Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = aqueous phase and reuse

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7102 KB  
Article
A Recyclable Thermoresponsive Catalyst for Highly Asymmetric Henry Reactions in Water
by Meng Wang, Yaoyao Zhang, Zifan Jiang, Yanhui Zhong, Xinzheng Qu, Xingling Li, Bo Xiong, Xianxiang Liu and Lei Zhu
Catalysts 2026, 16(2), 132; https://doi.org/10.3390/catal16020132 (registering DOI) - 1 Feb 2026
Abstract
The synthesis of enantiomerically pure chiral β-nitroalcohols is a crucial objective in asymmetric catalysis. In order to efficiently obtain such chiral products, we developed a series of thermoresponsive, oxazoline–copper catalysts (CuII-PNxFeyOz) via sequential reversible [...] Read more.
The synthesis of enantiomerically pure chiral β-nitroalcohols is a crucial objective in asymmetric catalysis. In order to efficiently obtain such chiral products, we developed a series of thermoresponsive, oxazoline–copper catalysts (CuII-PNxFeyOz) via sequential reversible addition–fragmentation chain transfer (RAFT) polymerization. These catalysts can self-assemble in water into single-chain nanoparticles (SCNPs) with biomimetic behavior, in which intramolecular hydrophobic and metal-coordination interactions generate a confined hydrophobic cavity. Comprehensive characterization by FT-IR, TEM, DLS, CD, CA, and ICP analysis confirmed the nanostructure and composition. When applied to the aqueous-phase asymmetric Henry reaction between nitromethane and 4-nitrobenzaldehyde, the optimal catalyst (2.0 mol%) achieved a quantitative yield (96%) with excellent enantioselectivity (up to 99%) within 12 h. Furthermore, the thermosensitive poly(N-isopropylacrylamide, NIPAAm) block enabled facile catalyst recovery through temperature-induced precipitation above its lower critical solution temperature (LCST). This work presents an efficient and recyclable biomimetic catalytic system, offering a novel strategy for designing sustainable chiral catalysts for green organic synthesis. Full article
(This article belongs to the Special Issue Catalysis in Polymerizations)
Show Figures

Graphical abstract

22 pages, 4846 KB  
Article
Carbon-NiTiO2 Nanosorbent as Suitable Adsorbents for the Detoxification of Zn2+ Ions via Combined Metal–Oxide Interfaces
by Azizah A. Algreiby, Abrar S. Alnafisah, Muneera Alrasheedi, Tahani M. Alresheedi, Ajayb Alresheedi, Abuzar Albadri and Abueliz Modwi
Inorganics 2026, 14(2), 36; https://doi.org/10.3390/inorganics14020036 - 26 Jan 2026
Viewed by 128
Abstract
Metal ions exemplify one of the most harmful and environmentally detrimental contaminants of water systems. This work describes the creation of an innovative chelated carbon-doped nickel and titanium oxide (C-NiTiO2) hybrid as an adsorbent for the effective elimination of metal ions. [...] Read more.
Metal ions exemplify one of the most harmful and environmentally detrimental contaminants of water systems. This work describes the creation of an innovative chelated carbon-doped nickel and titanium oxide (C-NiTiO2) hybrid as an adsorbent for the effective elimination of metal ions. The dominance of the TiO2 anatase phase with a ≈ 61 nm crystallite size was verified by XRD and Raman investigation. Morphology investigations exposed polygonal nanoparticles consisting of Ti, C, Ni, and O. The nanostructure exhibited a surface area of 17 m2·g−1, a pore diameter of ≈1.5 nm, and a pore volume of 0.0315 cm3·g−1. The nanostructure was evaluated for the elimination of Zn (II) ions from an aqueous solution. The metal ion adsorption onto the hybrid nanomaterial was described and comprehended using adsorption kinetics and equilibrium models. The adsorption data matched well with the pseudo-second-order kinetics and Langmuir adsorption models, indicating a monolayer chemisorption mechanism and achieving a maximum Zn (II) ion elimination of 369 mg·g−1. Mechanistic investigation indicated film diffusion-controlled adsorption through inner-sphere complexation. The nanosorbent could be regenerated and reused for four rounds without appreciable activity loss, thus demonstrating its potential for water cleanup applications. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

