Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (646)

Search Parameters:
Keywords = aqueous-organic extract

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 932 KiB  
Article
Investigating Roasted Açaí (Euterpe oleracea) Seed Powder as a Coffee Substitute: Effects of Water Temperature, Milk Addition, and In Vitro Digestion on Phenolic Content and Antioxidant Capacity
by Rayssa Cruz Lima, Carini Aparecida Lelis, Jelmir Craveiro de Andrade and Carlos Adam Conte-Junior
Foods 2025, 14(15), 2696; https://doi.org/10.3390/foods14152696 - 31 Jul 2025
Viewed by 221
Abstract
Açaí (Euterpe oleracea) seeds account for up to 95% of the fruit’s weight and are commonly discarded during pulp processing. Roasted açaí seed extract (RASE) has recently emerged as a caffeine-free coffee substitute, although its composition and functionality remain underexplored. This [...] Read more.
Açaí (Euterpe oleracea) seeds account for up to 95% of the fruit’s weight and are commonly discarded during pulp processing. Roasted açaí seed extract (RASE) has recently emerged as a caffeine-free coffee substitute, although its composition and functionality remain underexplored. This study characterized commercial açaí seed powder and evaluated the effect of temperature on the recovery of total phenolic content (TPC) in the aqueous extract using a Central Composite Rotatable Design (CCRD). An intermediate extraction condition (6.0 ± 0.5 g 100 mL−1 at 100 °C) was selected, resulting in 21.78 mg GAE/g TPC, 36.23 mg QE/g total flavonoids, and notable antioxidant capacity (FRAP: 183.33 µmol TE/g; DPPH: 23.06 mg TE/g; ABTS: 51.63 mg TE/g; ORAC: 31.46 µmol TE/g). Proton Nuclear Magnetic Resonance (1H NMR) analysis suggested the presence of amino acids, carbohydrates, and organic acids. During in vitro digestion, TPC decreased from 54.31 to 17.48 mg GAE 100 mL−1 when RASE was combined with goat milk. However, higher bioaccessibility was observed with skimmed (33%) and semi-skimmed (35%) cow milk. These findings highlight RASE as a phenolic-rich, antioxidant beverage with functional stability when prepared with boiling water. This is the first study to report the phytochemical profile of RASE and its interactions with different milk types, supporting its potential as a coffee alternative. Full article
(This article belongs to the Special Issue Fruit By-Products and Their Applications in Food Industry)
Show Figures

Graphical abstract

15 pages, 1273 KiB  
Article
Fungal Pretreatment of Alperujo for Bioproduct Recovery and Detoxification: Comparison of Two White Rot Fungi
by Viviana Benavides, Gustavo Ciudad, Fernanda Pinto-Ibieta, Elisabet Aranda, Victor Ramos-Muñoz, Maria A. Rao and Antonio Serrano
Agronomy 2025, 15(8), 1851; https://doi.org/10.3390/agronomy15081851 - 31 Jul 2025
Viewed by 198
Abstract
Alperujo, a solid by-product from the two-phase olive oil extraction process, poses significant environmental challenges due to its high organic load, phytotoxicity, and phenolic content. At the same time, it represents a promising feedstock for recovering value-added compounds such as phenols and volatile [...] Read more.
Alperujo, a solid by-product from the two-phase olive oil extraction process, poses significant environmental challenges due to its high organic load, phytotoxicity, and phenolic content. At the same time, it represents a promising feedstock for recovering value-added compounds such as phenols and volatile fatty acids (VFAs). When used as a substrate for white rot fungi (WRF), it also produces ligninolytic enzymes. This study explores the use of two native WRF, Anthracophyllum discolor and Stereum hirsutum, for the biotransformation of alperujo under solid-state fermentation conditions, with and without supplementation of copper and manganese, two cofactors known to enhance fungal enzymatic activity. S. hirsutum stood out for its ability to release high concentrations of phenolic compounds (up to 6001 ± 236 mg gallic acid eq L−1) and VFAs (up to 1627 ± 325 mg L−1) into the aqueous extract, particularly with metal supplementation. In contrast, A. discolor was more effective in degrading phenolic compounds within the solid matrix, achieving a 41% reduction over a 30-day period. However, its ability to accumulate phenolics and VFAs in the extract was limited. Both WRF exhibited increased enzymatic activities (particularly Laccase and Manganese Peroxidase) with the addition of Cu-Mn, highlighting the potential of the aqueous extract as a natural source of biocatalysts. Phytotoxicity assays using Solanum lycopersicum seeds confirmed a partial detoxification of the treated alperujo. However, none of the fungi could entirely eliminate inhibitory effects on their own, suggesting the need for complementary stabilization steps before agricultural reuse. Overall, the results indicate that S. hirsutum, especially when combined with metal supplementation, is better suited for valorizing alperujo through the recovery of bioactive compounds. Meanwhile, A. discolor may be more suitable for detoxifying the solid phase strategies. These findings support the integration of fungal pretreatment into biorefinery schemes that valorize agroindustrial residues while mitigating environmental issues. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

