Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (240)

Search Parameters:
Keywords = apple drying

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 18761 KiB  
Article
The Influence of Recipe Modification and the Technological Method on the Properties of Multigrain Snack Bars
by Hanna Kowalska, Ewelina Masiarz, Elżbieta Hać-Szymańczuk, Anna Żbikowska, Agata Marzec, Agnieszka Salamon, Mariola Kozłowska, Anna Ignaczak, Małgorzata Chobot, Wioletta Sobocińska and Jolanta Kowalska
Molecules 2025, 30(15), 3160; https://doi.org/10.3390/molecules30153160 - 29 Jul 2025
Viewed by 335
Abstract
This study aimed to assess the use of selected raw materials, such as whole-grain oat flakes, pumpkin seeds, sunflower seeds, and flaxseeds, to obtain bars using baking and drying methods. Modifying the bars’ composition involved selecting the fibre preparation, replacing water with NFC [...] Read more.
This study aimed to assess the use of selected raw materials, such as whole-grain oat flakes, pumpkin seeds, sunflower seeds, and flaxseeds, to obtain bars using baking and drying methods. Modifying the bars’ composition involved selecting the fibre preparation, replacing water with NFC juice, and using fresh apple juice and apple pomace. The Psyllium fibre preparation, also in the form of a mixture with apple fibre, was the most useful in dough cohesion and the quality of the bars. Baked bars were characterised by higher sensory quality than those obtained by drying. Microwave–convection drying was a good alternative to baking, primarily due to the lower temperature resulting in a lower acrylamide content and comparable product quality. The basic grain ingredients and fibre preparations mainly shaped the nutritional and energy value and the sensory and microbiological quality. Modifying the recipe using NFC or fresh juice and apple pomace allowed the bars to develop new properties and quality characteristics. The use of NFC juices resulted in a reduction in the pH of the bars, which is associated with a higher microbiological quality of the bars. All bars had low acrylamide content, significantly lower than the permissible level. Using fresh pomace or fibre preparations made from by-products is a possibility to increase the fibre content in the bars and a method of managing by-products. Full article
Show Figures

Figure 1

31 pages, 4964 KiB  
Article
Conventional vs. Photoselective Nets: Impacts on Tree Physiology, Yield, Fruit Quality and Sunburn in “Gala” Apples Grown in Mediterranean Climate
by Sandra Afonso, Marta Gonçalves, Margarida Rodrigues, Francisco Martinho, Verónica Amado, Sidónio Rodrigues and Miguel Leão de Sousa
Agronomy 2025, 15(8), 1812; https://doi.org/10.3390/agronomy15081812 - 26 Jul 2025
Viewed by 964
Abstract
The impact of five different nets—conventional black, grey, white, and photoselective red and yellow—on the performance of “Gala Redlum” apples was evaluated over a five-year period (2020–2024) and compared to an uncovered control. The cumulative production over this period, ranked from highest to [...] Read more.
The impact of five different nets—conventional black, grey, white, and photoselective red and yellow—on the performance of “Gala Redlum” apples was evaluated over a five-year period (2020–2024) and compared to an uncovered control. The cumulative production over this period, ranked from highest to lowest, was as follows: white net (182.4 t/ha), grey net (178.5 t/ha), yellow net (175.8 t/ha), black net (175.5 t/ha), red net (169.5 t/ha), and uncovered control (138.8 t/ha). Vegetative growth results were inconsistent among the studied years. The cumulative photosynthetic rate (An) was slightly higher under the white net (57.9 µmol m−2 s−1). Fv/Fm values remained closest to optimal levels under the black and grey nets. Netting effectively protected fruits from elevated temperatures, particularly under the grey net, and reduced sunburn damage, with the grey, black, and yellow nets performing best in this regard. Overall profitability was increased by netting: the black net provided the highest cumulative income per hectare over a five-year period (EUR 72,315) alongside the second-lowest sunburn loss (0.69%), while the yellow net also showed strong economic performance (€64,742) with a moderate sunburn loss (1.26%) compared to the red net. Fruit dry matter and soluble solids content (SSC) were generally higher in the uncovered control, whereas °Hue values tended to be higher under the red and yellow nets. In summary, the black and yellow nets provided more balanced microclimatic conditions that enhanced tree performance, particularly under heat stress, leading to improved yield and profitability. However, the economic feasibility of each net type should be evaluated in relation to its installation and maintenance costs. Full article
Show Figures