18 pages, 3560 KB  
Article
Eco-Friendly Fabrication of Magnetically Separable Cerium–Manganese Ferrite Nanocatalysts for Sustainable Dye Degradation Under Visible Light
by Reda M. El-Shishtawy, Assem Basurrah and Yaaser Q. Almulaiky
Catalysts 2026, 16(1), 78; https://doi.org/10.3390/catal16010078 - 9 Jan 2026
Viewed by 461
Abstract
The increasing discharge of recalcitrant organic dyes from the textile industry necessitates the development of efficient and sustainable wastewater treatment technologies. This study reports the successful eco-friendly fabrication of magnetically separable cerium–manganese ferrite (Ce-MnFe2O4) nanocatalysts via a one-pot green [...] Read more.
The increasing discharge of recalcitrant organic dyes from the textile industry necessitates the development of efficient and sustainable wastewater treatment technologies. This study reports the successful eco-friendly fabrication of magnetically separable cerium–manganese ferrite (Ce-MnFe2O4) nanocatalysts via a one-pot green synthesis route, utilizing an aqueous extract of Brachychiton populneus leaves. The structural, morphological, magnetic, and optical properties of the synthesized nanocatalysts were systematically investigated. X-ray diffraction (XRD) analysis confirmed the formation of a phase-pure cubic spinel structure, with evidence of Ce3+ ion incorporation leading to lattice expansion and the formation of beneficial oxygen vacancies. The composite material exhibited superparamagnetic behavior with a high saturation magnetization of 38.7 emu/g, which facilitates efficient magnetic separation and recovery. Optical studies revealed a direct bandgap of 2.33 eV, enabling significant photocatalytic activity under visible light irradiation. The Ce-MnFe2O4 nanocatalyst demonstrated superior performance, achieving degradation efficiencies of 96% for methylene blue and 98% for Congo Red within 90 min. Furthermore, the catalyst demonstrated good operational stability, maintaining 62% of its initial degradation efficiency for CR and 51% for MB after five consecutive reuse cycles. These results underscore the potential of this green-synthesized, magnetically recoverable nanocatalyst as a highly effective and sustainable solution for the remediation of dye-contaminated industrial effluents. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Figure 1

21 pages, 2202 KB  
Article
Mesoporous Silica Nanoparticles Functionalized with Bisphenol A for Dispersive Solid-Phase Extraction of 3-Chloroaniline from Water Matrices: Material Synthesis and Sorption Optimization
by Sultan K. Alharbi, Bandar R. Alsehli, Awadh O. AlSuhaimi, Khaled A. Thumayri, Khaled M. AlMohaimadi, Yassin T. H. Mehdar, Manal A. Almalki and Belal H. M. Hussein
Nanomaterials 2025, 15(23), 1751; https://doi.org/10.3390/nano15231751 - 22 Nov 2025
Cited by 2 | Viewed by 584
Abstract
Aromatic amines such as 3-chloroaniline (3-CA) are toxic, persistent, and environmentally relevant water contaminants. Their reliable determination in aqueous systems has therefore become increasingly important. The monitoring of trace levels of these pollutants in complex water matrices typically necessitates a preconcentration step, most [...] Read more.
Aromatic amines such as 3-chloroaniline (3-CA) are toxic, persistent, and environmentally relevant water contaminants. Their reliable determination in aqueous systems has therefore become increasingly important. The monitoring of trace levels of these pollutants in complex water matrices typically necessitates a preconcentration step, most achieved via solid-phase extraction (SPE). However, conventional SPE sorbents often suffer from limited surface reactivity and slow adsorption kinetics, which compromise their performance at ultra-low concentrations. In contrast, nanomaterials offer a promising upgrade due to their high surface area, tunable chemistry, and rapid mass transfer behavior. In this work, mesoporous silica nanoparticles (MSNs) were synthesized via a green sol–gel route from sodium silicate precursor using polyethylene glycol template and then chemically functionalized with bisphenol A (BPA) to produce BPA-MSNs with π-rich and hydrogen-bonding active sites. Characterization using XRD, BET, FTIR, SEM/EDX, and TGA confirmed the successful synthesis and surface modification of the nanosorbent. BPA-MSNs achieved a maximum adsorption capacity of 30.2 mg/g toward 3-CA, fitting Langmuir and Jovanovic isotherm models. Kinetic analysis followed a pseudo-first-order model, indicating physisorption enhanced by π–π stacking and hydrogen bonding. The optimized dispersive SPE (D-SPE) method allowed a low detection limit (LOD = 0.016 mg/L), recovery of 73–85%, and precision below 5.3% RSD in tap, bottled, synthetic municipal wastewater and groundwater samples. The sorbent retained >90% efficiency over five reuse cycles, demonstrating strong potential as a reusable nanosorbent for preconcentration and remediation of aromatic amines in and treatment water analysis. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

