Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (460)

Search Parameters:
Keywords = ash fraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1788 KiB  
Article
Investigation, Prospects, and Economic Scenarios for the Use of Biochar in Small-Scale Agriculture in Tropical
by Vinicius John, Ana Rita de Oliveira Braga, Criscian Kellen Amaro de Oliveira Danielli, Heiriane Martins Sousa, Filipe Eduardo Danielli, Newton Paulo de Souza Falcão, João Guerra, Dimas José Lasmar and Cláudia S. C. Marques-dos-Santos
Agriculture 2025, 15(15), 1700; https://doi.org/10.3390/agriculture15151700 - 6 Aug 2025
Abstract
This study investigates the production and economic feasibility of biochar for smallholder and family farms in Central Amazonia, with potential implications for other tropical regions. The costs of construction of a prototype mobile kiln and biochar production were evaluated, using small-sized biomass from [...] Read more.
This study investigates the production and economic feasibility of biochar for smallholder and family farms in Central Amazonia, with potential implications for other tropical regions. The costs of construction of a prototype mobile kiln and biochar production were evaluated, using small-sized biomass from acai (Euterpe oleracea Mart.) agro-industrial residues as feedstock. The biochar produced was characterised in terms of its liming capacity (calcium carbonate equivalence, CaCO3eq), nutrient content via organic fertilisation methods, and ash analysis by ICP-OES. Field trials with cowpea assessed economic outcomes, as well scenarios of fractional biochar application and cost comparison between biochar production in the prototype kiln and a traditional earth-brick kiln. The prototype kiln showed production costs of USD 0.87–2.06 kg−1, whereas traditional kiln significantly reduced costs (USD 0.03–0.08 kg−1). Biochar application alone increased cowpea revenue by 34%, while combining biochar and lime raised cowpea revenues by up to 84.6%. Owing to high input costs and the low value of the crop, the control treatment generated greater net revenue compared to treatments using lime alone. Moreover, biochar produced in traditional kilns provided a 94% increase in net revenue compared to liming. The estimated externalities indicated that carbon credits represented the most significant potential source of income (USD 2217 ha−1). Finally, fractional biochar application in ten years can retain over 97% of soil carbon content, demonstrating potential for sustainable agriculture and carbon sequestration and a potential further motivation for farmers if integrated into carbon markets. Public policies and technological adaptations are essential for facilitating biochar adoption by small-scale tropical farmers. Full article
(This article belongs to the Special Issue Converting and Recycling of Agroforestry Residues)
Show Figures

Figure 1

20 pages, 3271 KiB  
Article
Calculation Model for the Degree of Hydration and Strength Prediction in Basalt Fiber-Reinforced Lightweight Aggregate Concrete
by Yanqun Sun, Haoxuan Jia, Jianxin Wang, Yanfei Ding, Yanfeng Guan, Dongyi Lei and Ying Li
Buildings 2025, 15(15), 2699; https://doi.org/10.3390/buildings15152699 - 31 Jul 2025
Viewed by 232
Abstract
The combined application of fibers and lightweight aggregates (LWAs) represents an effective approach to achieving high-strength, lightweight concrete. To enhance the predictability of the mechanical properties of fiber-reinforced lightweight aggregate concrete (LWAC), this study conducts an in-depth investigation into its hydration characteristics. In [...] Read more.
The combined application of fibers and lightweight aggregates (LWAs) represents an effective approach to achieving high-strength, lightweight concrete. To enhance the predictability of the mechanical properties of fiber-reinforced lightweight aggregate concrete (LWAC), this study conducts an in-depth investigation into its hydration characteristics. In this study, high-strength LWAC was developed by incorporating low water absorption LWAs, various volume fractions of basalt fiber (BF) (0.1%, 0.2%, and 0.3%), and a ternary cementitious system consisting of 70% cement, 20% fly ash, and 10% silica fume. The hydration-related properties were evaluated through isothermal calorimetry test and high-temperature calcination test. The results indicate that incorporating 0.1–0.3% fibers into the cementitious system delays the early hydration process, with a reduced peak heat release rate and a delayed peak heat release time compared to the control group. However, fitting the cumulative heat release over a 72-h period using the Knudsen equation suggests that BF has a minor impact on the final degree of hydration, with the difference in maximum heat release not exceeding 3%. Additionally, the calculation model for the final degree of hydration in the ternary binding system was also revised based on the maximum heat release at different water-to-binder ratios. The results for chemically bound water content show that compared with the pre-wetted LWA group, under identical net water content conditions, the non-pre-wetted LWA group exhibits a significant reduction at three days, with a decrease of 28.8%; while under identical total water content conditions it shows maximum reduction at ninety days with a decrease of 5%. This indicates that pre-wetted LWAs help maintain an effective water-to-binder ratio and facilitate continuous advancement in long-term hydration reactions. Based on these results, influence coefficients related to LWAs for both final degree of hydration and hydration rate were integrated into calculation models for degrees of hydration. Ultimately, this study verified reliability of strength prediction models based on degrees of hydration. Full article
Show Figures

