Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (402)

Search Parameters:
Keywords = apple juice

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 18761 KiB  
Article
The Influence of Recipe Modification and the Technological Method on the Properties of Multigrain Snack Bars
by Hanna Kowalska, Ewelina Masiarz, Elżbieta Hać-Szymańczuk, Anna Żbikowska, Agata Marzec, Agnieszka Salamon, Mariola Kozłowska, Anna Ignaczak, Małgorzata Chobot, Wioletta Sobocińska and Jolanta Kowalska
Molecules 2025, 30(15), 3160; https://doi.org/10.3390/molecules30153160 - 29 Jul 2025
Viewed by 335
Abstract
This study aimed to assess the use of selected raw materials, such as whole-grain oat flakes, pumpkin seeds, sunflower seeds, and flaxseeds, to obtain bars using baking and drying methods. Modifying the bars’ composition involved selecting the fibre preparation, replacing water with NFC [...] Read more.
This study aimed to assess the use of selected raw materials, such as whole-grain oat flakes, pumpkin seeds, sunflower seeds, and flaxseeds, to obtain bars using baking and drying methods. Modifying the bars’ composition involved selecting the fibre preparation, replacing water with NFC juice, and using fresh apple juice and apple pomace. The Psyllium fibre preparation, also in the form of a mixture with apple fibre, was the most useful in dough cohesion and the quality of the bars. Baked bars were characterised by higher sensory quality than those obtained by drying. Microwave–convection drying was a good alternative to baking, primarily due to the lower temperature resulting in a lower acrylamide content and comparable product quality. The basic grain ingredients and fibre preparations mainly shaped the nutritional and energy value and the sensory and microbiological quality. Modifying the recipe using NFC or fresh juice and apple pomace allowed the bars to develop new properties and quality characteristics. The use of NFC juices resulted in a reduction in the pH of the bars, which is associated with a higher microbiological quality of the bars. All bars had low acrylamide content, significantly lower than the permissible level. Using fresh pomace or fibre preparations made from by-products is a possibility to increase the fibre content in the bars and a method of managing by-products. Full article
Show Figures

Figure 1

16 pages, 2585 KiB  
Article
Cross-Contamination of Foodborne Pathogens During Juice Processing
by Isma Neggazi, Pilar Colás-Medà, Inmaculada Viñas and Isabel Alegre
Biology 2025, 14(8), 932; https://doi.org/10.3390/biology14080932 - 24 Jul 2025
Viewed by 329
Abstract
The demand for unpasteurized fruit juices has grown due to their natural nutritional benefits, but this also increases the risk of foodborne illnesses. This study evaluated the transfer of three pathogens (Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes) from [...] Read more.
The demand for unpasteurized fruit juices has grown due to their natural nutritional benefits, but this also increases the risk of foodborne illnesses. This study evaluated the transfer of three pathogens (Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes) from different surfaces (cutting boards, knives, and gloves) to produce and subsequently across different juice batches. Cutting boards and gloves showed the highest pathogen transfer rates (ranging from 2.03 ± 4.36 to 70.69 ± 23.58% for cutting boards, and from 0.04 ± 0.05 to 70.61 ± 23.51% for gloves), while knives exhibited the lowest (from 1.27 ± 1.35 to 7.87 ± 5.33%), when surface-to-produce transference was evaluated. Among the tested produce, beetroot had the highest pathogen transfer for all the tested pathogens (for the cutting board, from 48.55 ± 21.66 to 70.69 ± 23.58%, for the knife from 7.17 ± 6.17 to 7.87 ± 5.33%, and for the gloves from 48.85 ± 21.66 to 70.61 ± 23.51%). Beetroot juice provided the most favorable conditions for bacterial transfer (δ = 0.53–0.56; kmax1 = 3.09–3.20), whereas strawberry juice led to the fastest microbial decrease (δ = 1.10–1.26; kmax1 = 2.08–2.28) throughout processed juices. Apple juice demonstrated intermediate bacterial decline rates (δ = 0.75–1.10; kmax1 = 2.20–2.61). These findings highlight the need for improved hygiene practices and contamination control in juice processing to minimize food safety risks associated with unpasteurized fruit or vegetable juices. Full article
(This article belongs to the Special Issue Microbial Contamination and Food Safety (Volume II))
Show Figures