13 pages, 4712 KiB  
Article
Adsorptive Removal Behavior of Two Activated Carbons for Bis(2-ethylhexyl) Phosphate Dissolved in Water
by Lifeng Chen, Jing Tang, Zhuo Wang, Hongling Wang, Wannian Feng, Junjie Chen, Qingqing Yan, Shunyan Ning, Wenlong Li, Yuezhou Wei and Di Wu
Toxics 2025, 13(8), 624; https://doi.org/10.3390/toxics13080624 - 25 Jul 2025
Viewed by 292
Abstract
Bis(2-ethylhexyl) phosphate (P204) is widely used in extraction processes in the nuclear and rare earth industries. However, its high solubility in water results in high levels of total organic carbon and phosphorus in aqueous environments, and may also lead to radioactive contamination when [...] Read more.
Bis(2-ethylhexyl) phosphate (P204) is widely used in extraction processes in the nuclear and rare earth industries. However, its high solubility in water results in high levels of total organic carbon and phosphorus in aqueous environments, and may also lead to radioactive contamination when it is used to combine with radionuclides. In this paper, we characterized a coconut shell activated carbon (CSAC) and a coal-based activated carbon (CBAC) for the adsorption of P204 and then evaluated their adsorption performance through batch and column experiments. The results found that, except for the main carbon matrix, CSAC and CBAC carried rich oxygen-containing functional groups and a small amount of inorganic substances. Both adsorbents had porous structures with pore diameters less than 4 nm. CSAC and CBAC showed good removal performance for P204 under low pH conditions, with removal efficiencies significantly higher than those of commonly used adsorption resins (XAD-4 and IRA900). The adsorption kinetics of P204 conformed to the pseudo-second-order kinetic model, and the adsorption isotherms conformed to the Langmuir model, indicating a monolayer chemical reaction mechanism. Both adsorbents exhibited strong anti-interference capabilities; their adsorption performance for P204 did not change greatly with the ambient temperature or the concentrations of common interfering ions. Column experiments demonstrated that CSAC could effectively fix dissolved P204 with a removal efficiency exceeding 90%. The fixed P204 could be desorbed with acetone. The findings provide an effective method for the recovery of P204 and the regeneration of spent activated carbon, which shows promise for practical applications in the future. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

21 pages, 1784 KiB  
Article
Toxic Threats from the Fern Pteridium aquilinum: A Multidisciplinary Case Study in Northern Spain
by L. María Sierra, Isabel Feito, Mª Lucía Rodríguez, Ana Velázquez, Alejandra Cué, Jaime San-Juan-Guardado, Marta Martín, Darío López, Alexis E. Peña, Elena Canga, Guillermo Ramos, Juan Majada, José Manuel Alvarez and Helena Fernández
Int. J. Mol. Sci. 2025, 26(15), 7157; https://doi.org/10.3390/ijms26157157 - 24 Jul 2025
Viewed by 236
Abstract
Pteridium aquilinum (bracken fern) poses a global threat to biodiversity and to the health of both animals and humans due to its toxic metabolites and aggressive ecological expansion. In northern Spain, particularly in regions of intensive livestock farming, these risks may be exacerbated, [...] Read more.
Pteridium aquilinum (bracken fern) poses a global threat to biodiversity and to the health of both animals and humans due to its toxic metabolites and aggressive ecological expansion. In northern Spain, particularly in regions of intensive livestock farming, these risks may be exacerbated, calling for urgent assessment and monitoring strategies. In this study, we implemented a multidisciplinary approach to evaluate the toxicological and ecological relevance of P. aquilinum through four key actions: (a) quantification of pterosins A and B in young fronds (croziers) using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS); (b) analysis of in vivo genotoxicity of aqueous extracts using Drosophila melanogaster as a model organism; (c) a large-scale survey of local livestock farmers to assess awareness and perceived impact of bracken; and (d) the development and field application of a drone-based mapping tool to assess the spatial distribution of the species at the regional level. Our results confirm the consistent presence of pterosins A and B in croziers, with concentrations ranging from 0.17 to 2.20 mg/g dry weight for PtrB and 13.39 to 257 µg/g for PtrA. Both metabolite concentrations and genotoxicity levels were found to correlate with latitude and, importantly, with each other. All tested samples exhibited genotoxic activity, with notable differences among them. The farmer survey (n = 212) revealed that only 50% of respondents were aware of the toxic risks posed by bracken, indicating a need for targeted outreach. The drone-assisted mapping approach proved to be a promising tool for identifying bracken-dominated areas and provides a scalable foundation for future ecological monitoring and land management strategies. Altogether, our findings emphasize that P. aquilinum is not merely a local concern but a globally relevant toxic species whose monitoring and control demand coordinated scientific and policy-based efforts. Full article
(This article belongs to the Special Issue The Transcendental World of Plant Toxic Compounds)
Show Figures