Figure 1

19 pages, 2229 KiB  
Article
Insights into Native Fermentation Process of Apples (Malus domestica) in Low Sodium Conditions
by Daniela Constandache (Lungeanu), Doina-Georgeta Andronoiu, Oana Viorela Nistor, Dana Iulia Moraru, Ira-Adeline Simionov, Elisabeta Botez and Gabriel-Dănuț Mocanu
Appl. Sci. 2025, 15(14), 7799; https://doi.org/10.3390/app15147799 - 11 Jul 2025
Viewed by 215
Abstract
Although it is one of the most important methods of fruit and vegetable preservation, pickling provides multiple interesting vistas for study, from the variety of the raw vegetal material and the composition of pickling media to the diversity of the microorganisms involved in [...] Read more.
Although it is one of the most important methods of fruit and vegetable preservation, pickling provides multiple interesting vistas for study, from the variety of the raw vegetal material and the composition of pickling media to the diversity of the microorganisms involved in the process or the quality of the final product. The purpose of this study is to investigate the effects of sodium chloride substitution with potassium or magnesium chloride on the pickling process of apples. Physical (mass, color, texture), chemical (dry matter, acidity, salinity, reducing sugars) and phytochemical parameters of the apples were analyzed during 35 days of fermentation, with a frequency of 7 days. The results show a decrease in dry matter from 14.94 ± 0.25% for all the samples and a continuous increase of lactic acid concentration to a maximum of 0.248 ± 0.032 g lactic acid/100 g product for the magnesium samples. At the same time, the phytochemical profile is enhanced, while the texture becomes softer (a decrease in firmness from 2.53 ± 0.08 N to 0.72 ± 0.02 N was registered for potassium samples). The main conclusion of the study is that sodium chloride could be successfully replaced by potassium or magnesium chloride in the fermentation process of apples. Full article
Show Figures

Figure 1

20 pages, 1007 KiB  
Article
Fatty Acids Are Responsible for the Discrepancy of Key Aroma Compounds in Naturally Dried Red Goji Berries and Hot-Air-Dried Red Goji Berries
by Yan Zheng, Claudia Oellig, Walter Vetter, Vanessa Bauer, Yuan Liu, Yanping Chen and Yanyan Zhang
Foods 2025, 14(13), 2388; https://doi.org/10.3390/foods14132388 - 6 Jul 2025
Viewed by 397
Abstract
Red goji berries, reputed worldwide as “superfruit”, are commonly marketed after natural drying or hot-air drying. A sensomics approach was applied to the aroma analysis of red goji berries under two drying methods. Fifty-two aroma-active compounds were screened and identified by aroma extract [...] Read more.
Red goji berries, reputed worldwide as “superfruit”, are commonly marketed after natural drying or hot-air drying. A sensomics approach was applied to the aroma analysis of red goji berries under two drying methods. Fifty-two aroma-active compounds were screened and identified by aroma extract dilution analysis (AEDA) coupled with gas chromatography with olfactometry (GC/O). The contents and the odor activity values (OAVs) of 49 aroma-active compounds were determined. Acetic acid was the predominant aroma compounds in both berries. Meanwhile, the key aroma compounds in both berries were (E)-2-nonenal, (Z)-4-heptenal, 3-methyl-2,4-nonanedione, hexanal, etc., which were lipid derivatives. Natural drying promoted the formation of some aldehydes that exhibited green and fatty notes. Hot-air drying facilitated the production of ketones with hay-like and cooked apple-like odor attributes due to the thermal reaction. The fatty acid patterns between naturally dried and hot-air-dried red goji berries differed not significantly and were dominated by linoleic acid, oleic acid, palmitic acid, etc. The knowledge of the impacts of different drying processes on the aroma quality in red goji berries is beneficial for the quality control and optimization of dried red goji berries. Full article
Show Figures