Figure 1

49 pages, 4131 KiB  
Review
Municipal Solid Waste Gasification: Technologies, Process Parameters, and Sustainable Valorization of By-Products in a Circular Economy
by Nicoleta Ungureanu, Nicolae-Valentin Vlăduț, Sorin-Ștefan Biriș, Mariana Ionescu and Neluș-Evelin Gheorghiță
Sustainability 2025, 17(15), 6704; https://doi.org/10.3390/su17156704 - 23 Jul 2025
Viewed by 417
Abstract
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper [...] Read more.
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper provides a comprehensive analysis of major gasification technologies, including fixed bed, fluidized bed, entrained flow, plasma, supercritical water, microwave-assisted, high-temperature steam, and rotary kiln systems. Key aspects such as feedstock compatibility, operating parameters, technology readiness level, and integration within circular economy frameworks are critically evaluated. A comparative assessment of incineration and pyrolysis highlights the environmental and energetic advantages of gasification. The valorization pathways for main product (syngas) and by-products (syngas, ash, tar, and biochar) are also explored, emphasizing their reuse in environmental, agricultural, and industrial applications. Despite progress, large-scale adoption in Europe is constrained by economic, legislative, and technical barriers. Future research should prioritize scaling emerging systems, optimizing by-product recovery, and improving integration with carbon capture and circular energy infrastructures. Supported by recent European policy frameworks, gasification is positioned to play a key role in sustainable waste-to-energy strategies, biomass valorization, and the transition to a low-emission economy. Full article
(This article belongs to the Special Issue Sustainable Waste Process Engineering and Biomass Valorization)
Show Figures

Figure 1

22 pages, 4578 KiB  
Article
Isolation of Humic Substances Using Waste Wood Ash Extracts: Multiparametric Optimization via Box–Behnken Design and Chemical Characterization of Products
by Dominik Nieweś
Molecules 2025, 30(15), 3067; https://doi.org/10.3390/molecules30153067 - 22 Jul 2025
Viewed by 217
Abstract
This study evaluated birch and oak ash extracts as alternative extractants for isolating humic substances (HSs) from peat and lignite. The effects of ultrasound intensity, extraction time, and temperature were optimized using a Box–Behnken design and validated statistically. The highest HSs yields were [...] Read more.
This study evaluated birch and oak ash extracts as alternative extractants for isolating humic substances (HSs) from peat and lignite. The effects of ultrasound intensity, extraction time, and temperature were optimized using a Box–Behnken design and validated statistically. The highest HSs yields were obtained from peat with oak ash extract (pH 13.18), compared to birch ash extract (pH 12.09). Optimal process parameters varied by variant, falling within 309–391 mW∙cm−2, 116–142 min, and 67–79 °C. HSs extracted under optimal conditions were fractionated into humic acids (HAs) and fulvic acids (FAs), and then analyzed by elemental analysis, Fourier Transform Infrared Spectroscopy (FTIR), and Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance Spectroscopy (CP/MAS 13C NMR). The main differences in HSs quality were influenced by raw material and fraction type. However, the use of birch ash extract consistently resulted in a higher proportion of carboxylic structures across all fractions. Overall, wood ash extract, especially from oak, offers a sustainable and effective alternative to conventional extractants, particularly for HSs isolation from lignite. Notably, HSs yield from lignite with oak ash extract (29.13%) was only slightly lower than that achieved with 0.5 M NaOH (31.02%), highlighting its practical potential in environmentally friendly extraction technologies. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