Figure 1

27 pages, 2644 KiB  
Article
Nutraceutical Potential of Sideroxylon cinereum, an Endemic Mauritian Fruit of the Sapotaceae Family, Through the Elucidation of Its Phytochemical Composition and Antioxidant Activity
by Cheetra Bhajan, Joyce Govinden Soulange, Vijayanti Mala Ranghoo-Sanmukhiya, Remigiusz Olędzki, Daniel Ociński, Irena Jacukowicz-Sobala, Adam Zając, Melanie-Jayne R. Howes and Joanna Harasym
Molecules 2025, 30(14), 3041; https://doi.org/10.3390/molecules30143041 - 20 Jul 2025
Viewed by 358
Abstract
Sideroxylon cinereum, an endemic Mauritian fruit, was investigated through comprehensive chemical analyses of solvent extracts from its pulp and seed. Dried fruit materials were subjected to maceration using water and organic solvents including methanol, ethanol, propanol, and acetone to obtain extracts of [...] Read more.
Sideroxylon cinereum, an endemic Mauritian fruit, was investigated through comprehensive chemical analyses of solvent extracts from its pulp and seed. Dried fruit materials were subjected to maceration using water and organic solvents including methanol, ethanol, propanol, and acetone to obtain extracts of varying polarity. Preliminary phytochemical screening revealed the presence of several bioactive compounds, with pulp extracts generally richer in phytochemicals than seed extracts. UV-Vis and FTIR analyses confirmed key organic constituents, including sulfoxides in seeds. HPLC quantification showed notable citric acid content in the pulp (15.63 mg/g dry weight). Antioxidant assays indicated that organic solvent extracts of the pulp had superior free radical scavenging activity, while the seed’s aqueous extract exhibited the highest ferric reducing power. GC–MS profiling identified a diverse bioactive profile rich in terpenes, notably lanosterol acetate (>45% in both pulp and seeds). It is important to note that these findings are based on solvent extracts, which may differ from the phytochemical composition of the whole fruit as typically consumed. Among the extracts, aqueous fractions are likely the most relevant to dietary intake. Overall, the extracts of Sideroxylon cinereum pulp and seed show potential as sources of bioactive compounds for functional product development. Full article
Show Figures

