han and Guoxiang Zhou
Buildings 2025, 15(14), 2414; https://doi.org/10.3390/buildings15142414 - 9 Jul 2025
Viewed by 390
Abstract
The rapid growth of the wind energy sector has led to a rising number of retired wind turbine blades (RWTBs) globally, posing significant environmental and logistical challenges for sustainable waste management. Handling enormous RWTBs at their end of life (EoL) has a significant [...] Read more.
The rapid growth of the wind energy sector has led to a rising number of retired wind turbine blades (RWTBs) globally, posing significant environmental and logistical challenges for sustainable waste management. Handling enormous RWTBs at their end of life (EoL) has a significant negative impact on resource conservation and the environment. Conventional disposal methods, such as landfilling and incineration, raise environmental concerns due to the non-recyclable composite material used in blade manufacturing. This study explores the upcycling potential of RWTBs as innovative construction materials, addressing both waste reduction and resource efficiency in the construction industry. By exploring recent advancements in recycling techniques, this research highlights applications such as structural components, lightweight aggregates for concrete, and reinforcement elements in asphalt pavements. The key findings demonstrate that repurposing blade-derived materials not only reduces landfill dependency but also lowers carbon emissions associated with conventional construction practices. However, challenges including material compatibility, economic feasibility, and standardization require further investigation. This study concludes that upcycling wind turbine blades into construction materials offers a promising pathway toward circular economy goals. To improve technical methods and policy support for large-scale implementation, it recommends collaboration among different fields, such as those related to cementitious and asphalt materials. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

29 pages, 6644 KiB  
Article
A New Design Methodology of Asphalt Mixture Dynamic Modulus Based on Pavement Response
by You Huang, Boxiong Feng, Xin Yang, Minxiang Cheng and Zhaohui Liu
Materials 2025, 18(13), 3184; https://doi.org/10.3390/ma18133184 - 5 Jul 2025
Viewed by 302
Abstract
The design of asphalt mixture has, for a long time, been an empirical and proof process, causing the mismatch between material design and pavement structure design. To enhance the rationality of asphalt pavement design, this study seeks a path to bridge the gap [...] Read more.
The design of asphalt mixture has, for a long time, been an empirical and proof process, causing the mismatch between material design and pavement structure design. To enhance the rationality of asphalt pavement design, this study seeks a path to bridge the gap between asphalt mixture modulus and structural behavior. Firstly, pavement models with different base rigidities, including cement concrete base, cement-treated granular base, and granular base, were constructed to calculate the pavement responses under different dynamic modulus master curve parameters. The influence of master curve parameters on critical pavement responses was identified by the response surface method (RSM). Furthermore, a Whale Optimization Algorithm–Back Propagation (WOA-BP) artificial-neural-network-based pavement response prediction model was established. Then, a database mapping over 100 thousand pavement responses and dynamic modulus master curve parameters was built for determining the dynamic modulus master curve parameters by optimizing the pavement responses. The results show that the impacts of dynamic modulus master curve parameters on critical pavement responses depend on pavement structures. In general, parameter δ has the greatest impact, followed by α, while the effects of β and γ are relatively small. The Artificial Neural Network (ANN) performance prediction model, optimized by the WOA algorithm, has a high accuracy. The methodology for determining the dynamic modulus master curve parameter based on the critical response of pavement was successfully implemented. The findings can bridge the gap between material design and structure design of asphalt pavement and provide a basis for more accurate and reasonable asphalt pavement design. Full article
Show Figures

Figure 1

28 pages, 5059 KiB  
Article
Behavior and Early-Age Performance of Continuously Reinforced Concrete Bus Pad
by Sang Cheol Park, Kang In Lee, Soon Ho Baek, Sang Jin Kim and Seong-Min Kim
Materials 2025, 18(13), 3143; https://doi.org/10.3390/ma18133143 - 2 Jul 2025
Viewed by 246
Abstract
The behavior of the cast-in-place continuously reinforced concrete (CRC) bus pad applied to bus stop pavement in a central bus-only lane was experimentally analyzed under environmental and moving vehicle loads, and the early-age performance of the CRC bus pad was evaluated using experimental [...] Read more.
The behavior of the cast-in-place continuously reinforced concrete (CRC) bus pad applied to bus stop pavement in a central bus-only lane was experimentally analyzed under environmental and moving vehicle loads, and the early-age performance of the CRC bus pad was evaluated using experimental data and finite element analysis results. Using various measurement sensors, the concrete slab strain, longitudinal steel bar strains, horizontal and vertical displacements, and crack behavior of the CRC bus pad due to environmental loads were measured, and the dynamic responses of the concrete slab and steel bars due to moving vehicle loads were also measured. Additionally, a method for converting strain gauge measurements of a cracked concrete slab to the strain of an uncracked concrete slab was also proposed. Under environmental loads, the range of stresses acting on the steel bars and the bond between concrete and steel bars were analyzed to be appropriate for ensuring excellent performance of the CRC bus pad. The crack widths and vertical and longitudinal displacements of the CRC bus pad were found to have no effect on the pavement performance. Within the vehicle velocity range used in this experiment, the strains of the slab and steel bars as the vehicle passed through the CRC bus pad were virtually independent of the vehicle velocity and were within a range that did not cause any reduction in pavement performance. This study confirmed that the CRC bus pad has excellent performance and can replace asphalt concrete bus stop pavement or jointed concrete bus pad. Full article
Show Figures

Figure 1

Back to TopTop