Figure 1

22 pages, 1239 KiB  
Article
Upcycling of By-Products from Autochthonous Red Grapes and Commercial Apples as Ingredients in Baked Goods: A Comprehensive Study from Processing to Consumer Consumption
by Gaetano Cardone, Martina Magni, Veronica Marin, Andrea Pichler, Daniele Zatelli, Peter Robatscher, Ombretta Polenghi, Virna Lucia Cerne, Michael Oberhuber and Silvano Ciani
Antioxidants 2025, 14(7), 798; https://doi.org/10.3390/antiox14070798 - 27 Jun 2025
Viewed by 444
Abstract
Lagrein grape (Vitis vinifera L.) pomace and Scilate apple (Malus domestica Borkh.) skin are polyphenol- and antioxidant-rich by-products with promising applications in the food industry. This study investigated the impact of drying and grinding on their antioxidant properties for use in [...] Read more.
Lagrein grape (Vitis vinifera L.) pomace and Scilate apple (Malus domestica Borkh.) skin are polyphenol- and antioxidant-rich by-products with promising applications in the food industry. This study investigated the impact of drying and grinding on their antioxidant properties for use in gluten-free baked goods. Regardless of the by-product analysis, the results showed that processing conditions effectively preserved most of the polyphenols. Furthermore, the grape pomace and apple skin flours produced retained approximately 86% and 66% of anthocyanins, respectively. Incorporating these flours into breadsticks, focaccia, and cookies significantly enhanced their polyphenol content (300–727%), anthocyanin content (600–1718%), and antioxidant capacity (280–1200%). The addition of these by-products to baked goods led to a slight decrease in texture and sensory properties. However, adding both grape pomace and apple skin flours significantly improved consumer acceptance compared to products containing only grape pomace flour. This study highlights the potential of upcycling by-products from grapes and apples to enhance the nutritional profile of gluten-free products while supporting a circular economy approach. Full article
Show Figures

Figure 1

16 pages, 1188 KiB  
Article
Effects of Moderate Electric Field Pretreatment on the Efficiency and Nutritional Quality of Hot Air-Dried Apple Slices
by Deryanur Kalkavan and Nese Sahin Yesilcubuk
Foods 2025, 14(13), 2160; https://doi.org/10.3390/foods14132160 - 20 Jun 2025
Viewed by 345
Abstract
This study investigates the effects of electric field pretreatment parameters such as electric field strength (0.1–0.2 kV/cm), waveform (sinusoidal vs. square), and application mode (continuous vs. pulsed) on the quality attributes of dried Fuji apple slices, including ascorbic acid (vitamin C) retention, β-carotene [...] Read more.
This study investigates the effects of electric field pretreatment parameters such as electric field strength (0.1–0.2 kV/cm), waveform (sinusoidal vs. square), and application mode (continuous vs. pulsed) on the quality attributes of dried Fuji apple slices, including ascorbic acid (vitamin C) retention, β-carotene content, and hydroxymethylfurfural (HMF) formation. Electric-field-treated samples were compared to untreated controls after convective drying at 75 °C. Results revealed that vitamin C was significantly influenced by waveform, with sinusoidal waves preserving about 27% more vitamin C than square waves, likely due to reduced oxidative degradation from gentler electroporation. Conversely, square waves caused the highest β-carotene losses (25% vs. control), attributed to prolonged peak voltage destabilizing carotenoids. HMF formation was reduced by 10–23% in electric-field-treated samples compared to controls, linked to accelerated drying rates limiting Maillard reaction time. Low electric field strengths (0.1–0.15 kV/cm) enhanced antioxidant activity; however, higher intensities showed a potential decline. The square waveform had a more detrimental effect on phenolic compounds than the sinusoidal waveform. These findings suggest that low electric field pretreatment, particularly with sinusoidal waveforms at 0.2 kV/cm, enhances drying efficiency while balancing nutrient retention and HMF mitigation, offering a promising strategy for producing high-quality dried fruits. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

