Nanotoxicological Assessment of Green-Synthesized Silver Nanoparticles from Brazilian Cerrado Plant in a Murine Model
Abstract
1. Introduction
2. Results and Discussion
2.1. Silver Nanoparticles Characterization
2.2. Hemolytic Activity
2.3. Toxicity Assessment of AgNPs in Mice in Vivo
2.4. Histological Analysis
3. Materials and Methods
3.1. Materials
3.2. Synthesis and Characterization of Silver Nanoparticles
3.3. Dynamic Light Scattering (DLS) and Zeta Potential
3.4. Atomic Force Microscopy
3.5. Transmission Electron Microscopy
3.6. Hemolysis in Vitro
3.7. Toxicity in Mice
3.8. Hematological and Biochemical Evaluations
3.9. Histological Evaluation
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALT | Alanine aminotransferase |
AFM | Atomic force microscopy |
AST | Aspartate aminotransferase |
AgNPs | Silver nanoparticles |
Cb | Aqueous extract of Caryocar brasiliense leaves |
CBC | Complete blood count |
DBIL | Direct bilirubin |
DLS | Dynamic light scattering |
GGT | Gamma glutamyl transpeptidase |
HDLs | High-density lipoproteins |
IBIL | Indirect bilirubin |
LDLs | Low-density lipoproteins |
MCH | Mean corpuscular hemoglobin |
MCHC | Mean corpuscular hemoglobin concentration |
MCV | Mean corpuscular volume |
MNPs | Metal nanoparticles |
PdI | Polydispersity index |
RBCs | Red blood cells |
RDW | Red cell distribution width |
RPS | Refractive plasmonic scattering |
TBIL | Total bilirubin |
TEM | Transmission electron microscopy |
References
- Godfrey Michael Shayo, G.M.; Elimbinzi, E.; Shao, G.N. Preparation methods, applications, toxicity and mechanisms of silver nanoparticles as bactericidal agent and superiority of green synthesis method. Heliyon 2024, 10, e36539. [Google Scholar] [CrossRef] [PubMed]
- Riaz Ahmed, K.B.; Nagy, A.M.; Brown, R.P.; Zhang, Q.; Malghan, S.G.; Goering, P.L. Silver nanoparticles: Significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol. In Vitro 2017, 38, 179–192. [Google Scholar] [CrossRef]
- Kakakhel, M.A.; Wu, F.; Sajjad, W.; Zhang, Q.; Khan, I.; Ullah, K.; Wang, W. Long-term exposure to high-concentration silver nanoparticles induced toxicity, fatality, bioaccumulation, and histological alteration in fish (Cyprinus carpio). Environ. Sci. Eur. 2021, 33, 14. [Google Scholar] [CrossRef]
- Almatroudi, A. Unlocking the Potential of Silver Nanoparticles: From Synthesis to Versatile Bio-Applications. Pharmaceutics 2024, 16, 1232. [Google Scholar] [CrossRef]
- Banu, A.N.; Kudesia, N.; Raut, A.M.; Pakrudheen, I.; Wahengbam, J. Toxicity, bioaccumulation, and transformation of silver nanoparticles in aqua biota: A review. Environ. Chem. Lett. 2021, 19, 4275–4296. [Google Scholar] [CrossRef]
- Alzoubi, F.Y.; Ahmad, A.A.; Aljarrah, I.A.; Migdadi, A.B.; Al-Bataineh, Q.M. Localized surface plasmon resonance of silver nanoparticles using Mie theory. J. Mater. Sci. Mater. Electron. 2023, 34, 2128. [Google Scholar] [CrossRef]
