Fermented Apple Juice Reduces the Susceptibility of Offspring Mice to Food Allergy Exacerbated by Maternal High-Fat Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animal Design
2.2. Biochemical Analysis
2.3. Determination of Apparent Indexes
2.4. Histopathological Observation
2.5. Detection of Serum Indicators
2.6. Gut Microbiota Analysis
2.7. Determination of Acylcarnitine Content in Serum
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effects of HFD on Epigenetic Indicators of Maternal Mice
3.2. Impacts of HFD on Gut Microbiota of Maternal Mice
3.3. Maternal HFD Influenced Epigenetic Indicators in Offspring Mice
3.4. Histological Evaluation of Offspring Mice
3.5. Serological Analysis of Offspring Mice
3.6. Gut Microbiota of Offspring Mice
3.7. Acylcarnitine Levels in Offspring Mice
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Waisarayutt, C.; Surojanametakul, V.; Kaewpradub, S.; Shoji, M.; Ito, T.; Tamura, H. Investigation on the understanding and implementation of food allergen management among Thai food manufacturers. Food Control 2014, 46, 182–188. [Google Scholar] [CrossRef]
- Keet, C.A.; Savage, J.H.; Seopaul, S.; Peng, R.D.; Wood, R.A.; Matsui, E.C. Temporal trends and racial/ethnic disparity in self-reported pediatric food allergy in the United States. Ann. Allergy Asthma Immunol. 2014, 112, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Liu, X.; Li, Y.; Meng, S.; Wu, F.; Yan, B.; Xue, Y.; Ma, T.; Yang, J.; Liu, J. Maternal exposure to farming environment protects offspring against allergic diseases by modulating the neonatal TLR-Tregs-Th axis. Clin. Transl. Allergy 2018, 8, 34. [Google Scholar] [CrossRef]
- De, S.D.; Rodriguez, D.P.; De, J.N.W. Allergen immunotherapy and/or biologicals for IgE-mediated food allergy: A systematic review and meta-analysis. Allergy 2022, 77, 1852–1862. [Google Scholar] [CrossRef]
- Yamamoto, T.; Tsubota, Y.; Kodama, T.; Kageyama-Yahara, N.; Kadowaki, M. Oral tolerance induced by transfer of food antigens via breast milk of allergic mothers prevents offspring from developing allergic symptoms in a mouse food allergy model. Clin. Dev. Immunol. 2012, 2012, 721085. [Google Scholar] [CrossRef]
- Lack, G. Epidemiologic risks for food allergy. J. Allergy Clin. Immunol. 2008, 121, 1331–1336. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, H.; Du, M.; Zhu, M.J. Maternal obesity induces gut inflammation and impairs gut epithelial barrier function in nonobese diabetic mice. J. Nutr. Biochem. 2014, 25, 758–764. [Google Scholar] [CrossRef]
- Hussain, M.; Bonilla-Rosso, G.; Kwong Chung, C.K.C.; Bäriswyl, L.; Pena Rodriguez, M.; Kim, B.S.; Engel, P.; Noti, M. High dietary fat intake induces a microbiota signature that promotes food allergy. J. Allergy Clin. Immunol. 2019, 144, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Y.; Tang, L.; de Villiers, W.J.; Cohen, D.; Woodward, J.; Finkelman, F.D.; Eckhardt, E.R.M. Dietary medium-chain triglycerides promote oral allergic sensitization and orally induced anaphylaxis to peanut protein in mice. J. Allergy Clin. Immunol. 2013, 131, 442–450. [Google Scholar] [CrossRef]
- van Esch, B.C.A.M.; Porbahaie, M.; Abbring, S.; Garssen, J.; Potaczek, D.P.; Savelkoul, H.F.J.; van Neerven, R.J.J. The impact of milk and its components on epigenetic programming of immune function in early life and beyond: Implications for allergy and asthma. Front. Immunol. 2020, 11, 2141. [Google Scholar] [CrossRef]
- Thorburn, A.N.; McKenzie, C.I.; Shen, S.; Stanley, D.; Macia, L.; Mason, L.J.; Roberts, L.K.; Wong, C.H.; Shim, R.; Robert, R.; et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 2015, 6, 7320. [Google Scholar] [CrossRef] [PubMed]
- Kalliomaki, M.; Isolauri, E. Pandemic of Atopic Diseases—A Lack of Microbial Exposure in Early Infancy? Curr. Drug Targets 2002, 2, 299–302. [Google Scholar] [CrossRef]
- Zhao, Y.; Qi, C.; Li, X.; Lu, M.; Zhang, H.; Zhou, J.; Dang, H.; Chen, J.; Li, S.; Sun, J.; et al. Prevention of Atopic Dermatitis in Mice by Lactobacillus Reuteri Fn041 Through Induction of Regulatory T Cells and Modulation of the Gut Microbiota. Mol. Nutr. Food Res. 2022, 66, e2100699. [Google Scholar] [CrossRef]