17 pages, 1201 KiB  
Article
Valorization of Spent Osmotic Solutions by Production of Powders by Spray Drying
by Katarzyna Samborska, Alicja Barańska-Dołomisiewicz, Aleksandra Jedlińska, Rui Costa, Konstantinos Klimantakis, Ioannis Mourtzinos and Małgorzata Nowacka
Appl. Sci. 2025, 15(12), 6927; https://doi.org/10.3390/app15126927 - 19 Jun 2025
Viewed by 363
Abstract
Spent osmotic solutions (sucrose, buckwheat honey, acacia honey, apple juice concentrate, chokeberry juice concentrate, cherry juice concentrate, and mannitol) were tested for their valorization to produce powders by spray drying. Simultaneously, the application of inulin as an alternative carrier was verified. The drying [...] Read more.
Spent osmotic solutions (sucrose, buckwheat honey, acacia honey, apple juice concentrate, chokeberry juice concentrate, cherry juice concentrate, and mannitol) were tested for their valorization to produce powders by spray drying. Simultaneously, the application of inulin as an alternative carrier was verified. The drying yield varied from 6 to 92%. For acacia honey, apple juice concentrate, chokeberry juice concentrate, and cherry juice concentrate, high stickiness was observed, which resulted in low yield and the production of significantly bigger particles of regular size distribution, higher hygroscopicity and bulk density, and better flowability. Sucrose, acacia honey, and mannitol were dried with lower stickiness, and the physical properties of the powders were acceptable. However, the yield of mannitol drying was low due to very small particles, low bulk density, and low cyclone efficiency. Therefore, sucrose and buckwheat honey solutions can be successfully spray dried using inulin as a carrier to produce powders suitable for further food applications. However, for the other tested materials, alternative carriers should be considered to reduce stickiness during drying. Full article
(This article belongs to the Special Issue Advances in Drying Technologies for Food Processing)
Show Figures

Figure 1

21 pages, 16317 KiB  
Article
Comparative Analysis of the Physicochemical Properties of Fresh, Solar-Dried, Oven-Dried and Commercial Royal Gala Apple Snacks
by Lisete Fernandes, Pedro B. Tavares, João Siopa, Carla Gonçalves and Fernando M. Nunes
Appl. Sci. 2025, 15(12), 6711; https://doi.org/10.3390/app15126711 - 15 Jun 2025
Viewed by 437
Abstract
This study compares the physicochemical properties of Royal Gala apple snacks fresh and processed using different methods: solar-dried (SD), oven-dried at 65 °C (OD65°) and 85 °C (OD85°) and two commercial brands (CC—commercial apple C and CF—commercial apple F). Evaluated parameters included color, [...] Read more.
This study compares the physicochemical properties of Royal Gala apple snacks fresh and processed using different methods: solar-dried (SD), oven-dried at 65 °C (OD65°) and 85 °C (OD85°) and two commercial brands (CC—commercial apple C and CF—commercial apple F). Evaluated parameters included color, microstructure, acidity, sugar content, phenolic compounds, antioxidant activity, and the presence of heat-induced compounds such as 5-hydroxymethylfurfural (5-HMF) and acrylamide. Commercial samples showed more pronounced color changes and a denser microstructure, with higher browning index (BI) values. The ratio of soluble solids to titratable acidity, an indicator of sensory acceptance, was more influenced by drying methods than temperature. Total phenolic content was highest in fresh apples (123.68 mg GAE/100 g d.m.) and decreased across all drying methods, particularly in solar-dried (SD) samples (78.57 mg GAE/100 g d.m.). Antioxidant activity followed a similar trend, although SD samples performed better than expected, likely due to the retention of certain bioactive compounds. Fresh apples had the highest sugar content (43.25 mg/100 g d.m.), followed by CC (33.81 mg/100 g d.m.), OD65° (33.37 mg/100 g d.m.), CF (31.56 mg/100 g d.m.), OD85° (25.92 mg/100 g d.m.) and SD (25.01 mg/100 g d.m.). Commercial samples were sweeter and darker, with detectable levels of 5-HMF and acrylamide. The findings highlight that drying method significantly affects snack quality. While solar- and oven-dried samples better preserve bioactive compounds, industrial processes enhance sweetness and visual appeal but increase the formation of potentially undesirable compounds. These results are valuable for both consumers and producers aiming to balance sensory quality with nutritional and food safety considerations in dried apple products. Full article
(This article belongs to the Special Issue Advances in Drying Technologies for Food Processing)
Show Figures