Figure 1

25 pages, 1919 KiB  
Article
Valorisation of Beetroot Peel for the Development of Nutrient-Enriched Dehydrated Apple Snacks
by Ioana Buțerchi, Liliana Ciurlă, Iuliana-Maria Enache, Antoanela Patraș, Gabriel-Ciprian Teliban and Liviu-Mihai Irimia
Foods 2025, 14(15), 2560; https://doi.org/10.3390/foods14152560 - 22 Jul 2025
Viewed by 368
Abstract
Beetroot peel, an underutilised by-product of the food industry, has significant potential for valorisation due to its high content of bioactive compounds and natural pigments. This study aimed to sustainably reintroduce beetroot peel into the food chain by enriching the nutritional value of [...] Read more.
Beetroot peel, an underutilised by-product of the food industry, has significant potential for valorisation due to its high content of bioactive compounds and natural pigments. This study aimed to sustainably reintroduce beetroot peel into the food chain by enriching the nutritional value of dehydrated apple snacks. Five experimental formulations of apple slices were developed: dipped in 5% RBPP in water, dipped in 10% RBPP in water, dipped in 5% RBPP in 50% lemon juice, dipped in 10% RBPP in 50% lemon juice all seasoned with cinnamon powder, and a control formulation. The biochemical analysis showed that the total phenolic content (2780.01 ± 68.38 mg GAE/100 g DM) and antioxidant activity of apple snacks significantly increased (503.96 ± 1.83 µmol TE/g DM). Sensory evaluation indicated that snacks with beetroot peel powder and lemon juice achieved the highest scores in colour, flavour, and acceptability. These results demonstrate that the valorisation of beetroot peel has the potential to reduce agro-industrial waste and also enhance the nutritional and functional quality of apple snacks. It is recommended that beetroot peel be further explored as a cost-effective natural ingredient to develop healthier, value-added snack products within a circular economy framework. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

15 pages, 2061 KiB  
Article
Comparison of Preservatives for the Prevention of Microbial Spoilage of Apple Pomace During Storage
by Ashley Harratt, Wenyuan Wu, Peyton Strube, Joseph Ceravolo, David Beattie, Tara Pukala, Marta Krasowska and Anton Blencowe
Foods 2025, 14(14), 2438; https://doi.org/10.3390/foods14142438 - 10 Jul 2025
Viewed by 388
Abstract
Apple pomace, a by-product from the production of concentrated juice, is a major contributor to global food waste. Despite its beneficial nutritional profile, apple pomace is predominantly disposed of in landfills. Rapid fermentation and spoilage caused by microorganisms are compounding factors in this [...] Read more.
Apple pomace, a by-product from the production of concentrated juice, is a major contributor to global food waste. Despite its beneficial nutritional profile, apple pomace is predominantly disposed of in landfills. Rapid fermentation and spoilage caused by microorganisms are compounding factors in this demise, despite significant research into upcycling strategies. Thus, there is an unmet need for economical approaches that allow for the preservation of pomace during storage and transportation to centralized processing facilities from regional hubs. To address this challenge, we investigated the potential of different preservatives for preventing microbial growth and the spoilage of apple pomace, including antimicrobials (natamycin and iodine), polysaccharides (chitosan and fucoidan), and acetic acid. Spread plates for total microbial and fungal counts were employed to assess the effectiveness of the treatments. High concentrations (10,000 ppm) of chitosan were effective at reducing the microbial load and inhibiting growth, and in combination with antimicrobials, eliminated all microbes below detectable levels. Nevertheless, acetic acid at an equivalent concentration to commercial vinegar displayed the highest economic potential. Apple pomace submerged in 0.8 M acetic acid (3 kg pomace per liter) resulted in a five-log reduction in the microbial colony-forming units (CFUs) out to 14 days and prevented fermentation and ethanol production. These results provide a foundation for the short-term storage and preservation of apple pomace that could contribute to its upcycling. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