26 pages, 4761 KiB  
Article
Effect of Use of Alkaline Waste Materials as a CO2 Sink on the Physical and Mechanical Performance of Eco-Blended Cement Mortars—Comparative Study
by Ana María Moreno de los Reyes, María Victoria Paredes, Ana Guerrero, Iñigo Vegas-Ramiro, Milica Vidak Vasić and Moisés Frías
Materials 2025, 18(14), 3238; https://doi.org/10.3390/ma18143238 - 9 Jul 2025
Viewed by 359
Abstract
This research paper provides new insights into the impact of accelerated mineralization of alkaline waste materials on the physical and mechanical behavior of low-carbon cement-based mortars. Standardized eco-cement mortars were prepared by replacing Portland cement with 7% and 20% proportions of three alkaline [...] Read more.
This research paper provides new insights into the impact of accelerated mineralization of alkaline waste materials on the physical and mechanical behavior of low-carbon cement-based mortars. Standardized eco-cement mortars were prepared by replacing Portland cement with 7% and 20% proportions of three alkaline waste materials (white ladle furnace slag, biomass ash, and fine concrete waste fraction) that had been previously carbonated in a static reactor at predefined humidity and CO2 concentration. The mortars’ physical (total/capillary water absorption, electrical resistivity) and mechanical properties (compressive strength up to 90 d of curing) were analyzed, and their microstructures were examined using mercury intrusion porosimetry and computed tomography. The results reveal that carbonated waste materials generate a greater heat of hydration and have a lower total and capillary water absorption capacity, while the electrical resistivity and compressive strength tests generally indicate that they behave similarly to mortars not containing carbonated minerals. Mercury intrusion porosimetry (microporosity) indicates an increase in total porosity, with no clear refinement versus non-carbonated materials, while computed tomography (macroporosity) reveals a refinement of the pore structure with a significant reduction in the number of larger pores (>0.09 mm3) and intermediate pores (0.001–0.09 mm3) when carbonated residues are incorporated that varies depending on waste material. The construction and demolition waste (CCDW-C) introduced the best physical and mechanical behavior. These studies confirm the possibility of recycling carbonated waste materials as low-carbon supplementary cementitious materials (SCMs). Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

24 pages, 5049 KiB  
Article
Sustainable Mortar with Waste Glass and Fly Ash: Impact of Glass Aggregate Size and Life-Cycle Assessment
by Vimukthi Fernando, Weena Lokuge, Hannah Seligmann, Hao Wang and Chamila Gunasekara
Recycling 2025, 10(4), 133; https://doi.org/10.3390/recycling10040133 - 4 Jul 2025
Viewed by 370
Abstract
This study investigates the use of Glass Fine Aggregate (GFA) and Fly Ash (FA) in mortar for Alkali–Silica Reaction (ASR) mitigation through a multidimensional evaluation. GFA was used to replace river sand in 20% increments up to 100%, while FA replaced cement at [...] Read more.
This study investigates the use of Glass Fine Aggregate (GFA) and Fly Ash (FA) in mortar for Alkali–Silica Reaction (ASR) mitigation through a multidimensional evaluation. GFA was used to replace river sand in 20% increments up to 100%, while FA replaced cement at 10%, 20%, and 30%. Three GFA size ranges were considered: <1.18 mm, 1.18–4.75 mm, and a combined fraction of <4.75 mm. At 100% replacement, <1.18 mm GFA reduced ASR expansion to 0.07%, compared to 0.2% for <4.75 mm and 0.46% for 1.18–4.75 mm GFA. It also improved long-term strength by 25% from 28 days to 6 months due to pozzolanic activity. However, refining GFA to below 1.18 mm increased environmental impacts and resulted in a 4.2% increase in energy demand due to the additional drying process. Incorporating 10% FA reduced ASR expansion to 0.044%, had no significant effect on strength, and decreased key environmental burdens such as toxicity by up to 18.2%. These findings indicate that FA utilisation offers greater benefits for ASR mitigation and environmental sustainability than further refining GFA size. Therefore, combining <4.75 mm GFA with 10% FA is identified as the optimal strategy for producing durable and sustainable mortar with recycled waste glass. Full article
Show Figures