Figure 1

28 pages, 4509 KiB  
Article
Activated Biocarbons Based on Salvia officinalis L. Processing Residue as Adsorbents of Pollutants from Drinking Water
by Joanna Koczenasz, Piotr Nowicki, Karina Tokarska and Małgorzata Wiśniewska
Molecules 2025, 30(14), 3037; https://doi.org/10.3390/molecules30143037 - 19 Jul 2025
Viewed by 326
Abstract
This study presents research on the production of activated biocarbons derived from herbal waste. Sage stems were chemically activated with two activating agents of different chemical natures—H3PO4 and K2CO3—and subjected to two thermal treatment methods: conventional [...] Read more.
This study presents research on the production of activated biocarbons derived from herbal waste. Sage stems were chemically activated with two activating agents of different chemical natures—H3PO4 and K2CO3—and subjected to two thermal treatment methods: conventional and microwave heating. The effect of the activating agent type and heating method on the basic physicochemical properties of the resulting activated biocarbons was investigated. These properties included surface morphology, elemental composition, ash content, pH of aqueous extracts, the content and nature of surface functional groups, points of zero charge, and isoelectric points, as well as the type of porous structure formed. In addition, the potential of the prepared carbonaceous materials as adsorbents of model organic (represented by Triton X-100 and methylene blue) and inorganic (represented by iodine) pollutants was assessed. The influence of the initial adsorbate concentration (5–150 (dye) and 10–800 mg/dm3 (surfactant)), temperature (20–40 °C), and pH (2–10) of the system on the efficiency of contaminant removal from aqueous solutions was evaluated. The adsorption kinetics were also investigated to better understand the rate and mechanism of contaminant uptake by the prepared activated biocarbons. The results showed that materials activated with orthophosphoric acid exhibited a significantly higher sorption capacity for all tested adsorbates compared to their potassium carbonate-activated counterparts. Microwave heating was found to be more effective in promoting the formation of a well-developed specific surface area (471–1151 m2/g) and porous structure (mean pore size 2.17–3.84 nm), which directly enhanced the sorption capacity of both organic and inorganic contaminants. The maximum adsorption capacities for iodine, methylene blue, and Triton X-100 reached the levels of 927.0, 298.4, and 644.3 mg/g, respectively, on the surface of the H3PO4-activated sample obtained by microwave heating. It was confirmed that the heating method used during the activation step plays a key role in determining the physicochemical properties and sorption efficiency of activated biocarbons. Full article
Show Figures

Figure 1

13 pages, 2832 KiB  
Article
Eco-Friendly Synthesis of Silver Nanoparticles from Ligustrum ovalifolium Flower and Their Catalytic Applications
by Thangamani Kaliraja, Reddi Mohan Naidu Kalla, Fatimah Ali M. Al-Zahrani, Surya Veerendra Prabhakar Vattikuti and Jaewoong Lee
Nanomaterials 2025, 15(14), 1087; https://doi.org/10.3390/nano15141087 - 14 Jul 2025
Viewed by 376
Abstract
The green-chemical preparation of silver nanoparticles (AgNPs) offers a sustainable and environmentally friendly alternative to conventional synthesis methods, thereby representing a paradigm shift in the field of nanotechnology. The biological synthesis process, which involves the synthesis, characterization, and management of materials, as well [...] Read more.
The green-chemical preparation of silver nanoparticles (AgNPs) offers a sustainable and environmentally friendly alternative to conventional synthesis methods, thereby representing a paradigm shift in the field of nanotechnology. The biological synthesis process, which involves the synthesis, characterization, and management of materials, as well as their further development at the nanoscale, is the most economical, environmentally friendly, and rapid synthesis process compared to physical and chemical processes. Ligustrum ovalifolium flower extract was used for the preparation of AgNPs. The synthesized AgNPs were examined by using UV–visible spectroscopy, XRD, SEM, and TEM analysis. It indicates that AgNPs were formed in good size. AgNPs were applied as a catalyst for the degradation of pollutants, such as methyl orange, Congo red, and methylene blue, which were degraded within 8–16 min. Additionally, the reduction of para-nitrophenol (PNP) to para-aminophenol (PAP) was achieved within 2 min. This work demonstrates a practical, reproducible, and efficient method for synthesizing cost-effective and stable AgNPs, which serve as active catalysts for the rapid degradation of hazardous organic dyes in an aqueous environment. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

17 pages, 593 KiB  
Review
Patent-Based Technological Overview of Propolis–Cyclodextrin Inclusion Complexes with Pharmaceutical Potential
by Salvana Costa, Ighor Costa Barreto, Nataly Gama, Kathylen Santos, Cleomárcio Miguel de Oliveira, Isabela Silva Costa, Monique Vila Nova, Ruane Santos, Arthur Borges, José Marcos Teixeira de Alencar Filho and Ticiano Gomes do Nascimento
Pharmaceutics 2025, 17(7), 898; https://doi.org/10.3390/pharmaceutics17070898 - 11 Jul 2025
Viewed by 454
Abstract
Background/objectives: Propolis, known for its medicinal properties, faces challenges in pharmaceutical applications due to its low aqueous solubility, attributed to its resinous and hydrophobic nature. This limits oral administration, reducing its bioavailability and pharmacological activities. To overcome these barriers, cyclodextrins (CDs), cyclic oligosaccharides, [...] Read more.
Background/objectives: Propolis, known for its medicinal properties, faces challenges in pharmaceutical applications due to its low aqueous solubility, attributed to its resinous and hydrophobic nature. This limits oral administration, reducing its bioavailability and pharmacological activities. To overcome these barriers, cyclodextrins (CDs), cyclic oligosaccharides, are widely studied as carrier systems that enhance the solubility and bioavailability of propolis and other nonpolar compounds. This study aimed to review patents that developed innovative therapeutic approaches to improve the physicochemical and biological properties of propolis through complexation with CDs. Methods: Active and application patents registered over the last 17 years were searched across multiple databases, resulting in the selection of eight inventions for detailed analysis. Results: These patents highlight therapeutic applications of propolis–CD systems for conditions such as diabetes and skin and gastrointestinal cancers, as well as antimicrobial, immunostimulant, and antioxidant effects. Additionally, novel extraction processes free of organic solvents, including nanometric-scale powder extracts, are described. Conclusions: Findings from scientific articles support the patent data, demonstrating that CD complexation significantly enhances the solubility and therapeutic efficacy of propolis. Thus, these patents present an innovative and promising strategy for developing propolis-based pharmaceutical products. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