- Jha, A.K.; Prasad, K.; Prasad, K.; Kulkarni, A.R. Plant system: Nature’s nanofactory. Colloids Surf. B Biointerfaces 2009, 73, 219–223. [Google Scholar] [CrossRef]
- Kumar, V.; Yadav, S.K. Plant-mediated synthesis of silver and gold nanoparticles and their applications. Chem. Technol. Biotechnol. 2009, 84, 151–157. [Google Scholar] [CrossRef]
- Rani, N.; Singh, P.; Kumar, S.; Kumar, P.; Bhankar, V.; Kumar, K. Plant-mediated synthesis of nanoparticles and their applications: A review. Mater. Res. Bull. 2023, 163, 112233. [Google Scholar] [CrossRef]
- Silva, L.P.; Reis, I.G.; Bonatto, C.C. Green Synthesis of Metal Nanoparticles by Plants: Current Trends and Challenges. In Green Processes for Nanotechnology; Basiuk, V., Basiuk, E., Eds.; Springer: Cham, Switzerland, 2015; pp. 259–275. [Google Scholar] [CrossRef]
- Santos, F.S.; Santos, R.F.; Dias, P.P.; Zanão, L.A.; Tomassoni, F. The culture of Pequi (Caryocar brasiliense Camb.). Acta Iguazu 2013, 3, 46–57. [Google Scholar]
- Carvalho, P.E.R. Espécies Arbóreas Brasileiras; Embrapa Informação Tecnológica: Brasília, DF, Brazil; Embrapa Florestas: Colombo, PR, Brazil, 2008; Volume 3. [Google Scholar]
- Porto, C.S. Antioxidant Potential of Extracts Obtained from Pequi Fruits and Leaves (Caryocar brasiliense Camb.). Master’s Dissertation, State University of Montes Claros, Montes Claros, MG, Brazil, 2008. [Google Scholar]
- Dias, A.M.; Morais, M.C. Morphoanatomical Study and Phytochemical Prospecting of the Leaves of Caryocar brasiliense Cambess (Caryocaraceae) Occurring at the Anápolis-GO Air Base. Bachelor’s Thesis, State University of Goiás, Anápolis, Brazil, 2011. [Google Scholar]
- Bonatto, C.C. Development and Evaluation of In Vitro and In Vivo Biological Activities of Silver Micro-and Nanoparticles Obtained by Green Synthesis Using Plants. Ph.D. Thesis, University of Brasília, Brasília, Brazil, 2016. [Google Scholar]
- Pereira, T.M.; Polez, V.L.P.; Sousa, M.H.; Silva, L.P. Modulating physical, chemical, and biological properties of silver nanoparticles obtained by green synthesis using different parts of the tree Handroanthus heptaphyllus (Vell.) Mattos. Colloid. Interface Sci. Commun. 2020, 34, 100224. [Google Scholar] [CrossRef]
- Mahmudin, L.; Suharyadi, E.; Utomo, A.; Abraha, K. Optical Properties of Silver Nanoparticles for Surface Plasmon Resonance (SPR)-Based Biosensor Applications. J. Mod. Phys. 2015, 6, 1071–1076. [Google Scholar] [CrossRef]
- Heath, J.R. Size-dependent surface-plasmon resonances of bare silver particles. Phys. Rev. B Condens. Matter 1986, 40, 9982–9985. [Google Scholar] [CrossRef] [PubMed]
- Noguez, C. Surface Plasmons on Metal Nanoparticles: The influence of shape and physical environment. J. Phys. Chem. C 2007, 111, 3806–3819. [Google Scholar] [CrossRef]
- González, A.L.; Noguez, C.; Beránek, J.; Barnard, S. Size, Shape, Stability, and Color of Plasmonic Silver Nanoparticles. J. Phys. Chem. C 2014, 118, 9128–9136. [Google Scholar] [CrossRef]