Figure 1

22 pages, 5737 KiB  
Article
Geophysical Log Responses and Predictive Modeling of Coal Quality in the Shanxi Formation, Northern Jiangsu, China
by Xuejuan Song, Meng Wu, Nong Zhang, Yong Qin, Yang Yu, Yaqun Ren and Hao Ma
Appl. Sci. 2025, 15(13), 7338; https://doi.org/10.3390/app15137338 - 30 Jun 2025
Viewed by 294
Abstract
Traditional coal quality assessment methods rely exclusively on the laboratory testing of physical samples, which impedes detailed stratigraphic evaluation and limits the integration of intelligent precision mining technologies. To resolve this challenge, this study investigates geophysical logging as an innovative method for coal [...] Read more.
Traditional coal quality assessment methods rely exclusively on the laboratory testing of physical samples, which impedes detailed stratigraphic evaluation and limits the integration of intelligent precision mining technologies. To resolve this challenge, this study investigates geophysical logging as an innovative method for coal quality prediction. By integrating scanning electron microscopy (SEM), X-ray analysis, and optical microscopy with interdisciplinary methodologies spanning mathematics, mineralogy, and applied geophysics, this research analyzes the coal quality and mineral composition of the Shanxi Formation coal seams in northern Jiangsu, China. A predictive model linking geophysical logging responses to coal quality parameters was established to delineate relationships between subsurface geophysical data and material properties. The results demonstrate that the Shanxi Formation coals are gas coal (a medium-metamorphic bituminous subclass) characterized by low sulfur content, low ash yield, low fixed carbon, high volatile matter, and high calorific value. Mineralogical analysis identifies calcite, pyrite, and clay minerals as the dominant constituents. Pyrite occurs in diverse microscopic forms, including euhedral and semi-euhedral fine grains, fissure-filling aggregates, irregular blocky structures, framboidal clusters, and disseminated particles. Systematic relationships were observed between logging parameters and coal quality: moisture, ash content, and volatile matter exhibit an initial decrease, followed by an increase with rising apparent resistivity (LLD) and bulk density (DEN). Conversely, fixed carbon and calorific value display an inverse trend, peaking at intermediate LLD/DEN values before declining. Total sulfur increases with density up to a threshold before decreasing, while showing a concave upward relationship with resistivity. Negative correlations exist between moisture, fixed carbon, calorific value lateral resistivity (LLS), natural gamma (GR), short-spaced gamma-gamma (SSGG), and acoustic transit time (AC). In contrast, ash yield, volatile matter, and total sulfur correlate positively with these logging parameters. These trends are governed by coalification processes, lithotype composition, reservoir physical properties, and the types and mass fractions of minerals. Validation through independent two-sample t-tests confirms the feasibility of the neural network model for predicting coal quality parameters from geophysical logging data. The predictive model provides technical and theoretical support for advancing intelligent coal mining practices and optimizing efficiency in coal chemical industries, enabling real-time subsurface characterization to facilitate precision resource extraction. Full article
Show Figures

Figure 1

20 pages, 14395 KiB  
Article
An Experimental Investigation on the Mechanical Performance of Engineered Cementitious Composites with Different Types of Steel Fibers
by Mohammad Maldar, Reza Kianoush, Hocine Siad and Mohamed Lachemi
Materials 2025, 18(13), 2990; https://doi.org/10.3390/ma18132990 - 24 Jun 2025
Viewed by 441
Abstract
Engineered cementitious composites (ECCs), known for their superior ductility and strain-hardening behavior compared to conventional concrete, have been predominantly studied with polyvinyl alcohol (PVA) fibers. However, the potential economic and technical advantages of incorporating steel fibers into ECCs have been largely overlooked in [...] Read more.
Engineered cementitious composites (ECCs), known for their superior ductility and strain-hardening behavior compared to conventional concrete, have been predominantly studied with polyvinyl alcohol (PVA) fibers. However, the potential economic and technical advantages of incorporating steel fibers into ECCs have been largely overlooked in the literature. This study investigates the mechanical performance of ECC reinforced with different types of steel fibers, including straight, twisted, hooked, and hybrid fibers of different lengths, as compared to PVA. The inclusion of various supplementary cementitious materials (SCMs) such as slag and fly ash with each type of steel fiber was also considered at a constant fiber volume fraction of 2%. The mechanical properties were assessed through compressive strength, splitting tensile strength, and four-point flexural tests along with calculations of toughness, ductility, and energy absorption capacity indices. This study compares the mechanical properties of different ECC compositions, revealing that ECCs with hybrid steel fibers (short and long) achieved more than twice the tensile strength, 12.7% higher toughness, and 36.4% greater energy absorption capacity compared to ECCs with PVA fibers, while exhibiting similar multiple micro-cracking behavior at failure. The findings highlight the importance of fiber type and distribution in enhancing an ECC’s mechanical properties, providing valuable insights for developing more cost-effective and resilient construction. Full article
Show Figures