19 pages, 591 KiB  
Article
Development of a Guava Jelly Drink with Potential Antioxidant, Anti-Inflammation, Neurotransmitter, and Gut Microbiota Benefits
by Hai-Ha Nguyen, Jintanaporn Wattanathorn, Wipawee Thukham-Mee, Supaporn Muchimapura and Pongsatorn Paholpak
Foods 2025, 14(13), 2401; https://doi.org/10.3390/foods14132401 - 7 Jul 2025
Viewed by 422
Abstract
Due to the roles of oxidative stress, inflammation, and neurotransmitter imbalances in cognitive and mental dysfunction, we aimed to develop a functional drink with antioxidant and anti-inflammatory properties as well as the potential to support neurotransmitter balance for improved cognition and mental health. [...] Read more.
Due to the roles of oxidative stress, inflammation, and neurotransmitter imbalances in cognitive and mental dysfunction, we aimed to develop a functional drink with antioxidant and anti-inflammatory properties as well as the potential to support neurotransmitter balance for improved cognition and mental health. The Teng Mo, Fen Hong Mee, and Hong Chon Su guava varieties were screened for their polyphenol and flavonoid contents, antioxidant and anti-inflammatory effects, and suppressive effects on acetylcholinesterase (AChE), monoamine oxidase (MAO), GABA transaminase (GABA-T), and glutamate decarboxylase (GAD). Juice from the cultivar with the highest potential was selected and mixed with mint and honey syrups, pomelo-derived dietary fiber, ascorbic acid, agar, water, and fruit puree (pear/apple/orange) to create three guava jelly drink formulations. The formulation with pear puree showed the highest biological potential and was selected as the final product. It is rich in vitamin C, gallic acid, and dietary fiber, and provides approximately 37 Kcal/100 g. It also promotes the growth of lactic acid-producing bacteria in the culture. Thus, our drink shows the potential to reduce oxidative stress and inflammation, improve neurotransmitter regulation, and stimulate the gut–brain axis, thereby promoting cognition and mental wellness. However, clinical research is essential to confirm these potential benefits. Full article
Show Figures

Figure 1

17 pages, 4949 KiB  
Article
Apple Juice Fermented with Lactiplantibacillus plantarum Improves Its Flavor Profile and Probiotic Potential
by Boqian Zhou, Zhuobin Xing, Yiting Wang, Xin Guan, Fuyi Wang, Jiaqi Yin, Zhibo Li, Qiancheng Zhao, Hongman Hou and Xue Sang
Foods 2025, 14(13), 2373; https://doi.org/10.3390/foods14132373 - 4 Jul 2025
Viewed by 458
Abstract
Fermented apple juice (FAJ), a nutrient-dense beverage rich in vitamins, offers multiple health benefits, including improved digestion, enhanced fat metabolism, and sustained energy provision with reduced caloric intake. To advance the development of probiotic-enriched flavored and functional juices, this study establishes Lactiplantibacillus plantarum [...] Read more.
Fermented apple juice (FAJ), a nutrient-dense beverage rich in vitamins, offers multiple health benefits, including improved digestion, enhanced fat metabolism, and sustained energy provision with reduced caloric intake. To advance the development of probiotic-enriched flavored and functional juices, this study establishes Lactiplantibacillus plantarum (L. plantarum) as a safe and effective starter culture for apple juice fermentation. The selected strain exhibited minimal biogenic amine synthesis, producing only 30.55 ± 1.2 mg/L of putrescine and 0.59 ± 0.55 mg/L of cadaverine, while histamine and tyramine were undetectable. Furthermore, the strain demonstrated no hemolytic activity and exhibited robust biofilm-forming capacity, reinforcing its suitability for fermentation applications. An electronic nose analysis revealed that L. plantarum significantly enriched the volatile compound profile of FAJ, leading to an improved flavor profile. The strain also displayed excellent growth adaptability in the apple juice matrix, further optimizing fermentation efficiency and sensory quality. Crucially, 16S rRNA sequencing demonstrated that FAJ specifically restructures the gut microbiota in obese individuals, significantly elevating the relative abundance of beneficial genera, including Enterococcus, Parabacteroides, and Bifidobacterium (p < 0.05). Concurrently, FAJ enhanced glycolytic activity, suggesting a potential role in metabolic regulation. Collectively, these findings confirm that L. plantarum-fermented FAJ combines favorable sensory properties and safety with promising anti-obesity effects mediated through gut microbiome modulation and metabolic pathway activation. This study provides a critical scientific foundation for designing next-generation functional fermented beverages with targeted health benefits. Full article
Show Figures