36 pages, 6380 KiB  
Article
Metabolic Responses of Amaranthus caudatus Roots and Leaves to Zinc Stress
by Natalia Osmolovskaya, Tatiana Bilova, Anastasia Gurina, Anastasia Orlova, Viet D. Vu, Stanislav Sukhikh, Tatiana Zhilkina, Nadezhda Frolova, Elena Tarakhovskaya, Anastasia Kamionskaya and Andrej Frolov
Plants 2025, 14(14), 2119; https://doi.org/10.3390/plants14142119 - 9 Jul 2025
Viewed by 474
Abstract
In recent decades, heavy metal pollution has become a significant environmental stress factor. Plants are characterized by high biochemical plasticity and can adjust their metabolism to ensure survival under a changing environment. Here we report, to our knowledge, the first gas chromatography-mass spectrometry [...] Read more.
In recent decades, heavy metal pollution has become a significant environmental stress factor. Plants are characterized by high biochemical plasticity and can adjust their metabolism to ensure survival under a changing environment. Here we report, to our knowledge, the first gas chromatography-mass spectrometry (GC-MS)-based metabolomics study of Zn-induced stress responses in Amaranthus caudatus plants. The study was performed with root and leaf aqueous methanolic extracts after their lyophilization and sequential derivatization with methoxylamine hydrochloride and N-methyl-N-(trimethylsilyl)trifluoroacetamide. In total, 419 derivatives were detected in the samples, and 144 of them could be putatively annotated. The metabolic shifts in seven-week-old A. caudatus plants in response to a seven-day treatment with 300 µmol/L ZnSO4·7H2O in nutrient solution were organ-specific and more pronounced in roots. Most of the responsive metabolites were up-regulated and dominated by sugars and sugar acids. The revealed effects could be attributed to the involvement of these metabolites in osmotic regulation, antioxidant protection and Zn2+ complexation. A 59-fold up-regulation of gluconic acid in roots distinctly indicated enhanced glucose oxidation due to oxidative stress upon the Zn treatment. Gluconic acid might be further employed in Zn2+ complexation. Pronounced Zn-induced up-regulation of salicylic acid in roots and shoots suggested a key role of this hormone in stress signaling and activation of Zn stress tolerance mechanisms. Overall, our study provides the first insight into the general trends of Zn-induced biochemical rearrangements and main adaptive metabolic shifts in A. caudatus. Full article
Show Figures