17 pages, 8683 KB  
Article
Activation of Persulfate by Sulfide-Modified Nanoscale Zero-Valent Iron Supported on Biochar for 2,4-Dichlorophenol Degradation: Efficiency, Sustainability, and Mechanism Investigation
by Mu Wang, Yan Zhao, Zongsheng An and Changming Dou
Sustainability 2025, 17(19), 8721; https://doi.org/10.3390/su17198721 - 28 Sep 2025
Viewed by 823
Abstract
The activation of persulfate (PS) to oxidize and degrade 2,4-dichlorophenol (2,4-DCP) in aqueous solution represents a prevalent advanced oxidation technology. This study established a PS activation system using sulfide-modified nanoscale zero-valent iron supported on biochar (S-nZVI@BC). The optimal conditions included a PS:2,4-DCP mass [...] Read more.
The activation of persulfate (PS) to oxidize and degrade 2,4-dichlorophenol (2,4-DCP) in aqueous solution represents a prevalent advanced oxidation technology. This study established a PS activation system using sulfide-modified nanoscale zero-valent iron supported on biochar (S-nZVI@BC). The optimal conditions included a PS:2,4-DCP mass ratio of 70:1 and S-nZVI@BC:PS of 1.5:1. The activator had excellent stability after being reused five times, which lead to high cost-effectiveness and sustainable usability. This system exhibited broad pH adaptability (3–11), with enhanced efficiency under acidic/neutral conditions. Chloride ion, nitrate, and carbonate had effects during the degradation. During the initial degradation phase, S-nZVI@BC played a primary role, with a greater contribution rate of adsorption than reduction. Fe0 played a dominant role in the PS activation process; reactive species—including HO•, SO4, and O2—were identified as key agents in subsequent degradation stages. The overall degradation processes comprised three distinct stages: dechlorination, ring-opening, and mineralization. Full article
(This article belongs to the Topic Advanced Oxidation Processes for Wastewater Purification)
Show Figures

Graphical abstract

20 pages, 2027 KB  
Article
Metal-Ion-Free Preparation of κ-Carrageenan/Cellulose Hydrogel Beads Using an Ionic Liquid Mixture for Effective Cationic Dye Removal
by Dojin Kim, Dong Han Kim, Jeong Eun Cha, Saerom Park and Sang Hyun Lee
Gels 2025, 11(8), 596; https://doi.org/10.3390/gels11080596 - 1 Aug 2025
Cited by 4 | Viewed by 1239
Abstract
A metal-ion-free method was developed to prepare κ-carrageenan/cellulose hydrogel beads for efficient cationic dye removal. The beads were fabricated using a mixture of 1-ethyl-3-methylimidazolium acetate and N,N-dimethylformamide as the solvent system, followed by aqueous ethanol-induced phase separation. This process eliminated the need for [...] Read more.
A metal-ion-free method was developed to prepare κ-carrageenan/cellulose hydrogel beads for efficient cationic dye removal. The beads were fabricated using a mixture of 1-ethyl-3-methylimidazolium acetate and N,N-dimethylformamide as the solvent system, followed by aqueous ethanol-induced phase separation. This process eliminated the need for metal-ion crosslinkers, which typically neutralize anionic sulfate groups in κ-carrageenan, thereby preserving a high density of accessible binding sites. The resulting beads formed robust interpenetrating polymer networks. The initial swelling ratio reached up to 28.3 g/g, and even after drying, the adsorption capacity remained over 50% of the original. The maximum adsorption capacity for crystal violet was 241 mg/g, increasing proportionally with κ-carrageenan content due to the higher surface concentration of anionic sulfate groups. Kinetic and isotherm analyses revealed pseudo-second-order and Langmuir-type monolayer adsorption, respectively, while thermodynamic parameters indicated that the process was spontaneous and exothermic. The beads retained structural integrity and adsorption performance across pH 3–9 and maintained over 90% of their capacity after five reuse cycles. These findings demonstrate that κ-carrageenan/cellulose hydrogel beads prepared via a metal-ion-free strategy offer a sustainable and effective platform for cationic dye removal from wastewater, with potential for heavy metal ion adsorption. Full article
(This article belongs to the Special Issue Physical and Mechanical Properties of Polymer Gels (3rd Edition))
Show Figures