Figure 1

21 pages, 2131 KiB  
Article
From Sun to Snack: Different Drying Methods and Their Impact on Crispiness and Consumer Acceptance of Royal Gala Apple Snacks
by Lisete Fernandes, Pedro B. Tavares and Carla Gonçalves
Horticulturae 2025, 11(6), 610; https://doi.org/10.3390/horticulturae11060610 - 29 May 2025
Viewed by 479
Abstract
This study explores the acoustic, mechanical and sensory characteristics of Royal Gala dried apples, with a special focus on the potential of solar drying as a sustainable processing method. Apple samples were subjected to different drying techniques, being solar dried (SDA) or oven [...] Read more.
This study explores the acoustic, mechanical and sensory characteristics of Royal Gala dried apples, with a special focus on the potential of solar drying as a sustainable processing method. Apple samples were subjected to different drying techniques, being solar dried (SDA) or oven dried (ODA), with two industrially processed commercial products (CCA—commercial apples C and CFA—commercial apples F) included. The samples were analyzed using acoustic measurements, X-ray diffraction (XRD) and sensory evaluation to assess textural properties and consumer perception. Acoustic analysis revealed that crispier samples produced louder and higher-frequency sounds upon fracture, showing strong alignment with sensory assessments. X-ray diffraction indicated an increase in crystallinity during dehydration, with a shift in the amorphous peak toward lower angles, and reduced intensity, reflecting progressive water removal. Sensory evaluation showed varying degrees of crispiness among the samples, in the following order: CFA > SDA > CCA > ODA. Consumer testing highlighted greater acceptance and consensus for SDA and ODA samples in terms of texture and overall appeal, whereas CCA and CFA received more polarized opinions. These findings demonstrate how different drying methods influence the structural and textural properties of dried apples. Solar drying was shown to be a promising sustainable alternative; as it uses a renewable energy source, it has a low operating cost and simple maintenance. It allows farmers and small producers to process their own food, adding value and reducing post-harvest losses, preserving desirable textural attributes and achieving high consumer acceptance. Full article
Show Figures

Figure 1

23 pages, 2161 KiB  
Article
Sustainable Exploitation of Apple By-Products: A Retrospective Analysis of Pilot-Scale Extraction Tests Using Hydrodynamic Cavitation
by Luca Tagliavento, Tiziana Nardin, Jasmine Chini, Nicola Vighi, Luca Lovatti, Lara Testai, Francesco Meneguzzo, Roberto Larcher and Federica Zabini
Foods 2025, 14(11), 1915; https://doi.org/10.3390/foods14111915 - 28 May 2025
Viewed by 514
Abstract
Apple by-products (APs) consist of whole defective fruits discarded from the market and pomace resulting from juice squeezing and puree production, which are currently underutilized or disposed of due to the lack of effective and scalable extraction methods. Bioactive compounds in APs, especially [...] Read more.
Apple by-products (APs) consist of whole defective fruits discarded from the market and pomace resulting from juice squeezing and puree production, which are currently underutilized or disposed of due to the lack of effective and scalable extraction methods. Bioactive compounds in APs, especially phlorizin, which is practically exclusive to the apple tree, are endowed with preventive and therapeutic potential concerning chronic diseases such as cardiovascular diseases, metabolic diseases, and specific types of cancer. This study investigated the exploitation of APs using hydrodynamic cavitation (HC) for the extraction step and water as the only solvent. High-temperature extraction (>80 °C) was needed to inactivate the polyphenol oxidase; a strict range of the cavitation number (around 0.07) was identified for extraction optimization; less than 20 min were sufficient for the extraction of macro- and micro-nutrients up to nearly their potential level, irrespective of the concentration of fresh biomass up to 50% of the water mass. The energy required to produce 30 to 100 g of dry extract containing 100 mg of phlorizin was predicted at around or less than 1 kWh, with HC contributing for less than 2.5% to the overall energy balance due to the efficient extraction process. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