Figure 1

15 pages, 702 KiB  
Article
Effect of Apple Pomace Addition During Fermentation on the Phenolic Content, Chemical Composition, and Sensory Properties of Cider
by Luis F. Castro, Abigail D. Affonso and Kate P. Perry
Beverages 2025, 11(4), 95; https://doi.org/10.3390/beverages11040095 - 1 Jul 2025
Viewed by 525
Abstract
The quality of cider is influenced by its phenolic compound content. Apple pomace, an industrial by-product of cider production, is rich in bioactive compounds, including polyphenols. The objective of this study was to determine the potential of apple pomace addition during fermentation to [...] Read more.
The quality of cider is influenced by its phenolic compound content. Apple pomace, an industrial by-product of cider production, is rich in bioactive compounds, including polyphenols. The objective of this study was to determine the potential of apple pomace addition during fermentation to increase the phenolic content in cider. Apple juice from Jonagold apples was divided into a control and three treatment groups. Control cider was fermented with 100% apple juice, while treatments were prepared with different additions of apple pomace to the apple juice. Ciders were fermented for 14 days, followed by chemical and sensory analysis. Ciders with apple pomace addition contained 31–61% higher phenolic compound concentrations than the control. The addition of apple pomace modified the volatile profile of the ciders. Treatment ciders contained higher concentrations of isoamyl alcohol, phenylethyl alcohol, and ethyl acetate, and lower concentrations of acetaldehyde. Ciders with apple pomace addition exhibited lower levels of astringency and sourness, and higher bitterness levels compared to the control. There was no difference in aroma perception and taste acceptance between the ciders. This study demonstrates the potential of apple pomace addition as a cidermaking technique for phenolic compound extraction and sensory profile modification. Full article
Show Figures

Graphical abstract

17 pages, 778 KiB  
Review
Factors Affecting Patulin Production by Penicillium expansum in Apples
by Tamara Edina Gal, Ersilia Călina Alexa, Renata Maria Șumălan, Ionuț Dascălu and Olimpia Alina Iordănescu
Foods 2025, 14(13), 2310; https://doi.org/10.3390/foods14132310 - 30 Jun 2025
Viewed by 591
Abstract
The main mycotoxin found in apples is patulin (PAT), mostly produced by Penicillium expansum, during the storage of fruits. It is very difficult to control the quality of every fruit that enters the processing line, so there is a high probability that [...] Read more.
The main mycotoxin found in apples is patulin (PAT), mostly produced by Penicillium expansum, during the storage of fruits. It is very difficult to control the quality of every fruit that enters the processing line, so there is a high probability that apple juice, applesauce, apple cider, even products intended for babies, contain moldy fruits, with PAT content. This review paper provides detailed information about the extrinsic and intrinsic factors that affect PAT prevalence in apples. Extrinsic factors, such as temperature, air composition in the storage room or packaging material, play a key role in infection with P. expansum and PAT accumulation. Lower temperatures often prevent fungal growth and the production of the mycotoxin, whereas higher or unstable temperatures can promote the buildup of the toxin in infected fruits. Controlled atmosphere storage appears to inhibit the accumulation of PAT in apples. In terms of internal composition, variations in the pH of the fruits and flesh firmness significantly impact fungal growth and PAT production in the fruits. The presence of ethylene, sucrose and polyphenols are some of the decisive chemical components that regulate PAT buildup. Susceptibility of different cultivars is also genetically driven, but the size of the decay area and the toxin-producing capacity of the fungal strain have noteworthy influence as well. Knowledge of these elements helps to understand the mechanisms of PAT production. Full article
Show Figures

Figure 1

15 pages, 1176 KiB  
Article
Novel Whey Fermented Beverage Enriched with a Mixture of Juice Concentrates: Evaluation of Antimicrobial, Antioxidant, and Angiotensin I Converting Enzyme Inhibitory (ACE) Activities Before and After Simulated Gastrointestinal Digestion
by Paschalia Kotsaki, Maria Aspri and Photis Papademas
Microorganisms 2025, 13(7), 1490; https://doi.org/10.3390/microorganisms13071490 - 26 Jun 2025
Viewed by 432
Abstract
This study explored the development of a novel whey-based fermented beverage enriched with juice concentrates and health-promoting ingredients, emphasizing its bioactive properties. The formulation included whey protein isolate (5%), juice concentrates (10% apple, raspberry, and cranberry), and inulin (4%). Fermentation was carried out [...] Read more.
This study explored the development of a novel whey-based fermented beverage enriched with juice concentrates and health-promoting ingredients, emphasizing its bioactive properties. The formulation included whey protein isolate (5%), juice concentrates (10% apple, raspberry, and cranberry), and inulin (4%). Fermentation was carried out with the following strains: Lacticaseibacillus rhamnosus (LGG), Lacticaseibacillus casei (431), and Lactobacillus helveticus (R0052) at 2%. Antimicrobial activity was evaluated against pathogens including Listeria monocytogenes (strains 33423 and 33413), Staphylococcus aureus (113 and Newman), Bacillus cereus (DPC 6089), Escherichia coli (NCTC 9001), and Salmonella Enteritidis (NCTC 6676). Antioxidant capacity was measured using 2,2-Diphenyl-1-picrylhydrazylradical (DPPH) and Ferric Reducing Antioxidant Power (FRAP) assays, and angiotensin-converting enzyme (ACE) inhibitory activity was assessed. All bioactivities were found to be high in fermented whey beverage and a further significant increase was observed after simulated gastrointestinal digestion. This fruit-flavored whey beverage demonstrated notable antimicrobial and antioxidant activities, highlighting its potential for functional food applications aimed at combating harmful bacteria and oxidative stress. Full article
(This article belongs to the Special Issue Role of Microorganisms in Functional Dairy Products)
Show Figures