- Yang, T.; Li, C.; Xue, W.; Huang, L.; Wang, Z. Natural immunomodulating substances used for alleviating food allergy. Crit. Rev. Food Sci. Nutr. 2021, 63, 2407–2425. [Google Scholar] [CrossRef] [PubMed]
- Middleton, E.; Drzewiecki, G.; Tatum, J. The Effects of Citrus Flavonoids on Human Bosophil and New Tnophil Funetion. Planta Medica 1987, 53, 325–328. [Google Scholar] [CrossRef]
- Han, M.; Zhang, M.; Wang, X.; Bai, X.; Yue, T.; Gao, Z. Cloudy Apple Juice Fermented by Lactobacillus Prevents Obesity via Modulating Gut Microbiota and Protecting Intestinal Tract Health. Nutrients 2021, 13, 971. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Y.; Zhao, M.; Tong, P.; Lv, L.; Gao, Z.; Liu, J.; Long, F. High Hydrostatic Pressure Treatments Improved Properties of Fermentation of Apple Juice Accompanied by Higher Reserved Lactobacillus plantarum. Foods 2023, 12, 441. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhao, M.Y.; Wang, Y.; Lv, L.Q.; Qin, L.P.; Ling, X.L.; Sun, J.; Liu, J.; Long, F.Y. Se-rich tea polysaccharide extracted by high hydrostatic pressure attenuated anaphylaxis by improving gut microbiota and metabolic regulation. Int. J. Biol. Macromol. 2024, 269, 132128. [Google Scholar] [CrossRef]
- Boby, N.; Aleem Abbas, M.; Lee, E.B.; Im, Z.E.; Lee, S.J.; Park, S.C. Microbiota modulation and anti-obesity effects of fermented Pyrus ussuriensis Maxim extract against high-fat diet-induced obesity in rats. Biomed. Pharmacother. 2022, 154, 113629. [Google Scholar] [CrossRef]
- Stojanov, S.; Berlec, A.; Strukelj, B. The influence of probiotics on the Firmicutes/Bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms 2020, 8, 1715. [Google Scholar] [CrossRef]
- Morgan, X.C.; Tickle, T.L.; Sokol, H.; Gevers, D.; Devaney, K.L.; Ward, D.V.; Reyes, J.A.; Shah, S.A.; LeLeiko, N.; Snapper, S.B.; et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012, 16, R79. [Google Scholar] [CrossRef] [PubMed]
- Png, C.W.; Linden, S.K.; Gilshenan, K.S.; Zoetendal, E.G.; McSweeney, C.S.; Sly, L.I.; McGuckin, M.A.; Florin, T.H.J. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol. 2012, 105, 2420–2428. [Google Scholar] [CrossRef] [PubMed]
- Goodman, Z.D. The impact of obesity on liver histology. Clin. Liver Dis. 2014, 18, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lv, Y.; Xu, A.; Wang, H. The prognostic significance of serum gamma-glutamyltransferase levels and AST/ALT in primary hepatic carcinoma. BMC Cancer 2019, 19, 841. [Google Scholar] [CrossRef]
- Hawkins, S.S.; Cole, T.J.; Law, C. An Ecological Systems Approach to Examining Risk Factors for Early Childhood Overweight: Findings from the UK Millennium Cohort Study. J. Epidemiol. Community Health 2008, 63, 147–155. [Google Scholar] [CrossRef]
- Rooney, B.L.; Mathiason, M.A.; Schauberger, C.W. Predictors of Obesity in Childhood, Adolescence, and Adulthood in a Birth Cohort. Matern. Child Health J. 2010, 15, 1166–1175. [Google Scholar] [CrossRef]
- Bai, T.; Shao, H.; Yang, F.; Zhang, X.; Tong, P.; Meng, X.; Wu, Y.; Chen, H.; Li, X. Maternal High-Fat Diet Exacerbates Epicutaneous Sensitization and Oral Challenge-Induced Food Allergy to Ovalbumin in Offspring Mice. J. Agric. Food Chem. 2024, 72, 21240–21253. [Google Scholar] [CrossRef]
- Gao, J.X.; Li, T.; Liang, D.; Gong, H.; Zhao, L.; Mao, X.Y. Maternal obesity exacerbates the responsiveness of offspring BALB/c mice to cow’s milk protein-induced food allergy. Food Sci. Hum. Wellness 2023, 12, 920–928. [Google Scholar] [CrossRef]
- Martini, E.; Krug, S.M.; Siegmund, B.; Neurath, M.F.; Becker, C. Mend Your Fences: The Epithelial Barrier and Its Relationship with Mucosal Immunity in Inflammatory Bowel Disease. Cell. Mol. Gastroenterol. 2017, 4, 33–46. [Google Scholar] [CrossRef]
- Ma, J.; Prince, A.L.; Bader, D.; Hu, M.; Ganu, R.; Baquero, K.; Blundell, P.; Harris, R.A.; Frias, A.E.; Grove, K.L.; et al. High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat. Commun. 2014, 5, 3889. [Google Scholar] [CrossRef]