Figure 1

35 pages, 10135 KiB  
Article
Constitutive Model for Plain and Steel-Fibre-Reinforced Lightweight Aggregate Concrete Under Direct Tension and Pull-Out
by Hasanain K. Al-Naimi and Ali A. Abbas
Fibers 2025, 13(7), 84; https://doi.org/10.3390/fib13070084 - 23 Jun 2025
Viewed by 436
Abstract
In the present study, a programme of experimental investigations was carried out to examine the direct uniaxial tensile (and pull-out) behaviour of plain and fibre-reinforced lightweight aggregate concrete. The lightweight aggregates were recycled from fly ash waste, also known as Pulverised Fuel Ash [...] Read more.
In the present study, a programme of experimental investigations was carried out to examine the direct uniaxial tensile (and pull-out) behaviour of plain and fibre-reinforced lightweight aggregate concrete. The lightweight aggregates were recycled from fly ash waste, also known as Pulverised Fuel Ash (PFA), which is a by-product of coal-fired electricity power stations. Steel fibres were used with different aspect ratios and hooked ends with single, double and triple bends corresponding to 3D, 4D and 5D types of DRAMIX steel fibres, respectively. Key parameters such as the concrete compressive strength flck, fibre volume fraction Vf, number of bends nb, embedded length LE and inclination angle ϴf were considered. The fibres were added at volume fractions Vf of 1% and 2% to cover the practical range, and a direct tensile test was carried out using a purpose-built pull-out test developed as part of the present study. Thus, the tensile mechanical properties were established, and a generic constitutive tensile stress–crack width σ-ω model for both plain and fibrous lightweight concrete was created and validated against experimental data from the present study and from previous research found in the literature (including RILEM uniaxial tests) involving different types of lightweight aggregates, concrete strengths and steel fibres. It was concluded that the higher the number of bends nb and the higher the volume fraction Vf and concrete strength flck, the stronger the fibre–matrix interfacial bond and thus the more pronounced the enhancement provided by the fibres to the uniaxial tensile residual strength and ductility in the form of work and fracture energy. A fibre optimisation study was also carried out, and design recommendations are provided. Full article
Show Figures

Figure 1

18 pages, 14135 KiB  
Article
Investigation of the Properties of Low Water-to-Solid Ratio Vibro-Press-Formed Alkali-Activated Municipal Solid Waste Incineration Bottom-Ash Concrete
by Gintautas Tamošaitis, Danutė Vaičiukynienė and Diana Bajare
Materials 2025, 18(13), 2926; https://doi.org/10.3390/ma18132926 - 20 Jun 2025
Viewed by 269
Abstract
This work focuses on the use of municipal waste incineration bottom ash (MSWI) for the development and production of products suitable for use as construction products. The generation of these ashes is increasing every year due to the incineration of municipal waste. There [...] Read more.
This work focuses on the use of municipal waste incineration bottom ash (MSWI) for the development and production of products suitable for use as construction products. The generation of these ashes is increasing every year due to the incineration of municipal waste. There are currently three incineration plants operating in major cities in Lithuania. The non-hazardous bottom ash remaining from the incineration process is stored in dedicated sorting and aging sites until it is used as an inert form of aggregate for the installation of road foundations. However, it has been observed that these ashes have a tendency to bind and cement when exposed to atmospheric precipitation at the storage site. Based on this characteristic, it was decided in this study to use alkaline activation of the ash to accelerate the bonding process and to create a dense, non-porous composite concrete structure. This activation method is known to create another problem during ash bonding, where the presence of metallic aluminum particles in the ash leads to the release of hydrogen gas and makes the structure of the cured samples porous. For the purposes of the study, it was decided to create a completely different mixture structure and not to use additional water in the mixtures tested. A very low water/solids ratio (W/S) of <0.08 was used for the alkaline activation of the mixtures. All the water required for ash activation was obtained from sodium silicate and sodium hydroxide solution. Metakaolin waste (MKW) was used to adjust the SiO2/Na2O/Al2O3 ratio of the mixtures. Vibro-pressing was used to form and increase the density of the samples. And for the formation of the concrete structure, 0/4 fraction sand was used as aggregate. The final alkali-activated sample obtained had properties similar to those of the very widely used vibro-pressed cementitious paving tiles and did not exhibit hydrogen evolution during alkali activation due to the very low W/S ratio. The best results were achieved by samples with a highest compressive strength of 40.0 MPa and a tensile strength of 5.60 MPa, as well as a density of 1950 kg/m3. It is believed that this alkaline activation and vibro-pressing method can expand the use of MSWI ash in the development of building products. Full article
(This article belongs to the Special Issue Low-Carbon Construction and Building Materials)
Show Figures