- Huang, H.; Lai, W.; Cui, M.; Lin, Y.; Fang, Q.; Liu, Y.; Xie, L. An Evaluation of Blood Compatibility of Silver Nanoparticles. Sci. Rep. 2016, 6, 25518. [Google Scholar] [CrossRef]
- Durán, N.; Silveira, C.P.; Durán, M.; Martinez, D.S. Silver nanoparticle protein corona and toxicity: A mini-review. J. Nanobiotechnology 2015, 13, 55. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, J.; Boudreau, M.; Meng, J.; Yin, J.; Liu, J.; Xu, H. Intravenous administration of silver nanoparticles causes organ toxicity through intracellular ROS related loss of interendothelial junction. Part. Fibre Toxicol. 2016, 13, 21. [Google Scholar] [CrossRef]
- Ferdous, Z.; Nemmar, A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int. J. Mol. Sci. 2020, 21, 2375. [Google Scholar] [CrossRef]
- Fontanive, V.C.P. Synthesis, Characterization and In Vitro and In Vivo Analysis of the Toxicity of Cobalt Ferrite Nanoparticles for Biomedical Applications. Master’s Dissertation, Universidade Estadual do Centro-Oeste, Guarapuava, Brazil, 2012. [Google Scholar]
- Nel, A.; Xia, T.; Madler, L.; Li, N. Toxic potential of materials at the nano level. Science 2006, 311, 622–627. [Google Scholar] [CrossRef]
- Li, L.; Bi, Z.; Hu, Y.; Sun, L.; Song, Y.; Chen, S.; Mo, F.; Yang, J.; Wei, Y.; Wei, X. Silver nanoparticles and silver ions cause inflammatory response through induction of cell necrosis and the release of mitochondria in vivo and in vitro. Cell Biol. Toxicol. 2021, 37, 177–191. [Google Scholar] [CrossRef] [PubMed]
- Park, K. Toxicokinetic Differences and Toxicities of Silver Nanoparticles and Silver Ions in Rats After Single Oral Administration. J. Toxicol. Environ. Health Part A 2013, 76, 1246–1260. [Google Scholar] [CrossRef]
- Sung, J.H.; Ji, J.H.; Park, J.D.; Yoon, J.U.; Kim, D.S.; Jeon, K.S.; Song, M.Y.; Jeong, J.; Han, B.S.; Han, J.H.; et al. Subchronic inhalation toxicity of silver nanoparticles. Toxicol. Sci. 2009, 108, 452–461. [Google Scholar] [CrossRef]
- Xue, Y.; Zhang, S.; Huang, Y.; Zhang, T.; Liu, X.; Hu, Y.; Zhang, Z.; Tang, M. Acute toxic effects and gender-related biokinetics of silver nanoparticles following an intravenous injection in mice. J. Appl. Toxicol. 2012, 32, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Hyau, J.; Lee, B.S.; Ryu, H.Y.; Sung, J.H.; Chung, K.H.; Yu, J. Effects of repeated silver nanoparticles exposure on the histological structure and mucins of nasal respiratory mucosa in rats. Toxicol. Lett. 2008, 182, 24–28. [Google Scholar]
- Recordati, C.; Maglie, M.; Bianchesse, S.; Angentiere, S.; Cella, C.; Mattiello, S.; Cubadda, F.; Aureli, F.; D’Amato, M.; Raggi, A.; et al. Tissue distribution and acute toxicity of silver after single intravenous administration in mice: Nano-specific and size-dependent effects. Part. Fibre Toxicol. 2016, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Kermanizadeh, A.; Jacobsen, N.R.; Mroczko, A.; Brown, D.; Stone, V. Acute hazard assessment of silver nanoparticles following intratracheal instillation, oral and intravenous injection exposures. Nanotoxicology 2021, 15, 1295–1311. [Google Scholar] [CrossRef]