22 pages, 3650 KiB  
Article
Ultrasound-Assisted Osmotic Dehydration of Apples in Xylitol Solution: Effects on Kinetics, Physicochemical Properties and Antioxidant Activity
by Angelika Wojtyś, Sławomir Pietrzyk, Karolina Grzesińska and Robert Witkowicz
Molecules 2025, 30(11), 2304; https://doi.org/10.3390/molecules30112304 - 24 May 2025
Viewed by 559
Abstract
In the present study, the effects of varying ultrasound treatment durations (5, 15, 30, and 45 min) applied prior to osmotic dehydration in xylitol solutions on apple tissues were investigated. The efficiency of the osmotic dehydration process was assessed by analyzing its kinetic [...] Read more.
In the present study, the effects of varying ultrasound treatment durations (5, 15, 30, and 45 min) applied prior to osmotic dehydration in xylitol solutions on apple tissues were investigated. The efficiency of the osmotic dehydration process was assessed by analyzing its kinetic parameters. In selected samples of osmotically dehydrated fruits, physicochemical properties were evaluated, including dry matter content, total acidity, pH, sugar profile, color attributes, total phenolic content, antioxidant activity (measured by DPPH and ABTS assays), and vitamin C content. Additionally, principal component analysis (PCA) was conducted to explore the relationships among the measured variables and to identify underlying patterns within the dataset. Osmotic dehydration in xylitol significantly modified the physicochemical and antioxidant properties of apples, promoting substantial water loss and partial replacement of natural sugars with xylitol. The results showed that ultrasound pretreatment markedly influenced these effects, with treatment duration playing a critical role. Shorter ultrasound applications (15–30 min) enhanced xylitol uptake while better preserving antioxidant activity and color, whereas longer ultrasound treatments (45 min) achieved greater mass transfer but led to higher losses of bioactive compounds compared to untreated samples. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

14 pages, 515 KiB  
Article
Potential Use of Tropical and Subtropical Fruits By-Products in Pig Diet: In Vitro Two-Step Evaluation
by Dieu donné Kiatti, Francesco Serrapica, Nadia Musco, Rossella Di Palo and Serena Calabrò
Animals 2025, 15(10), 1454; https://doi.org/10.3390/ani15101454 - 17 May 2025
Viewed by 536
Abstract
Pineapple (Ananas comosus L.), cashew (Anacardium occidentale L.) and mango (Mangifera indica L.) are among the most cultivated plants in tropical and subtropical regions due to the high demand around the world. Following the harvesting and processing of pineapple, cashew [...] Read more.
Pineapple (Ananas comosus L.), cashew (Anacardium occidentale L.) and mango (Mangifera indica L.) are among the most cultivated plants in tropical and subtropical regions due to the high demand around the world. Following the harvesting and processing of pineapple, cashew and mango fruits, a huge amount of waste is generated, which is generally discarded into the environment, contributing to global pollution and water contamination. This study aims to propose alternative feeds for pigs by characterizing cashew, pineapple and mango fruit by-products through an in vitro two-step (gastro-intestinal and caecum) study to provide feeds not competing with humans and promoting eco-sustainable livestock. Ten by-products [i.e., pineapple peel and pomace; cashew nut testa, cashew (var. yellow) whole fruit and pomace; cashew (var. red) whole fruit and pomace; mango peel, kernel and testa] were sampled in Benin. The samples involved chemical analysis and an in vitro two-step digestion method (enzymatic + microbial digestibility). The results report a low dry matter (DM) content specifically in the pomace, peel and whole apple (13.0–27.2%), while higher lipids were observed for cashew nut testa and mango kernel (26.4 and 11.2% DM). The investigated by-products fall within the interval of referenced feeds for structural carbohydrates (NDF: 7.6–47.1% DM) and protein (6.21–51.2% DM), except mango by-products with a low content of protein (2.51–4.69% DM). The total dry matter digestibility, short-chain fatty acid and gas production were low for cashew by-products and stopped after 48 h of incubation. Pineapple pomace, cashew whole apple, pomace and testa can be considered as feedstuff in fattening pigs, presenting characteristics partly similar to beet pulp. Indeed, mango peel and kernel should be combined with a protein feed source to feed pigs. Presently, fruit by-products, such as those from cashew, pineapple and mango, are thrown into the environment, contributing to global warming and water pollution. These problems would be reduced by recycling these wastes in other fields, such as pig nutrition, creating a circular economy to provide feeds promoting eco-sustainable livestock. Indeed, in vivo studies are needed before proposing these by-products for pig diets. Full article
(This article belongs to the Collection Use of Agricultural By-Products in Animal Feeding)
Show Figures