Figure 1

23 pages, 35270 KiB  
Article
Dispersed PM10 Microspheres from Coal Fly Ash: Fine Fraction Separation, Characterisation, and Glass–Ceramic Preparation
by Elena V. Fomenko, Galina V. Akimochkina and Natalia N. Anshits
Molecules 2025, 30(12), 2600; https://doi.org/10.3390/molecules30122600 - 15 Jun 2025
Viewed by 456
Abstract
Developing resource-efficient technologies for producing ceramic materials with specific properties and performance characteristics is one of the most important tasks in modern materials science. As natural resources face depletion, the use of anthropogenic wastes, including fly ash from coal combustion, for the development [...] Read more.
Developing resource-efficient technologies for producing ceramic materials with specific properties and performance characteristics is one of the most important tasks in modern materials science. As natural resources face depletion, the use of anthropogenic wastes, including fly ash from coal combustion, for the development of new compositions and the production of ceramics with an improved microstructure is of particular significance. The use of PM10 fly ash microspheres in ceramic production will help to reduce particulate matter emissions. In this study, fine narrow fractions of PM10 microspheres were successfully separated from coal fly ash using aerodynamic and magnetic separation. Glass–ceramic materials with a homogeneous microstructure, an open porosity of 0.4–37%, a compressive strength of 5–159 MPa, and acid resistance of up to 99.9% were obtained using narrow fractions. The materials obtained are promising for application as highly porous ceramics, effective microfiltration membranes, and fine-structured technical ceramics, which can be used in installations operating in aggressive media and/or at high temperatures. The ceramic membranes were characterised by high liquid permeability values up to 1194 L·m−2·h−1·bar−1. Filtration tests showed that the retention coefficient for dispersed microsilica particles with dav = 1.9 μm is 0.99. Full article
Show Figures

Figure 1

21 pages, 9234 KiB  
Article
Effects of Aqueous Extracts from Wheat Bran Layers on the Functional Properties of Wheat Starch and Gluten
by Bingbing Wu, Chunlei Yu, Zhongwei Chen and Bin Xu
Foods 2025, 14(11), 1988; https://doi.org/10.3390/foods14111988 - 4 Jun 2025
Viewed by 548
Abstract
Wheat bran (WB) is rich in bioactive compounds, but its incorporation into food products often negatively affects dough properties. The soluble components in WB, including polysaccharides, minerals, and proteins, exhibit significant variations across different bran layers and may dissolve and interact with flour [...] Read more.
Wheat bran (WB) is rich in bioactive compounds, but its incorporation into food products often negatively affects dough properties. The soluble components in WB, including polysaccharides, minerals, and proteins, exhibit significant variations across different bran layers and may dissolve and interact with flour components during food processing, affecting dough properties. This study aims to investigate the influence of aqueous extracts from different WB layers (aleurone layer, AL; non-aleurone layer, NAL) and their components on the functional properties of wheat starch and gluten. The results indicate that the AL-rich fraction yielded a higher extract content (30.6%) compared to the NAL-rich fraction (15.1%), attributable to the higher cellular content in the AL. Both the extracts and residues from AL and NAL significantly lowered the denaturation temperature of wheat gluten. The aqueous extracts reduced the storage (G′) and loss (G″) moduli of wheat gluten, primarily attributed to the effect of polysaccharide components, whereas the protein and ash fractions elevated the G′ and G″ at suitable dosages. The extracts elevated the gelatinization temperature of starch, but reduced enthalpy (ΔH). Moreover, the pasting viscosity of starch with WB extract decreased due to the combined effects of protein and ash fractions. These findings provide insights into the roles of water extracts from different WB layers and their components in modulating wheat-based product quality. This study also offers a theoretical basis for optimizing WB utilization in foods, thus providing a theoretical foundation for promoting whole-wheat foods or foods containing WB. Full article
Show Figures