Figure 1

18 pages, 8943 KiB  
Article
Nanotoxicological Assessment of Green-Synthesized Silver Nanoparticles from Brazilian Cerrado Plant in a Murine Model
by Cínthia Caetano Bonatto, Ivy Garcez Reis, Dalila Juliana Silva Ribeiro, Raquel das Neves Almeida, Rafael Corrêa, Livia Pimentel Sant’Ana Dourado, Gabriel Pasquarelli-do-Nascimento, Kelly Grace Magalhães and Luciano Paulino Silva
Pharmaceuticals 2025, 18(7), 993; https://doi.org/10.3390/ph18070993 - 2 Jul 2025
Viewed by 435
Abstract
Background/Objectives: In recent years, silver nanoparticles (AgNPs) have garnered significant attention due to their potent antimicrobial properties, which hold promise for various applications. However, concerns about their potential toxicity have also emerged, particularly regarding their impact on human and animal health. This study [...] Read more.
Background/Objectives: In recent years, silver nanoparticles (AgNPs) have garnered significant attention due to their potent antimicrobial properties, which hold promise for various applications. However, concerns about their potential toxicity have also emerged, particularly regarding their impact on human and animal health. This study investigates the acute toxicological effects of AgNPs synthesized using a green route with an aqueous extract of a native Cerrado plant (AgNPs-Cb) in mice. Methods: The AgNPs-Cb were intravenously administered at a concentration of 64 µM, and the mice were euthanized after 24 h for the collection of blood and organ samples (liver, spleen, kidneys, and lungs) for hematological, biochemical, and histological analyses. Results: Hematological analysis, including complete blood count (CBC) and differential leukocyte count, showed no statistically significant alterations in the groups treated with AgNPs-Cb, Cb extract, and Ag+, compared with the control group (p < 0.05). Notably, only the Ag+ group exhibited a significant increase in red blood cell count and hematocrit levels, suggesting that the nanoformulation of silver might mitigate the hematological impact seen with free silver ions. Biochemical analyses of liver and kidney function markers also revealed no significant differences across the treatment groups. Conclusions: These findings indicate that AgNPs-Cb may offer a safer alternative for antimicrobial applications, reducing the risk of acute toxicity in mammals while maintaining efficacy against pathogens. Further studies are needed to explore the underlying mechanisms and long-term effects of AgNPs-Cb exposure. Full article
(This article belongs to the Special Issue Therapeutic Potential of Silver Nanoparticles (AgNPs), 2nd Edition)
Show Figures

Figure 1

16 pages, 4935 KiB  
Article
Interlayer-Spacing-Modification of MoS2 via Inserted PANI with Fast Kinetics for Highly Reversible Aqueous Zinc-Ion Batteries
by Shuang Fan, Yangyang Gong, Suliang Chen and Yingmeng Zhang
Micromachines 2025, 16(7), 754; https://doi.org/10.3390/mi16070754 - 26 Jun 2025
Viewed by 449
Abstract
Layered transition metal dichalcogenides (TMDs) have gained considerable attention as promising cathodes for aqueous zinc-ion batteries (AZIBs) because of their tunable interlayer architecture and rich active sites for Zn2+ storage. However, unmodified TMDs face significant challenges, including limited redox activity, sluggish kinetics, [...] Read more.
Layered transition metal dichalcogenides (TMDs) have gained considerable attention as promising cathodes for aqueous zinc-ion batteries (AZIBs) because of their tunable interlayer architecture and rich active sites for Zn2+ storage. However, unmodified TMDs face significant challenges, including limited redox activity, sluggish kinetics, and insufficient structural stability during cycling. These limitations are primarily attributed to their narrow interlayer spacing, strong electrostatic interactions, the large ionic hydration radius, and their high binding energy of Zn2+ ions. To address these restrictions, an in situ organic polyaniline (PANI) intercalation strategy is proposed to construct molybdenum disulfide (MoS2)-based cathodes with extended layer spacing, thereby improving the zinc storage capabilities. The intercalation of PANI effectively enhances interplanar spacing of MoS2 from 0.63 nm to 0.98 nm, significantly facilitating rapid Zn2+ diffusion. Additionally, the π-conjugated electron structure introduced by PANI effectively shields the electrostatic interaction between Zn2+ ions and the MoS2 host, thereby promoting Zn2+ diffusion kinetics. Furthermore, PANI also serves as a structural stabilizer, maintaining the integrity of the MoS2 layers during Zn-ion insertion/extraction processes. Furthermore, the conductive conjugated PANI boosts the ionic and electronic conductivity of the electrodes. As expected, the PANI–MoS2 electrodes exhibit exceptional electrochemical performance, delivering a high specific capacity of 150.1 mA h g−1 at 0.1 A g−1 and retaining 113.3 mA h g−1 at 1 A g−1, with high capacity retention of 81.2% after 500 cycles. Ex situ characterization techniques confirm the efficient and reversible intercalation/deintercalation of Zn2+ ions within the PANI–MoS2 layers. This work supplies a rational interlayer engineering strategy to optimize the electrochemical performance of MoS2-based electrodes. By addressing the structural and kinetic limitations of TMDs, this approach offers new insights into the development of high-performance AZIBs for energy storage applications. Full article
(This article belongs to the Special Issue Advancing Energy Storage Techniques: Chemistry, Materials and Devices)
Show Figures