Figure 1

28 pages, 6505 KiB  
Article
A Comprehensive Study on Osmotic Dehydration and Edible Coatings with Bioactive Compounds for Improving the Storage Stability of Fresh Berries
by Alexandra Mari, Chrysanthos Stergiopoulos, Christoforos Vasileiou and Magdalini Krokida
Processes 2025, 13(7), 2006; https://doi.org/10.3390/pr13072006 - 25 Jun 2025
Viewed by 460
Abstract
Berries are highly perishable due to their high water content, making them prone to rapid deterioration and spoilage. This study investigates the effects of osmotic dehydration and edible coatings, with and without bioactive compounds, on various quality attributes of blueberries, raspberries, and strawberries [...] Read more.
Berries are highly perishable due to their high water content, making them prone to rapid deterioration and spoilage. This study investigates the effects of osmotic dehydration and edible coatings, with and without bioactive compounds, on various quality attributes of blueberries, raspberries, and strawberries during storage. The berries were pretreated using osmotic dehydration with apple juice, followed by the application of edible coatings from Chlorella vulgaris protein, with or without the addition of aqueous rosemary extract as a source of bioactive compounds. The results indicated that the combination of the two methods significantly reduced weight loss in all berry types, with the incorporation of bioactive compounds further enhancing moisture retention up to approximately 3% for blueberries and raspberries and 5% for strawberries. Total phenolic content and antioxidant activity exhibited significantly increased stability in coated samples, with bioactive coatings contributing to improved antioxidant properties. The HPLC analysis proved that the bioactive profile was preserved after the treatments. Microbial analysis demonstrated that edible coatings, particularly those enriched with bioactive compounds, effectively inhibited microbial growth (TC approximately 4.5 log(CFU/g) with limit = 5 log(CFU/g) and YM approximately 3.5 log(CFU/g) with limit 4 log(CFU/g)), thereby extending the shelf life of the berries. These findings suggest that the synergistic application of osmotic dehydration and edible coatings, especially those containing bioactive compounds, significantly enhances the quality, shelf life, and potential health benefits of fresh berries during storage. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Graphical abstract

17 pages, 1201 KiB  
Article
Valorization of Spent Osmotic Solutions by Production of Powders by Spray Drying
by Katarzyna Samborska, Alicja Barańska-Dołomisiewicz, Aleksandra Jedlińska, Rui Costa, Konstantinos Klimantakis, Ioannis Mourtzinos and Małgorzata Nowacka
Appl. Sci. 2025, 15(12), 6927; https://doi.org/10.3390/app15126927 - 19 Jun 2025
Viewed by 363
Abstract
Spent osmotic solutions (sucrose, buckwheat honey, acacia honey, apple juice concentrate, chokeberry juice concentrate, cherry juice concentrate, and mannitol) were tested for their valorization to produce powders by spray drying. Simultaneously, the application of inulin as an alternative carrier was verified. The drying [...] Read more.
Spent osmotic solutions (sucrose, buckwheat honey, acacia honey, apple juice concentrate, chokeberry juice concentrate, cherry juice concentrate, and mannitol) were tested for their valorization to produce powders by spray drying. Simultaneously, the application of inulin as an alternative carrier was verified. The drying yield varied from 6 to 92%. For acacia honey, apple juice concentrate, chokeberry juice concentrate, and cherry juice concentrate, high stickiness was observed, which resulted in low yield and the production of significantly bigger particles of regular size distribution, higher hygroscopicity and bulk density, and better flowability. Sucrose, acacia honey, and mannitol were dried with lower stickiness, and the physical properties of the powders were acceptable. However, the yield of mannitol drying was low due to very small particles, low bulk density, and low cyclone efficiency. Therefore, sucrose and buckwheat honey solutions can be successfully spray dried using inulin as a carrier to produce powders suitable for further food applications. However, for the other tested materials, alternative carriers should be considered to reduce stickiness during drying. Full article
(This article belongs to the Special Issue Advances in Drying Technologies for Food Processing)
Show Figures