Graphical abstract

22 pages, 5821 KiB  
Article
Experimental Investigation on the Mechanical Properties of Geopolymer Recycled Aggregate Concrete Reinforced with Steel-Polypropylene Hybrid Fiber
by Lili Ma, Cheng Zhen, Qingxin Zeng and Biao Li
Buildings 2025, 15(10), 1723; https://doi.org/10.3390/buildings15101723 - 19 May 2025
Cited by 2 | Viewed by 472
Abstract
Geopolymer recycled aggregate concrete (GRAC) is an eco-friendly material utilizing industrial byproducts (slag, fly ash) and substituting natural aggregates with recycled aggregates (RA). Incorporating steel-polypropylene hybrid fibers into GRAC to produce hybrid-fiber-reinforced geopolymer recycled aggregate concrete (HFRGRAC) can bridge cracks across multi-scales and [...] Read more.
Geopolymer recycled aggregate concrete (GRAC) is an eco-friendly material utilizing industrial byproducts (slag, fly ash) and substituting natural aggregates with recycled aggregates (RA). Incorporating steel-polypropylene hybrid fibers into GRAC to produce hybrid-fiber-reinforced geopolymer recycled aggregate concrete (HFRGRAC) can bridge cracks across multi-scales and multi-levels to synergistically improve its mechanical properties. This paper aims to investigate the mechanical properties of HFRGRAC with the parameters of steel fiber (SF) volume fraction (0%, 0.5%, 1%, 1.5%) and aspect ratio (40, 60, 80), polypropylene fiber (PF) volume fraction (0%, 0.05%, 0.1%, 0.15%), and RA substitution rate (0%, 25%, 50%, 75%, 100%) considered. Twenty groups of HFRGRAC specimens were designed and fabricated to evaluate the compressive splitting tensile strengths and flexural behavior emphasizing failure pattern, load–deflection curve, and toughness. The results indicated that adding SF enhances the specimen ductility, mechanical strength, and flexural toughness, with improvements proportional to SF content and aspect ratio. In contrast, a higher percentage of RA substitution increased fine cracks and reduced mechanical performance. Moreover, the inclusion of PF causes cracks to exhibit a jagged profile while slightly improving the concrete strength. The significant synergistic effect of SF and PF on mechanical properties of GRAC is observed, with SF playing a dominant role due to its high elasticity and crack-bridging capacity. However, the hydrophilic nature of SF combined with the hydrophobic property of PF weakens the bonding of the fiber–matrix interface, which degrades the concrete mechanical properties to some extent. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