- Eker, F.; Duman, H.; Akdaşçi, E.; Witkowska, A.M.; Bechelany, M.; Karav, S. Silver nanoparticles in therapeutics and beyond: A review of mechanism insights and applications. Nanomaterials 2024, 14, 1618. [Google Scholar] [CrossRef]
- Su, C.; Liu, H.; Hsia, S.; Sun, Y. Quantitatively profiling the dissolution and redistribution of silver nanoparticles in living rats using a knotted reactor-based differentiation scheme. Anal. Chem. 2014, 86, 8267–8274. [Google Scholar] [CrossRef]
- Salim, E.I.; Abdel-Halim, K.Y.; El-Mahalawy, M.E.; Badr, H.A.; Ahmed, H. Tissue distribution, pharmacokinetics, and effect of hematological and biochemical parameters of acute intravenous administration of silver nanoparticles in rats. Nanomaterials 2024, 14, 29. [Google Scholar] [CrossRef]
- Marçal, R.; Corrola, J.; Jarak, I.; Corvo, M.L.; Duarte, I.F.; Pereira, M.L. Microscopic studies of liver and kidney in mice exposed to silver nanoparticles. Microsc. Microanal. 2016, 22, 18–19. [Google Scholar] [CrossRef]
- Almeida, A.C.; Macedo-Sobrinho, E.; Pinho, L.; Souza, P.N.S.; Martins, E.R.; Duarte, E.R.; Santos, H.O.; Brandi, I.V.; Cangussu, A.S.; Costa, J.P.R. Cute toxicity of leaf hydroalcoholic extracts of Lippia sidoides, Myracroduon urundeuva, Stryphnodendron adstringens and of Caryocar brasilliense administered by intraperitoneal route. Cienc. Rural. 2010, 40, 200–203. [Google Scholar] [CrossRef]
- Fonseca, L.D.; Bastos, G.A.; Costa, M.A.M.S.; Ferreira, A.V.P.; Silva, M.L.F.; Vieira, T.M.; Morais-Costa, F.; Oliveira, N.J.F.; Duarte, E.R. Effects of aqueous extracts of Caryocar brasiliense in mice. Acta Sci. Vet. 2016, 44, 6. [Google Scholar] [CrossRef]
- Lankveld, D.P.K.; Oomin, A.G.; Prystek, P.; Neigh, A.; Jong, A.; Noorlander, C.W.; Eijkeren, J.C.H.; Geertsma, R.E.; Jong, W.H. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 2010, 31, 8350–8361. [Google Scholar] [CrossRef]
- Vanderzande, M.; Vandebriel, R.J.; Van, E.D.; Kramer, E.; Herrera, Z.R.; Serrano, C.S.R.; Gremmer, E.R.; Mast, J.; Peters, R.J.; Hollman, P.C.; et al. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 2012, 6, 7427–7442. [Google Scholar] [CrossRef]
- Jong, W.H.; Vanderven, L.T.M.; Sleijffers, A.; Park, M.V.D.Z.; Jansen, E.H.J.M.; Loveren, H.V.; Vandebriel, R.J. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials 2013, 34, 8333–8343. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Song, M.Y.; Park, J.D.; Song, K.S.; Ryu, H.R.; Chung, Y.H.; Chang, H.K.; Lee, J.H.; Oh, K.H.; Kelman, B.J.; et al. Subchronic oral toxicity of silver nanoparticles. Part. Fibre Toxicol. 2010, 7, 20. [Google Scholar] [CrossRef]