Figure 1

23 pages, 1907 KiB  
Article
Permeabilization of Cryptosporidium spp. Oocysts in Water, Apple and Carrot Juice by Pulsed Electric Field Technology
by Alejandro Berzosa, Laura Garza-Moreno, Joaquín Quílez, Javier Raso, Ignacio Álvarez-Lanzarote and Juan Manuel Martínez
Foods 2025, 14(12), 2112; https://doi.org/10.3390/foods14122112 - 16 Jun 2025
Viewed by 442
Abstract
Cryptosporidium spp. oocysts are highly resistant to conventional disinfection methods and have been associated with foodborne outbreaks linked to unpasteurized fruit and vegetable juices. This study aimed to evaluate the effectiveness of Pulsed Electric Fields (PEF) in permeabilizing Cryptosporidium oocysts in water, apple [...] Read more.
Cryptosporidium spp. oocysts are highly resistant to conventional disinfection methods and have been associated with foodborne outbreaks linked to unpasteurized fruit and vegetable juices. This study aimed to evaluate the effectiveness of Pulsed Electric Fields (PEF) in permeabilizing Cryptosporidium oocysts in water, apple juice, and carrot juice. Oocysts were exposed to monopolar square-wave pulses (3 µs) at electric field strengths ranging from 15 to 35 kV/cm, with treatment times up to 180 µs, and application temperatures between 25 °C and 60 °C. Membrane permeabilization was assessed using propidium iodide uptake via fluorescence microscopy and flow cytometry. Results showed that oocyst permeabilization increased with electric field strength, treatment time, and temperature, with up to 90% permeabilization achieved at 35 kV/cm and 45 °C. Carrot juice treatments yielded higher permeabilization levels than apple juice, attributed to greater electrical conductivity and energy input. Temperatures below 60 °C alone had negligible effects, but synergistically enhanced PEF efficacy. These findings demonstrate that PEF, particularly when combined with mild heat, is a promising non-thermal technology for reducing Cryptosporidium viability in beverages, offering an effective alternative for improving the microbiological safety of minimally processed juices while preserving sensory and nutritional quality. Full article
(This article belongs to the Special Issue Optimization of Non-thermal Technology in Food Processing)
Show Figures

Figure 1

12 pages, 434 KiB  
Communication
Preliminary Characterization and Consumer Insights of Juice Enzymatically Extracted from North American Pawpaw (Asimina triloba)
by Robert G. Brannan
Beverages 2025, 11(3), 86; https://doi.org/10.3390/beverages11030086 - 9 Jun 2025
Viewed by 564
Abstract
This study reports for the first time parameters and consumer preferences about juice prepared from North American pawpaw fruit (Asimina triloba). Enzymatic extraction using a commercial preparation of pectinases, hemicellulases, and beta-glucanases (Pectinex® Ultra SP-L) significantly increased juice yield compared [...] Read more.
This study reports for the first time parameters and consumer preferences about juice prepared from North American pawpaw fruit (Asimina triloba). Enzymatic extraction using a commercial preparation of pectinases, hemicellulases, and beta-glucanases (Pectinex® Ultra SP-L) significantly increased juice yield compared to non-enzyme extraction, but enzyme concentration (0.05% vs. 0.1%) and acidification method (citric vs. tartaric acid) showed no significant differences. Sensory panelists found no significant differences between citric and tartaric acid acidified juices, or between juices prepared from fresh pawpaw and pawpaw stored refrigerated for 14 days. Blending pawpaw juice with fruit juices improved overall acceptability compared to blending with fruit purees. Consumer testing revealed no overall preference among five juice formulations (100% pawpaw juice, sweetened pawpaw juice, pawpaw juice with the addition of 10% apple, orange, or pineapple juice). Consumers highlighted the complex flavor profile of pawpaw, with sweet and bitter tastes, and melon, papaya, and pear flavors being most frequently identified. Sweetening the juice altered the flavor profile, masking sourness and certain flavors. Based on this preliminary study, challenges and opportunities were identified for the development of a pawpaw-based juice. Full article
Show Figures