Figure 1

15 pages, 1273 KB  
Article
Fungal Pretreatment of Alperujo for Bioproduct Recovery and Detoxification: Comparison of Two White Rot Fungi
by Viviana Benavides, Gustavo Ciudad, Fernanda Pinto-Ibieta, Elisabet Aranda, Victor Ramos-Muñoz, Maria A. Rao and Antonio Serrano
Agronomy 2025, 15(8), 1851; https://doi.org/10.3390/agronomy15081851 - 31 Jul 2025
Viewed by 915
Abstract
Alperujo, a solid by-product from the two-phase olive oil extraction process, poses significant environmental challenges due to its high organic load, phytotoxicity, and phenolic content. At the same time, it represents a promising feedstock for recovering value-added compounds such as phenols and volatile [...] Read more.
Alperujo, a solid by-product from the two-phase olive oil extraction process, poses significant environmental challenges due to its high organic load, phytotoxicity, and phenolic content. At the same time, it represents a promising feedstock for recovering value-added compounds such as phenols and volatile fatty acids (VFAs). When used as a substrate for white rot fungi (WRF), it also produces ligninolytic enzymes. This study explores the use of two native WRF, Anthracophyllum discolor and Stereum hirsutum, for the biotransformation of alperujo under solid-state fermentation conditions, with and without supplementation of copper and manganese, two cofactors known to enhance fungal enzymatic activity. S. hirsutum stood out for its ability to release high concentrations of phenolic compounds (up to 6001 ± 236 mg gallic acid eq L−1) and VFAs (up to 1627 ± 325 mg L−1) into the aqueous extract, particularly with metal supplementation. In contrast, A. discolor was more effective in degrading phenolic compounds within the solid matrix, achieving a 41% reduction over a 30-day period. However, its ability to accumulate phenolics and VFAs in the extract was limited. Both WRF exhibited increased enzymatic activities (particularly Laccase and Manganese Peroxidase) with the addition of Cu-Mn, highlighting the potential of the aqueous extract as a natural source of biocatalysts. Phytotoxicity assays using Solanum lycopersicum seeds confirmed a partial detoxification of the treated alperujo. However, none of the fungi could entirely eliminate inhibitory effects on their own, suggesting the need for complementary stabilization steps before agricultural reuse. Overall, the results indicate that S. hirsutum, especially when combined with metal supplementation, is better suited for valorizing alperujo through the recovery of bioactive compounds. Meanwhile, A. discolor may be more suitable for detoxifying the solid phase strategies. These findings support the integration of fungal pretreatment into biorefinery schemes that valorize agroindustrial residues while mitigating environmental issues. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

15 pages, 4076 KB  
Article
Combination of Membrane-Based Pre-Treatment Techniques and Heterogeneous Photocatalysis to Obtain High-Quality Effluents from Produced Water
by Greta Brocchetto, Iván Sciscenko, Marco Minella, Lorenzo Craveri, Erica Bertozzi, Marco Malaguti, Marco Coha, Alberto Tiraferri and Davide Vione
Molecules 2025, 30(12), 2532; https://doi.org/10.3390/molecules30122532 - 10 Jun 2025
Cited by 3 | Viewed by 1338
Abstract
Produced water is the waste aqueous phase from petroleum extraction. As it contains salts, a high organic load, and toxic organic compounds, it should be treated before disposal or reuse. In this research, the combination of membrane processes (microfiltration or membrane distillation) with [...] Read more.
Produced water is the waste aqueous phase from petroleum extraction. As it contains salts, a high organic load, and toxic organic compounds, it should be treated before disposal or reuse. In this research, the combination of membrane processes (microfiltration or membrane distillation) with TiO2-based heterogeneous photocatalysis was assessed to treat synthetic produced water. Pre-treatment with both microfiltration and membrane distillation removed the majority (90–98%) of large organic compounds (humic acids) from produced water. Moreover, membrane distillation also eliminated salt (sodium chloride). However, membrane processes only removed 10–50% of phenol, used here as proxy for low-molecular-weight toxic organic compounds. For this reason, membrane permeates, from microfiltration and membrane distillation, underwent a further photocatalytic treatment aimed at phenol degradation. The application of TiO2 photocatalysis to membrane distillation permeates was successful (100% phenol removal in 5 min), while the high chloride concentration of microfiltration permeates acted as inhibitor of the photocatalytic process. Overall, good-quality water may be obtained from the combination of membrane distillation and heterogeneous photocatalysis, which performed much better than the two techniques used separately. Indeed, while membrane distillation was not able to remove phenol, produced water was too complex a matrix to be effectively treated with TiO2/UV photocatalysis alone. Full article
Show Figures