- Samberg, M.E.; Oldenburg, S.J.; Monteiro-Riviere, N.A. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ. Health Perspect. 2010, 118, 407–413. [Google Scholar] [CrossRef]
- Stebounova, L.V.; Adamcakova-Dodd, A.; Kim, J.S.; Park, H.; O’Shaughnessy, P.T.; Grassian, V.H.; Thorne, P.S. Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part. Fibre Toxicol. 2011, 8, 5. [Google Scholar] [CrossRef]
- Hadrup, N.; Loeschner, K.; Bergström, A.; Wilcks, A.; Gao, X.; Vogel, U.; Frandsen, H.L.; Larsen, E.H.; Lam, H.R.; Mortensen, A. Subacute oral toxicity investigation of nanoparticulate and ionic silver in rats. Arch. Toxicol. 2012, 86, 543–551. [Google Scholar] [CrossRef]
- Ansari, M.A.; Khan, H.M.; Khan, A.A.; Alzohairy, M.A.; Waseem, M.; Ahmad, M.K.; Mahdi, A.A. Biochemical, histopathological, and transmission eléctron microscopic ultrastructural changes in mice after exposure to silver nanoparticles. Environ. Toxicol. 2014, 31, 945–956. [Google Scholar] [CrossRef] [PubMed]
- Salah, D.M.; Abd El-Naeem, A.F.; Ismael, Z.M. Histological and immunohistochemical changes induced by exposure to different doses of silver nanoparticles in liver and lungs of adult albino rat. SVU Int. J. Med. Sci. 2025, 8, 170–184. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeont. Electr. 2001, 4, 9. [Google Scholar]
Red Blood Cells (million/mm3) | Hemoglobin (g/dL) | Hematocrit (%) | MCV (fl) | MCH (pg) | MCHC (g/dL) | RDW (%) | |
---|---|---|---|---|---|---|---|
AgNPs-Cb | 9.14 ± 0.15 | 13.40 ± 0.32 | 43.72 ± 0.64 | 47.87 ± 0.47 | 15.02 ± 0.12 | 30.98 ± 0.39 | 18.35 ±0.64 |
Cb | 8.67 ± 0.40 | 12.59 ± 0.88 | 42.35 ± 2.22 | 48.75 ± 0.41 | 14.85 ± 0.36 | 31.28 ± 0.17 | 17.28 ± 0.98 |
AgNO3 | 9.21 ± 0.19 * | 14.00 ± 0.21 | 45.00 ± 0.49 * | 48.78 ± 0.73 | 15.18 ± 0.18 | 31.10 ± 0.32 | 16.80 ± 0.68 |
Control | 8.27 ± 0.32 | 12.40 ± 0.64 | 40.00 ± 1.77 | 48.10 ± 0.59 | 14.90 ± 0.29 | 31.40 ± 0.21 | 15.73 ± 1.14 |
Reference # | 7.14–12.20 | 10.8–19.2 | 37.3–62.0 | 42.7–56.0 | 11.7–16.8 | 24.6–35.9 | 15.9–21.1 |
Leukocytes (%mm3) | Lymphocytes (%/mm3) | Segmented (%/mm3) | Eosinophils (%/mm3) | Basophils (%/mm3) | Monocytes (%/mm3) | |
---|---|---|---|---|---|---|
AgNPs-Cb | 6883.33 ± 457.83 | 82.00 ± 3.02 | 16.00 ± 2.21 | 0.33 ± 0.33 | 0.00 ± 0.00 | 1.50 ± 0.61 |
Cb | 6500.00 ± 1361.98 | 88.50 ± 1.94 | 10.75 ± 1.55 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.75 ± 0.38 |
AgNO3 | 6480.00 ± 863.94 | 86.00 ± 2.98 | 12.80 ± 2.56 | 0.00 ± 0.00 | 0.00 ± 0.00 | 1.20 ± 0.54 |
Control | 8725.00 ± 1652.96 | 84.00 ± 4.36 | 15.25 ± 3.97 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.75 ± 0.48 |
Reference # | - | 61.26–87.82 | 7.36–28.59 | 0.13–4.51 | 0.00–1.26 | 2.18–11.02 |
AST (U/L) | ALT (U/L) | GGT (U/L) | TBIL (mg/dL) | DBIL (mg/dL) | IBIL (mg/dL) | |
---|---|---|---|---|---|---|
AgNPs-Cb | 122.33 ± 1.87 | 62.50 ± 9.44 | 12.00 ± 3.22 | 0.77 ± 0.07 | 0.37 ± 0.05 | 0.40 ± 0.05 |