Figure 1

14 pages, 2125 KiB  
Article
Fermented Apple Juice Reduces the Susceptibility of Offspring Mice to Food Allergy Exacerbated by Maternal High-Fat Diet
by Jing Ma, Jian Yu, Yining Jia, Zining Luo, Xin Yang, Huzhong Li and Fangyu Long
Nutrients 2025, 17(11), 1927; https://doi.org/10.3390/nu17111927 - 4 Jun 2025
Viewed by 666
Abstract
Background: Food allergy (FA) is associated with dietary habits, antibiotic use, living environment, and delivery method. Pregnancy and lactation represent critical periods for neonatal immune system development. Methods: This study investigated the relationship between maternal dietary habits and FA risk in offspring. [...] Read more.
Background: Food allergy (FA) is associated with dietary habits, antibiotic use, living environment, and delivery method. Pregnancy and lactation represent critical periods for neonatal immune system development. Methods: This study investigated the relationship between maternal dietary habits and FA risk in offspring. Pregnant C57BL/6J mice (8-week-old males and females) were fed either a high-fat diet (HFD) or HFD supplemented with fermented apple juice (FAJ) during pregnancy and lactation. Offspring were nursed by their respective dams until weaning at 21 days postpartum, followed by ovalbumin (OVA) sensitization. Lipid profiles, acylcarnitines, immunological, and histopathological analyses were performed. Gut microbiota composition and serum markers were also assessed. Results: The findings indicated that maternal HFD had a negative impact on OVA-sensitized offspring mice. Early-life FAJ intervention modulated gut microbiota alterations and alleviated maternal HFD-worsened allergic symptoms through Th1/Th2 and Th17/Treg immunity balance and intestinal barrier repair. Maternal serum triglyceride and total cholesterol levels, along with gut microbiota profiles, significantly influenced offspring gut microbiota composition. Moreover, reduced short-chain and medium-chain acylcarnitines in offspring may be associated with increased allergy risk. Conclusions: Maternal HFD during pregnancy and lactation disrupted gut microbiota balance and exacerbated offspring FA susceptibility. These findings provide a scientific foundation for developing early-life FA prevention strategies. Full article
Show Figures

Graphical abstract

22 pages, 503 KiB  
Article
Competitiveness of the Largest Global Exporters of Concentrated Apple Juice
by Paweł Kraciński, Paulina Stolarczyk and Łukasz Zaremba
Agriculture 2025, 15(11), 1197; https://doi.org/10.3390/agriculture15111197 - 30 May 2025
Viewed by 675
Abstract
Concentrated apple juice (AJC) is a globally traded commodity, with major producers such as China, Poland, and the United States supplying AJC to markets worldwide. The aim of this article is to determine the competitive position of the main global exporters of concentrated [...] Read more.
Concentrated apple juice (AJC) is a globally traded commodity, with major producers such as China, Poland, and the United States supplying AJC to markets worldwide. The aim of this article is to determine the competitive position of the main global exporters of concentrated apple juice. It also seeks to analyze changes in their positions over the period from 2005 to 2023. Assessing competitive position is important for several economic and business reasons, including identifying leading exporters and recognizing both growing and declining markets. The competitive position was measured using Market Share (MS) indicators, Gross and Net Export Orientation indicators (Egr, Enet), and the Revealed Comparative Advantage (RCA) index. The results reveal significant structural shifts in global AJC trade. Most notably, China’s declining competitiveness, reflected across all indicators, led to its loss of market leadership. This raises questions about the reasons for this decline and whether it presents opportunities for other exporters. This signals a broader reconfiguration in the global AJC supply chain, driven in part by domestic economic changes, such as rising consumption and decreasing export orientation. Simultaneously, other countries, particularly in Eastern Europe, show varying degrees of competitive growth, with Moldova and Ukraine emerging as key players. These trends suggest a diversification of supply sources and a more fragmented competitive landscape. Although national differences persist, the analysis indicates that structural and economic transformations, rather than short-term price signals, are driving the evolving global competitiveness in the AJC market. The observed weak correlations between prior-year apple prices and RCA confirm that broader market and policy factors play a more decisive role. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

Back to TopTop