- Chu, D.M.; Antony, K.M.; Ma, J.; Prince, A.L.; Showalter, L.; Moller, M.; Aagaard, K.M. The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med. 2016, 8, 77. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhang, L.; Ren, X.J.; Luo, Z.N.; Zhao, Z.M.; Tong, P.Y.; Long, F.Y. High hydrostatic pressure pretreated fermented apple juice attenuated anaphylaxis by improving gut microbiota and metabolic regulation. Food Biosci. 2025, 64, 105844. [Google Scholar] [CrossRef]
- Perez, P.F.; Doré, J.; Leclerc, M.; Levenez, F.; Benyacoub, J.; Serrant, P.; Segura-Roggero, I.; Schiffrin, E.J.; Donnet-Hughes, A. Bacterial imprinting of the neonatal immune system: Lessons from maternal cells? Pediatrics 2007, 119, e724–e732. [Google Scholar] [CrossRef] [PubMed]
- Brunner, P.M.; Israel, A.; Zhang, N.; Leonard, A.; Wen, H.C.; Huynh, T.; Tran, G.; Lyon, S.; Rodriguez, G.; Immaneni, S.; et al. Early-onset pediatric atopic dermatitis is characterized by TH2/TH17/TH22-centered inflammation and lipid alterations. J. Allergy Clin. Immunol. 2018, 141, 2094–2106. [Google Scholar] [CrossRef]
- Wong, C.B.; Odamaki, T.; Xiao, J.Z. Insights into the reason of Human-Residential Bifidobacteria (HRB) being the natural inhabitants of the human gut and their potential health-promoting benefits. FEMS Microbiol. Rev. 2020, 44, 369–385. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.M.; Liang, L.M.; Sun, Q.; Keet, C.A.; Tsai, H.J.; Ji, Y.L.; Wang, G.Y.; Ji, H.K.; Clish, C.; Pearson, C.; et al. Maternal triacylglycerol signature and risk of food allergy in offspring. J. Allergy Clin. Immunol. 2019, 144, 729–737. [Google Scholar] [CrossRef]
- Nakajima, T.; Fukuda, T.; Shibasaki, I.; Obi, S.; Sakuma, M.; Abe, S.; Fukuda, H.; Toyoda, S.; Nakajima, T. Pathophysiological roles of the serum acylcarnitine level and acylcarnitine/free carnitine ratio in patients with cardiovascular diseases. IJC Heart Vasc. 2024, 51, 101386. [Google Scholar] [CrossRef]
- Druet, C.; Stettler, N.; Sharp, S.; Simmons, R.K.; Cooper, C.; Smith, G.D.; Ekelund, U.; Lévy-Marchal, C.; Jarvelin, M.R.; Kuh, D.; et al. Prediction of childhood obesity by infancy weight gain: An individual-level meta-analysis. Paediatr. Perinat. Epidemiol. 2012, 26, 19–26. [Google Scholar] [CrossRef]
- Bene, J.; Szabo, A.; Komlósi, K.; Melegh, B. Mass Spectrometric Analysis of L-carnitine and Its Esters: Potential Biomarkers of Disturbances in Carnitine Homeostasis. Curr. Mol. Med. 2020, 20, 336–354. [Google Scholar] [CrossRef]
- Mitro, S.D.; Wu, J.; Rahman, M.L.; Cao, Y.; Zhu, Y.; Chen, Z.; Chen, L.; Li, M.; Hinkle, S.N.; Bremer, A.A.; et al. Longitudinal Plasma Metabolomics Profile in Pregnancy—A Study in an Ethnically Diverse U.S. Pregnancy Cohort. Nutrients 2021, 13, 3080. [Google Scholar] [CrossRef]
- Pickens, C.A.; Petritis, K. High resolution mass spectrometry newborn screening applications for quantitative analysis of amino acids and acylcarnitines from dried blood spots. Anal. Chim. Acta 2020, 1120, 85–96. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Yu, J.; Jia, Y.; Luo, Z.; Yang, X.; Li, H.; Long, F. Fermented Apple Juice Reduces the Susceptibility of Offspring Mice to Food Allergy Exacerbated by Maternal High-Fat Diet. Nutrients 2025, 17, 1927. https://doi.org/10.3390/nu17111927
Ma J, Yu J, Jia Y, Luo Z, Yang X, Li H, Long F. Fermented Apple Juice Reduces the Susceptibility of Offspring Mice to Food Allergy Exacerbated by Maternal High-Fat Diet. Nutrients. 2025; 17(11):1927. https://doi.org/10.3390/nu17111927
Chicago/Turabian StyleMa, Jing, Jian Yu, Yining Jia, Zining Luo, Xin Yang, Huzhong Li, and Fangyu Long. 2025. "Fermented Apple Juice Reduces the Susceptibility of Offspring Mice to Food Allergy Exacerbated by Maternal High-Fat Diet" Nutrients 17, no. 11: 1927. https://doi.org/10.3390/nu17111927
APA StyleMa, J., Yu, J., Jia, Y., Luo, Z., Yang, X., Li, H., & Long, F. (2025). Fermented Apple Juice Reduces the Susceptibility of Offspring Mice to Food Allergy Exacerbated by Maternal High-Fat Diet. Nutrients, 17(11), 1927. https://doi.org/10.3390/nu17111927