Cb | 101.80 ± 12.60 | 47.60 ± 7.30 | 4.80 ± 1.02 | 0.65 ± 0.12 | 0.25 ± 0.08 | 0.39 ± 0.08 |
AgNO3 | 108.00 ± 6.44 | 50.40 ± 6.18 | 14.60 ± 5.37 | 0.78 ± 0.12 | 0.26 ± 0.09 | 0.52 ± 0.08 |
Control | 137.00 ± 0.63 | 50.00 ± 7.16 | 7.80 ± 3.15 | 0.62 ± 0.17 | 0.24 ± 0.11 | 0.39 ± 0.13 |
Reference # | 43–397 | 27–195 | 0–9 | 0.2–0.6 | - | - |
Glucose (mg/dL) | Total Cholesterol (mg/dL) | HDLs (mg/dL) | LDLs (mg/dL) | Non-HDLs (mg/dL) | Triglycerides (mg/dL) | |
---|---|---|---|---|---|---|
AgNPs-Cb | 66.83 ± 10.18 | 137.33 ± 20.10 | 39.83 ± 5.88 | 62.67 ± 18.74 | 97.50 ± 21.88 | 173.33 ± 32.19 |
Cb | 81.80 ± 26.87 | 112.80 ± 18.58 | 44.8 ± 5.34 | 44.80 ± 20.14 | 68.00 ± 22.82 | 116.60 ± 20.93 |
AgNO3 | 92.80 ± 25.66 | 128.00 ± 19.00 | 45.00 ± 4.94 | 59.80 ± 17.16 | 83.00 ± 21.60 | 117.00 ± 20.22 |
Control | 91.25 ± 20.63 | 95.60 ± 4.37 | 48.60 ± 8.54 | 26.80 ± 9.01 | 47.00 ± 9.50 | 104.20 ± 10.46 |
Reference # | 43–397 | 77.24–209.5 | - | 0.2–0.6 | - | 98.16–209.58 |
Parameter | Methodology |
---|---|
Hemogram | Fluorescent flow cytometry and impedance |
Leukogram | Fluorescent flow cytometry and impedance |
Total bilirubin and fractions | Oxidation with vanadate |
Gamma glutamyltransferase (GGT) | Kinetic colorimetric |
Aspartate aminotransferase (AST) | Kinetic optimized UV |
Alanine aminotransferase (ALT) | Kinetic optimized UV |
Glucose | Enzymatic colorimetric |
Lipidogram | Enzymatic colorimetric |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonatto, C.C.; Reis, I.G.; Ribeiro, D.J.S.; Almeida, R.d.N.; Corrêa, R.; Dourado, L.P.S.; Pasquarelli-do-Nascimento, G.; Magalhães, K.G.; Silva, L.P. Nanotoxicological Assessment of Green-Synthesized Silver Nanoparticles from Brazilian Cerrado Plant in a Murine Model. Pharmaceuticals 2025, 18, 993. https://doi.org/10.3390/ph18070993
Bonatto CC, Reis IG, Ribeiro DJS, Almeida RdN, Corrêa R, Dourado LPS, Pasquarelli-do-Nascimento G, Magalhães KG, Silva LP. Nanotoxicological Assessment of Green-Synthesized Silver Nanoparticles from Brazilian Cerrado Plant in a Murine Model. Pharmaceuticals. 2025; 18(7):993. https://doi.org/10.3390/ph18070993
Chicago/Turabian StyleBonatto, Cínthia Caetano, Ivy Garcez Reis, Dalila Juliana Silva Ribeiro, Raquel das Neves Almeida, Rafael Corrêa, Livia Pimentel Sant’Ana Dourado, Gabriel Pasquarelli-do-Nascimento, Kelly Grace Magalhães, and Luciano Paulino Silva. 2025. "Nanotoxicological Assessment of Green-Synthesized Silver Nanoparticles from Brazilian Cerrado Plant in a Murine Model" Pharmaceuticals 18, no. 7: 993. https://doi.org/10.3390/ph18070993
APA StyleBonatto, C. C., Reis, I. G., Ribeiro, D. J. S., Almeida, R. d. N., Corrêa, R., Dourado, L. P. S., Pasquarelli-do-Nascimento, G., Magalhães, K. G., & Silva, L. P. (2025). Nanotoxicological Assessment of Green-Synthesized Silver Nanoparticles from Brazilian Cerrado Plant in a Murine Model. Pharmaceuticals, 18(7), 993. https://doi.org/10.3390/ph18070993