Figure 1

20 pages, 9749 KB  
Article
Sustainable Strategy for Microplastic Mitigation: Fe3O4 Acid-Functionalized Magnetic Nanoparticles for Microplastics Removal
by Ivanilson da Silva de Aquino, Ester de Araújo Freire, Alisson Mendes Rodrigues, Otilie Eichler Vercillo, Mauro Francisco Pinheiro da Silva, Mateus Faustino Salazar da Rocha, Míriam Cristina Santos Amaral and Ariuska Karla Barbosa Amorim
Sustainability 2025, 17(11), 5203; https://doi.org/10.3390/su17115203 - 5 Jun 2025
Cited by 7 | Viewed by 5833
Abstract
Microplastic (MPs) pollution has emerged as a critical environmental issue due to its persistent accumulation in ecosystems, posing risks to aquatic life, food safety, and human health. In this study, magnetic Fe3O4 nanoparticles functionalized with citric acid (Fe3O [...] Read more.
Microplastic (MPs) pollution has emerged as a critical environmental issue due to its persistent accumulation in ecosystems, posing risks to aquatic life, food safety, and human health. In this study, magnetic Fe3O4 nanoparticles functionalized with citric acid (Fe3O4@AC) were used to remove high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP) MPs from an aqueous medium. Fe3O4@AC was synthesized via the coprecipitation method and characterized by morphology (SEM), crystalline phases (XRD), chemical aspects (FTIR), and surface area (nitrogen sorption isotherms). The MPs removal efficiency of Fe3O4@AC was evaluated based on the initial concentration, contact time, and pH. The adsorption isotherm and kinetics data were best described by the Sips and pseudo-second-order models, respectively. Fe3O4@AC removed 80% of the MPs at a pH of 6. Based on experimental observations (zeta potential, porosity, and SEM) and theoretical insights, it was concluded that hydrogen bonding, pore filling, and van der Waals forces governed the adsorption mechanism. Reusability tests showed that Fe3O4@AC could be reused up to five times, with a removal efficiency above 50%. These findings suggest that Fe3O4@AC is a sustainable and promising material for the efficient removal of microplastics from wastewater, offering a reusable and low-impact alternative that contributes to environmentally responsible wastewater treatment strategies. Full article
(This article belongs to the Special Issue Resource Sustainability: Sustainable Materials and Green Engineering)
Show Figures

Graphical abstract

26 pages, 3010 KB  
Article
Efficient Ionic Liquid-Based Leaching and Extraction of Metals from NMC Cathodes
by Jasmina Mušović, Danijela Tekić, Ana Jocić, Slađana Marić and Aleksandra Dimitrijević
Processes 2025, 13(6), 1755; https://doi.org/10.3390/pr13061755 - 2 Jun 2025
Cited by 7 | Viewed by 2731
Abstract
The increasing demand for lithium-ion batteries (LIBs) and their limited lifespan emphasize the urgent need for sustainable recycling strategies. This study investigates the application of tetrabutylphosphonium-based ionic liquids (ILs) as alternative leaching agents for recovering critical metals, Li(I), Co(II), Ni(II), and Mn(II), from [...] Read more.
The increasing demand for lithium-ion batteries (LIBs) and their limited lifespan emphasize the urgent need for sustainable recycling strategies. This study investigates the application of tetrabutylphosphonium-based ionic liquids (ILs) as alternative leaching agents for recovering critical metals, Li(I), Co(II), Ni(II), and Mn(II), from spent NMC cathode materials. Initial screening experiments evaluated the leaching efficiencies of nine tetrabutylphosphonium-based ILs for Co(II), Ni(II), Mn(II), and Li(I), revealing distinct metal dissolution behaviors. Three ILs containing HSO4, EDTA2−, and DTPA3− anions exhibited the highest leaching performance and were selected for further optimization. Key leaching parameters, including IL and acid concentrations, temperature, time, and solid-to-liquid ratio, were systematically adjusted, achieving leaching efficiencies exceeding 90%. Among the tested systems, [TBP][HSO4] enabled near-complete metal dissolution (~100%) even at room temperature. Furthermore, an aqueous biphasic system (ABS) was investigated utilizing [TBP][HSO4] in combination with ammonium sulfate, enabling the complete extraction of all metals into the salt-rich phase while leaving the IL phase metal-free and potentially suitable for reuse, indicating the feasibility of integrating leaching and extraction into a continuous, interconnected process. This approach represents a promising step forward in LIB recycling, highlighting the potential for sustainable and efficient integration of leaching and extraction within established hydrometallurgical frameworks. Full article
Show Figures