Figure 1

26 pages, 7326 KiB  
Article
Hybrid Drying Method: Influence of Pre-Treatment and Process Conditions of Ultrasound-Assisted Drying on Apple Quality
by Aleksandra Jedlińska, Katarzyna Rybak, Katarzyna Samborska, Alicja Barańska-Dołomisiewicz, Aleksandra Skarżyńska, Magdalena Trusińska, Dorota Witrowa-Rajchert and Małgorzata Nowacka
Appl. Sci. 2025, 15(10), 5309; https://doi.org/10.3390/app15105309 - 9 May 2025
Viewed by 552
Abstract
Ultrasound (US) is a non-thermal food processing method that can be used as a pre-treatment or integrated during drying to enhance mass transfer by inducing cavitation and forming microchannels in plant tissue. Thus, this study investigated the combined effect of ultrasound pre-treatment (21 [...] Read more.
Ultrasound (US) is a non-thermal food processing method that can be used as a pre-treatment or integrated during drying to enhance mass transfer by inducing cavitation and forming microchannels in plant tissue. Thus, this study investigated the combined effect of ultrasound pre-treatment (21 kHz; 180 W; 10 min, 20 min, 30 min) and the subsequent hybrid drying process—ultrasound-assisted hot-air drying (temperature of 70 °C, frequency of 36 kHz; ultrasound power of 120 W, 160 W, 200 W)—on the drying kinetics and quality attributes of dried Gloster apples. The experimental design was optimized using the response surface methodology (RSM). The effects of ultrasound parameters on drying time, dry matter content, water activity, rehydration and hygroscopic properties, color change, textural properties, content of vitamin C, polyphenols and flavonoids, and antioxidant activity were evaluated. Among the analyzed variants, the most effective combinations were longer US duration (30 min) with lower US power (120 W) or shorter US duration (10 min) with higher US power (200 W). To obtain dried material with the most desirable rehydration and hygroscopic properties, a US power in the range of 120–160 W, preceded by a US pre-treatment lasting 20 min, should be selected. Conversely, optimizing the content of bioactive components would involve choosing the longest US treatment time and medium to high ultrasonic power during drying. These results provide actionable insights for the industry to tailor drying parameters based on the desired product attributes. Full article
(This article belongs to the Special Issue Innovative Technology in Food Analysis and Processing)
Show Figures