Figure 1

21 pages, 1887 KiB  
Article
Third-Phase Formation in Rare Earth Element Extraction with D2EHPA: Key Factors and Impact on Liquid Membrane Extraction Performance
by Raquel Rodríguez Varela, Alexandre Chagnes and Kerstin Forsberg
Membranes 2025, 15(7), 188; https://doi.org/10.3390/membranes15070188 - 23 Jun 2025
Viewed by 681
Abstract
Hollow fibre renewal liquid membranes (HFRLMs) are susceptible to third-phase formation during rare earth element (REE) extraction using D2EHPA (bis(2-ethylhexyl phosphoric acid)), potentially leading to membrane fouling and decreased mass transfer efficiency. This study investigated the effects of various parameters, such as the [...] Read more.
Hollow fibre renewal liquid membranes (HFRLMs) are susceptible to third-phase formation during rare earth element (REE) extraction using D2EHPA (bis(2-ethylhexyl phosphoric acid)), potentially leading to membrane fouling and decreased mass transfer efficiency. This study investigated the effects of various parameters, such as the composition of the aqueous feed and organic phases, on the third-phase formation and limiting organic concentration (LOC) of REE(III) in D2EHPA. Higher concentrations of REEs and a higher pH in the feed phase correlated with decreased mass transfer, while yttrium showed a greater propensity to induce third-phase formation compared to other REEs. Conditions favouring the use of linear aliphatic diluents, low extractant concentrations (5–10 v/v% D2EHPA) and the absence of modifiers also contributed to third-phase formation. The addition of tri-n-butyl phosphate (TBP) mitigated third-phase formation without evidence of synergy with D2EHPA. These findings provide key insights into formulating extraction systems that prevent third-phase formation in HFRLM processes. Full article
Show Figures

Figure 1

22 pages, 3140 KiB  
Review
Biological and Medicinal Properties of Chrysanthemum boreale Makino and Its Bioactive Products
by Christian Bailly
Int. J. Mol. Sci. 2025, 26(13), 5956; https://doi.org/10.3390/ijms26135956 - 20 Jun 2025
Viewed by 627
Abstract
Chrysanthemum species represent an economically important group of flowering plants. Many species also present a medicinal interest, notably for the treatment of inflammatory pathologies. This is the case for Chrysanthemum boreale Makino, endemic to Japan and widespread in Eastern Asia. This perennial plant [...] Read more.
Chrysanthemum species represent an economically important group of flowering plants. Many species also present a medicinal interest, notably for the treatment of inflammatory pathologies. This is the case for Chrysanthemum boreale Makino, endemic to Japan and widespread in Eastern Asia. This perennial plant has long been used in folk medicine to treat inflammatory diseases and bacterial infections. An extensive review of the scientific literature pertaining to C. boreale has been performed to analyze the origin of the plant, its genetic traits, the traditional usages, and the properties of aqueous or organic plant extracts and essential oils derived from this species. Aqueous extracts and the associated flavonoids, such as acacetin and glycoside derivatives, display potent antioxidant activities. These aqueous extracts and floral waters are used mainly as cytoprotective agents. Organic extracts, in particular those made from methanol or ethanol, essentially display antioxidant and anti-inflammatory properties useful to protect organs from oxidative damage. They can be used for neuroprotection. Essential oils from C. boreale have been used as cytoprotective or antibacterial agents. The main bioactive natural products isolated from the plant include flavonoids such as acacetin and related glycosides (notably linarin), and diverse sesquiterpene lactones (SLs). Among monomeric SLs, cumambrins and borenolide are the main products of interest, with cumambrin A targeting covalently the transcription factor NF-κB to regulate proinflammatory gene expression to limit osteoclastic bone resorption. The dimeric SL handelin, which is characteristic of C. boreale, exhibits a prominent anti-inflammatory action, with a capacity to target key proteins like kinase TAK1 and chaperone Hsp70. A few other natural products isolated from the plant (tulipinolide, polyacetylenic derivatives) are discussed. Altogether, the review explores all medicinal usages of the plant and the associated phytochemical panorama, with the objective of promoting further botanical and chemical studies of this ancestral medicinal species. Full article
(This article belongs to the Special Issue Anti-cancer Effects of Natural Products)
Show Figures