Figure 1

22 pages, 1205 KB  
Review
Integrated Approach for Biomass Conversion Using Thermochemical Routes with Anaerobic Digestion and Syngas Fermentation
by Dolores Hidalgo, Ana Urueña, Jesús M. Martín-Marroquín and David Díez
Sustainability 2025, 17(8), 3615; https://doi.org/10.3390/su17083615 - 16 Apr 2025
Cited by 13 | Viewed by 3593
Abstract
This review focuses on the integration of thermochemical and biochemical processes as a transformative approach to biomass conversion. By combining technologies such as anaerobic digestion, hydrothermal liquefaction, pyrolysis, and syngas fermentation, this review highlights how hybrid systems maximize resource recovery and improve energy [...] Read more.
This review focuses on the integration of thermochemical and biochemical processes as a transformative approach to biomass conversion. By combining technologies such as anaerobic digestion, hydrothermal liquefaction, pyrolysis, and syngas fermentation, this review highlights how hybrid systems maximize resource recovery and improve energy efficiency. Key examples include the use of digestate from anaerobic digestion as a feedstock for pyrolysis or hydrothermal carbonization, enhancing biochar and hydrochar production while improving nutrient recycling. Similarly, the integration of syngas fermentation with gasification demonstrates how thermochemical products can be further valorized into biofuels under milder biochemical conditions. This review also addresses the reuse of by-products, such as the aqueous phase from hydrothermal processes, in nutrient recovery and algae cultivation, showcasing the circular potential of these systems. By emphasizing the technical and economic synergies of integrating diverse technologies, this paper outlines a clear pathway for industrial-scale adoption, contributing to sustainable energy production and reduced greenhouse gas emissions. Full article
(This article belongs to the Topic Advanced Bioenergy and Biofuel Technologies)
Show Figures

Figure 1

20 pages, 7306 KB  
Article
Chemical Composition and Bioactivity of Extracts Obtained from Prunus spinosa Seeds by Supercritical CO2 Extraction
by Alessandra Piras, Silvia Porcedda, Antonella Smeriglio, Domenico Trombetta, Franca Piras, Valeria Sogos and Antonella Rosa
Molecules 2025, 30(8), 1757; https://doi.org/10.3390/molecules30081757 - 14 Apr 2025
Cited by 2 | Viewed by 1500
Abstract
This study investigates the potential reuse of Prunus spinosa (blackthorn) seeds, a food industry by-product. Traditionally discarded, these seeds are now being explored for their bioactive compounds. In this work, seeds were used as raw material for supercritical CO2 extraction. Two distinct [...] Read more.
This study investigates the potential reuse of Prunus spinosa (blackthorn) seeds, a food industry by-product. Traditionally discarded, these seeds are now being explored for their bioactive compounds. In this work, seeds were used as raw material for supercritical CO2 extraction. Two distinct extracts were obtained at low and high pressure (SFE90 and SFE200) and both extracts presented an aqueous phase (WE90 and WE200). SFE90 analysis by GC/MS allowed us to identify benzaldehyde and fatty acids (mainly oleic and linoleic acids). The fatty acid profile of SFE200, determined by HPLC-DAD/ELSD, showed that oleic and linoleic acids were predominant in supercritical oil. The phytochemical composition of the water extracts, analyzed via LC-DAD-ESI-MS, revealed that higher pressure enhanced the recovery of specific flavonols and anthocyanins, while lower pressure preserved various polyphenolic subclasses. WE90 was rich in 3-feruloylquinic acid and cyanidin-3-O-rutinoside, whereas WE200 was rich in caffeic acid hexoside 2 and dihydro-o-coumaric acid glucoside. Benzaldehyde was individuated in WE90 and WE200 by HPLC-DAD analysis. Cytotoxicity assays demonstrated that WE90, WE200 and SFE200 had anticancer effects on SH-SY5Y neuroblastoma cells, while all extracts did not remarkably affect the viability and morphology of human skin keratinocytes (HaCaT cells). These results suggest that P. spinosa seed extracts have potential nutraceutical and pharmaceutical applications. Full article
Show Figures