Graphical abstract

14 pages, 2783 KiB  
Article
Non-Destructive Prediction of Apple Moisture Content Using Thermal Diffusivity Phenomics for Quality Assessment
by Jung-Kyu Lee, Moon-Kyung Kang and Dong-Hoon Lee
Agriculture 2025, 15(8), 869; https://doi.org/10.3390/agriculture15080869 - 16 Apr 2025
Viewed by 452
Abstract
With the surge in digital farming, real-time quality management of fresh produce has become essential. For apples (Malus domestica Borkh.), consumer demand extends beyond sweetness, texture, and appearance to internal quality factors such as moisture content. Existing non-destructive methods, however, involve costly [...] Read more.
With the surge in digital farming, real-time quality management of fresh produce has become essential. For apples (Malus domestica Borkh.), consumer demand extends beyond sweetness, texture, and appearance to internal quality factors such as moisture content. Existing non-destructive methods, however, involve costly equipment, complex calibration, and sensitivity to environmental conditions. This study hypothesizes that thermal diffusivity indices derived from surface heating and cooling patterns can accurately predict apple moisture content non-destructively. A total of 823 apples from seven varieties were analyzed using a thermal imaging sensor in a 120-s process comprising 40 s of heating and 80 s of cooling. Key thermal diffusivity indices—minimum, maximum, mean, and max–min values—were extracted and correlated with actual moisture content measured via the drying method. Multiple linear regression and leave-one-out cross-validation confirmed that mean temperature-based models provided the most stable predictions (RCV2 ≥ 0.90 for some varieties). Frame optimization and artificial neural networks further improved prediction accuracy for varieties exhibiting higher variability. The proposed method is cost-effective, requires minimal calibration, and is less affected by surface reflectance, outperforming conventional optical methods (e.g., NIR spectroscopy, hyperspectral imaging), especially regarding robustness against surface reflectance variability and calibration complexity. This offers a practical solution for monitoring apple freshness and quality during sorting and distribution processes, with expanded research on sugar content and acidity expected to accelerate commercialization. Full article
Show Figures

Figure 1

18 pages, 1852 KiB  
Article
Impact of Advanced Impregnation Technologies on the Bioactivity, Bioaccessibility, and Quality of a Hydrolyzed Collagen-Enriched Apple Snack
by Helena Nuñez, Rodrigo Retamal, Aldonza Jaques, Marlene Pinto, Pedro Valencia, Mónika Valdenegro, Cristian Ramirez, Sergio Almonacid and Andrés Córdova
Foods 2025, 14(5), 817; https://doi.org/10.3390/foods14050817 - 27 Feb 2025
Viewed by 937
Abstract
The increasing demand for functional foods with added health benefits has driven the development of innovative food products. This study aimed to develop a functional snack made from Granny Smith apples enriched with hydrolyzed collagen using impregnation technologies, including vacuum impregnation (VI), ultrasound [...] Read more.
The increasing demand for functional foods with added health benefits has driven the development of innovative food products. This study aimed to develop a functional snack made from Granny Smith apples enriched with hydrolyzed collagen using impregnation technologies, including vacuum impregnation (VI), ultrasound (US), and moderate electric field (MEF), and pretreatment with CO2 laser microperforations (MPs) combined with drying methods, including conventional drying (CD) and refractance window drying (RW). The collagen content increased significantly across treatments, with MP-I achieving the highest retention (79.86 g/100 g db). Compared with VI-CD (3.8 mg GAE/g db), MP-RW drying resulted in more total polyphenols (up to 7.2 mg GAE/g db), which was attributed to its shorter drying time (55 min vs. 160 min). The RW treatments also better-preserved color quality, with higher a* (red tones) and b* (yellow tones) values, especially in the MP-RW and US-RW treatments, highlighting their advantages in maintaining visual appeal. Texture analysis revealed that RW drying produced slices with reduced hardness and increased crispness, with MP-RW resulting in the highest sensory crispness score (8.3). In vitro digestion demonstrated that the (VI) treatment resulted in the highest degree of collagen bioaccessibility (~90%), underscoring the effectiveness of this method in improving nutrient delivery compared with the 65% MP, ~70% US, and ~74% methods. The ~90% bioaccessibility is particularly noteworthy, as it indicates that a significant portion of the impregnated collagen remains available for absorption, reinforcing the potential of VI as a strategy for developing functional foods with enhanced nutritional benefits. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

Back to TopTop