24 pages, 4411 KiB  
Article
Characterization of Historical Tailings Dam Materials for Li-Sn Recovery and Potential Use in Silicate Products—A Case Study of the Bielatal Tailings Dam, Eastern Erzgebirge, Saxony, Germany
by Kofi Moro, Nils Hoth, Marco Roscher, Fabian Kaulfuss, Johanes Maria Vianney and Carsten Drebenstedt
Sustainability 2025, 17(10), 4469; https://doi.org/10.3390/su17104469 - 14 May 2025
Cited by 1 | Viewed by 644
Abstract
The characterization of historical tailings bodies is crucial for optimizing environmental management and resource recovery efforts. This study investigated the Bielatal tailings dam (Altenberg, Germany), examining its internal structure, material distribution influenced by historical flushing technology, and the spatial distribution of valuable elements. [...] Read more.
The characterization of historical tailings bodies is crucial for optimizing environmental management and resource recovery efforts. This study investigated the Bielatal tailings dam (Altenberg, Germany), examining its internal structure, material distribution influenced by historical flushing technology, and the spatial distribution of valuable elements. To evaluate the tailings resource potential, drill core sampling was conducted at multiple points at a depth of 7 m. Subsequent analyses included geochemical characterization using sodium peroxide fusion, lithium borate fusion, X-ray fluorescence (XRF), and a scanning electron microscope with energy dispersive X-ray spectroscopy (SEM-EDX). Particle size distribution analysis via a laser particle size analyzer and wet sieving was conducted alongside milieu parameter (pH, Eh, EC) analysis. A theoretical assessment of the tailings’ potential for geopolymer applications was conducted by comparing them with other tailings used in geopolymer research and relevant European standards. The results indicated average concentrations of lithium (Li) of 0.1 wt%, primarily hosted in Li-mica phases, and concentrations of tin (Sn) of 0.12 wt%, predominantly occurring in cassiterite. Particle size analysis revealed that the tailings material is generally fine-grained, comprising approximately 60% silt, 32% fine sand, and 8% clay. These textural characteristics influenced the spatial distribution of elements, with Li and Sn enriched in fine-grained fractions predominantly concentrated in the dam’s central and western sections, while coarser material accumulated near injection points. Historical advancements in mineral processing, particularly flotation, had significantly influenced Sn distribution, with deeper layers showing higher Sn enrichment, except for the final operational years, which also exhibited elevated Sn concentrations. Due to the limitations of X-ray fluorescence (XRF) in detecting Li, a strong correlation between rubidium (Rb) and Li was established, allowing Li quantification via Rb measurements across varying particle sizes, redox conditions, and geological settings. This demonstrated that Rb can serve as a reliable proxy for Li quantification in diverse contexts. Geochemical and mineralogical analyses revealed a composition dominated by quartz, mica, topaz, and alkali feldspars. The weakly acidic to neutral conditions (pH 5.9–7.7) and reducing redox potential (Eh, 570 to 45 mV) of the tailings material indicated a minimal risk of acid mine drainage. Preliminary investigations into using Altenberg tailings as geopolymer materials suggested that their silicon-rich composition could serve as a substitute for coal fly ash in construction; however, pre-treatment would be needed to enhance reactivity. This study underscores the dual potential of tailings for element recovery and sustainable construction, emphasizing the importance of understanding historical processing techniques for informed resource utilization. Full article
(This article belongs to the Special Issue Geological Engineering and Sustainable Environment)
Show Figures

Figure 1

24 pages, 873 KiB  
Article
Gluten-Free Snacks with Micronized and Freeze-Dried Red Potatoes: Nutritional and Pro-Health Values
by Dorota Gumul and Marek Kruczek
Molecules 2025, 30(9), 1957; https://doi.org/10.3390/molecules30091957 - 28 Apr 2025
Viewed by 454
Abstract
The application of micronization to previously freeze-dried red potatoes significantly increased their polyphenol content and antioxidant potential. As a result, they became a valuable additive for enriching gluten-free snacks with bioactive compounds. The aim of this study was to assess the health-promoting potential [...] Read more.
The application of micronization to previously freeze-dried red potatoes significantly increased their polyphenol content and antioxidant potential. As a result, they became a valuable additive for enriching gluten-free snacks with bioactive compounds. The aim of this study was to assess the health-promoting potential as well as the content of polyphenols, phytosterols, and vitamin E in gluten-free extrudates, also referred to as gluten-free snacks, with the addition of 10% to 40% freeze-dried and micronized red potatoes. Additionally, the study examined color parameters and nutritional composition, including dietary fiber content. It was found that the extrudates obtained from micronized and freeze-dried red potatoes were characterized by high nutritional value but, most importantly, a strong health-promoting potential due to their exceptionally high content of phenolic acids and anthocyanins, which contributed to their remarkable antioxidant activity. Snacks enriched with freeze-dried and micronized red potatoes contain significantly higher levels of protein (3- to 14-fold increase), ash (4.5- to 22.5-fold increase), and soluble dietary fiber fraction (10- to 26-fold increase) compared to the control sample. Moreover, these snacks exhibited very high concentrations of chlorogenic, cryptochlorogenic, and neochlorogenic acids, as well as elevated levels of pelargonidin and peonidin glycosides—polyphenolic compounds that were not detected in the control sample. These snacks contained substantial amounts of tocopherols and phytosterols, such as stigmasterol and beta-sitosterol (3- to 10-fold increase compared to the control). The study conclusively demonstrated that the 40% addition of freeze-dried and micronized red potatoes to gluten-free extrudates ensures the development of an innovative product with excellent health benefits and strong antioxidant activity. Full article
(This article belongs to the Special Issue Food Bioactive Components in Functional Foods and Nutraceuticals)
Show Figures

Figure 1

Back to TopTop