Graphical abstract

23 pages, 3236 KB  
Technical Note
Techno-Economic and Feasibility Assessment of Membrane-Based Wastewater Treatment and Reuse in the Automotive Industry
by Sara Carvalho, Mário Eusébio and Svetlozar Velizarov
Separations 2025, 12(2), 30; https://doi.org/10.3390/separations12020030 - 26 Jan 2025
Cited by 3 | Viewed by 1740
Abstract
The gradual increase in water scarcity due to depletion and/or inadequate use of water resources has affected the automotive sector. In this context, possibilities for water reuse in the pre-treatment tunnel in an automotive painting process were studied and compared with the primary [...] Read more.
The gradual increase in water scarcity due to depletion and/or inadequate use of water resources has affected the automotive sector. In this context, possibilities for water reuse in the pre-treatment tunnel in an automotive painting process were studied and compared with the primary goal of finding the most appropriate and economically viable water recovery solutions, considering a circular economy metric approach. To this end, an experimental campaign of aqueous effluent characterization, with determinations of most relevant chemical and physical parameters, was conducted in a company in the automotive industry sector. To reduce alkalinity and remove surfactants from the effluent of the washing phase, a cation exchange on a weak-acid-based resin was proposed along with a microfiltration membrane system with a recovery efficiency of 88%. The inclusion of subsequent ultrafiltration and reverse osmosis steps proved to be the most suitable for removing salts and biocides from the water of the cooling towers, treating approximately 68% of the water. The techno-economic feasibility was comprehensively evaluated according to the type of treatment used. A cost of EUR 245 thousand was estimated for the treatment of water from the degreasing washing phase (EUR 1.06 per manufactured car), and a cost of EUR 582 thousand was estimated for the treatment of the cooling towers’ water (EUR 2.52 per car). The estimated water income after the treatment systems’ implementation was estimated to be equal to EUR 0.07 per car for the washing stage and EUR 0.13 per car for the cooling towers. Ultimately, this study clearly demonstrated the beneficial contribution of using membrane treatment in the automotive sector’s environmental policy, leading to water reuse and much lower effluent discharge according to the principles of the circular economy. Full article
(This article belongs to the Special Issue Membranes Used in Water Purification)
Show Figures