Figure 1

17 pages, 911 KiB  
Article
Toxicodynamic Assessment of Aqueous Neem (Azadirachta indica A. Juss) Seed Extract on Mortality and Carboxylesterase Activity in Key Organs of Bombyx mori L. Larvae
by Ajin Rattanapan, Chuthep Phannasri, Chawiwan Phannasri, Patcharawan Sujayanont and Kattinat Sagulsawasdipan
Toxins 2025, 17(6), 304; https://doi.org/10.3390/toxins17060304 - 16 Jun 2025
Viewed by 484
Abstract
Botanical insecticides derived from neem (Azadirachta indica A. Juss.) seeds have gained significant interest due to their sustainable characteristics and low environmental impact. However, their use in sericulture remains contentious due to the heightened sensitivity of domesticated silkworms to environmental stressors. This [...] Read more.
Botanical insecticides derived from neem (Azadirachta indica A. Juss.) seeds have gained significant interest due to their sustainable characteristics and low environmental impact. However, their use in sericulture remains contentious due to the heightened sensitivity of domesticated silkworms to environmental stressors. This study systematically investigates the toxicodynamic effects of aqueous neem seed extract (ANSE) on fifth instar larvae of Thai multivoltine Bombyx mori L., focusing on larval mortality and carboxylesterase (CarE) enzyme activity in essential detoxification organs. Larvae were exposed to ANSE concentrations ranging from 5 to 50 mg L−1 for up to 72 h. Key findings highlight a pronounced dose- and time-dependent increase in mortality, with an accurately determined LC50 value of 17 mg L−1 at the longest time exposure, accompanied by mortality rates reaching approximately 83% at the highest concentration tested, indicating considerable susceptibility. Additionally, notable and distinct organ-specific responses were observed, with significant inhibition of CarE activity in the midgut contrasting with elevated activities in the fat body and Malpighian tubules. These differential enzymatic responses reveal previously undocumented adaptive detoxification mechanisms. Consequently, the study advocates cautious and regulated application of neem-based insecticides in sericulture, recommending precise management of concentrations and exposure durations according to silkworm strain sensitivities to ensure optimal silk production. Full article
(This article belongs to the Section Plant Toxins)
Show Figures

Figure 1

21 pages, 4771 KiB  
Article
Synthesis of Antioxidant Nano Zero-Valent Iron Using FeCl2 and Leucaena leucocephala Leaves’ Aqueous Extract and the Nanomaterial’s Potential to Promote the Adsorption of Tartrazine and Nigrosine
by Fernanda Maria Policarpo Tonelli, Christopher Santos Silva, Geicielly da Costa Pinto, Lucas Santos Azevedo, Jhenifer Cristina Carvalho Santos, Danilo Roberto Carvalho Ferreira, Pamela da Rocha Patricio, Giullya Amaral Cordeiro Lembrança, Luciana Alves Rodrigues dos Santos Lima, Clascídia Aparecida Furtado, Flávia Cristina Policarpo Tonelli and Adriano Guimarães Parreira
Int. J. Mol. Sci. 2025, 26(12), 5751; https://doi.org/10.3390/ijms26125751 - 16 Jun 2025
Cited by 1 | Viewed by 361
Abstract
Synthetic dyes are commonly present in industrial wastewater and when discharged in water bodies without receiving a treatment capable of removing or destroying them, they turn into concerning water pollutants. These organic contaminants threaten living beings due to their toxicity, and some of [...] Read more.
Synthetic dyes are commonly present in industrial wastewater and when discharged in water bodies without receiving a treatment capable of removing or destroying them, they turn into concerning water pollutants. These organic contaminants threaten living beings due to their toxicity, and some of them can even damage DNA. Consequently, in order to achieve sustainable development, it is necessary to develop eco-friendly tools that can efficiently manage this kind of pollution. In the present study the aqueous extract from the leaves of Leucaena leucocephala (an invasive plant species native to Mexico) was used to produce green nano zero-valent iron (nZVI). The nanomaterial was characterized (TEM, UV–vis, FTIR, SEM, EDS, XRD) and assayed regarding its antioxidant potential (DPPH test) and capacity to remediate the pollution caused by two dyes. It proved to be able to adsorb nigrosine (288.30 mg/g of nanomaterial) and tartrazine (342.50 mg/g of nanomaterial), and also displayed antioxidant activity (effective concentration to discolor 50% of the DPPH solution = 286.02 μg/mL). Therefore, the biogenic antioxidant nanoparticle proved also to be a possible nanotool to be applied to remediate water contamination caused by these synthetic dyes. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

Back to TopTop