Graphical abstract

27 pages, 8078 KB  
Article
Synthesis of P(AM/AA/SSS/DMAAC-16) and Studying Its Performance as a Fracturing Thickener in Oilfields
by Shuai Wang, Lanbing Wu, Lu Zhang, Yaui Zhao, Le Qu, Yongfei Li, Shanjian Li and Gang Chen
Polymers 2025, 17(2), 217; https://doi.org/10.3390/polym17020217 - 16 Jan 2025
Cited by 5 | Viewed by 1293
Abstract
In order to solve the problems of long dissolution and preparation time, cumbersome preparation, and easy moisture absorption and deterioration during storage or transportation, acrylamide (AM), acrylic acid (AA), sodium p-styrene sulfonate (SSS), and cetyl dimethylallyl ammonium chloride (DMAAC-16) were selected as raw [...] Read more.
In order to solve the problems of long dissolution and preparation time, cumbersome preparation, and easy moisture absorption and deterioration during storage or transportation, acrylamide (AM), acrylic acid (AA), sodium p-styrene sulfonate (SSS), and cetyl dimethylallyl ammonium chloride (DMAAC-16) were selected as raw materials, and the emulsion thickener P(AM/AA/SSS), which can be instantly dissolved in water and rapidly thickened, was prepared by the reversed-phase emulsion polymerization method. DMAAC-16, the influence of emulsifier dosage, oil–water ratio, monomer molar ratio, monomer dosage, aqueous pH, initiator dosage, reaction temperature, reaction time, and other factors on the experiment was explored by a single-factor experiment, and the optimal process was determined as follows: the oil–water volume ratio was 0.4, the emulsifier dosage was 7% of the oil phase mass, the initiator dosage was 0.03% of the total mass of the reaction system, the reaction time was 4 h, the reaction temperature was 50 °C, the aqueous pH was 6.5, and the monomer dosage was 30% of the total mass of the reaction system (monomeric molar ratio n(AM):n(AA):n(SSS):n(DMAAC-16) = 79.2:20:0.5:0.3). X-ray diffraction analysis (XRD), infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy analysis were carried out on the polymerization products. At the same time, a series of performance test experiments such as thickening performance, temperature and shear resistance, salt resistance, sand suspension performance, core damage performance, and fracturing fluid flowback fluid reuse were carried out to evaluate the comprehensive effect and efficiency of the synthetic products, and the results show that the P(AM/AA/SSS/DMAAC-16) polymer had excellent solubility and excellent properties such as temperature and shear resistance. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

16 pages, 2146 KB  
Article
Green and Mild Fabrication of Magnetic Poly(trithiocyanuric acid) Polymers for Rapid and Selective Separation of Mercury(II) Ions in Aqueous Samples
by Qianqian Li, Boxian Ruan, Yue Yu, Linshu Ye, Aoxiong Dai, Sasha You, Bingshan Zhao and Limin Ren
Polymers 2024, 16(21), 3067; https://doi.org/10.3390/polym16213067 - 31 Oct 2024
Cited by 2 | Viewed by 1478
Abstract
The removal and detection of highly toxic mercury(II) ions (Hg2+) in water used daily is essential for human health and monitoring environmental pollution. Efficient porous organic polymers (POPs) can provide a strong adsorption capacity toward heavy metal ions, although the complex [...] Read more.
The removal and detection of highly toxic mercury(II) ions (Hg2+) in water used daily is essential for human health and monitoring environmental pollution. Efficient porous organic polymers (POPs) can provide a strong adsorption capacity toward heavy metal ions, although the complex synthetic process and inconvenient phase separation steps limit their application. Hence, a combination of POPs and magnetic nanomaterials was proposed and a new magnetic porous organic polymer adsorbent was fabricated by a green and mild redox reaction in the aqueous phase with trithiocyanuric acid (TA) and its sodium salts acting as reductive monomers and iodine acting as an oxidant. In the preparation steps, no additional harmful organic solvent is required and the byproducts of sodium iodine are generally considered to be non-toxic. The resulting magnetic poly(trithiocyanuric acid) polymers (MPTAPs) are highly porous, have large surface areas, are rich in sulfhydryl groups and show easy magnetic separation ability. The experimental results show that MPTAPs exhibit good adsorption affinity toward Hg2+ with high selectivity, rapid adsorption kinetics (10 min), a large adsorption capacity (211 mg g−1) and wide adsorption applicability under various pH environments (pH 2~8). Additionally, MPTAPs can be reused for up to 10 cycles, and the magnetic separation step of MPTAPs is fast and convenient, reducing energy consumption compared to centrifugation and filtration steps required for non-magnetic adsorbents. These results demonstrate the promising capability of MPTAPs as superior adsorbents for effective adsorption and separation of Hg2+. Based on this, the prepared MPTAPs were adopted as magnetic solid-phase extraction (MSPE) materials for isolation of trace Hg2+ from aqueous samples. Under optimized conditions, the extraction and quantification of trace Hg2+ in water samples were accomplished using inductively coupled plasma mass spectrometry (ICP-MS) detection after MSPE procedures. The proposed MPTAPs-based MSPE-ICP-MS method is efficient, rapid, sensitive and selective for the determination of trace Hg2+, and was successfully employed for the accurate analysis of trace Hg2+ in tap water, wastewater, lake water and river water samples. Full article
(This article belongs to the Special Issue Sustainable Polymers for a Circular Economy)
Show Figures

Graphical abstract

Back to TopTop