Insights into Native Fermentation Process of Apples (Malus domestica) in Low Sodium Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Sample Preparation
2.3. Physical and Chemical Analysis
2.3.1. Mass Evaluation
2.3.2. Dry Matter
2.3.3. Titratable Acidity
2.3.4. Salinity
2.3.5. Reducing Sugar Concentration
2.3.6. Concentration of Cations
2.3.7. Phytochemical Analysis of Fresh and Fermented Apple
Total Phenolic Content (TPC) Determination
Total Flavonoid Content (TFC)
Determination of Total Carotenoids and Chlorophyll
2.4. Texture Analysis
2.5. Color Analysis
2.6. Statistical Analysis
3. Results
3.1. Physical and Chemical Analysis
3.1.1. Mass Evaluation
3.1.2. Dry Matter
3.1.3. Titratable Acidity
3.1.4. Salinity
3.1.5. Reducing Sugar
3.1.6. Concentration of Cations
3.1.7. The Results of Phytochemical Analysis
3.2. Texture Analysis
3.3. Color Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yousefi, M.; Arianfar, A.; Hakimzadeh, V.; Rafe, A. Enhancing the Texture and Sensory Properties of Pickled Cucumbers with Different Brine Solutions. Foods 2025, 14, 336. [Google Scholar] [CrossRef]
- Knez, E.; Kadac-Czapska, K.; Grembecka, M. Fermented Vegetables and Legumes vs. Lifestyle Diseases: Microbiota and More. Life 2023, 13, 1044. [Google Scholar] [CrossRef]
- Bautista-Gallego, J.; Rantsiou, K.; Garrido-Fernández, A.; Cocolin, L.; Arroyo-López, F.N. Salt Reduction in Vegetable Fermentation: Reality or Desire? J. Food Sci. 2013, 78, R1095–R1100. [Google Scholar] [CrossRef]
- Panagou, E.Z.; Hondrodimou, O.; Mallouchos, A.; Nychas, G.-J.E. A Study on the Implications of NaCl Reduction in the Fermentation Profile of Conservolea Natural Black Olives. Food Microbiol. 2011, 28, 1301–1307. [Google Scholar] [CrossRef]
- Zinno, P.; Guantario, B.; Perozzi, G.; Pastore, G.; Devirgiliis, C. Impact of NaCl Reduction on Lactic Acid Bacteria during Fermentation of Nocellara Del Belice Table Olives. Food Microbiol. 2017, 63, 239–247. [Google Scholar] [CrossRef]
- Öztürk Güngör, F.; Özdestan Ocak, Ö.; Ünal, M.K. Effects of Different Preservation Methods and Storage on Spanish-Style Domat Olives Fermented with Different Chloride Salts. J. Food Process. Preserv. 2022, 46, e15236. [Google Scholar] [CrossRef]
- Mahdi, Z.A.; Al-Khatib, A.M.; Fneich, B. Replacement of Sodium Chloride by Potassium Chloride in Armenian Cucumber “Cucumis Melo Var. Flexuosu” Pickles: Sensory and Microbiological Evaluation. Middle East J. Appl. Sci. 2020, 10, 755–761. [Google Scholar] [CrossRef]
- Li, Z.; Xie, S.; Sun, B.; Zhang, Y.; Liu, K.; Liu, L. Effect of KCl Replacement of NaCl on Fermentation Kinetics, Organic Acids and Sensory Quality of Sauerkraut from Northeast China. J. Food Process. Preserv. 2022, 46, e16622. [Google Scholar] [CrossRef]
- Özer, C.; Yıldırım, H.K. Some Special Properties of Fermented Products with Cabbage Origin: Pickled Cabbage, Sauerkraut and Kimchi. Turk. J. Agric. Food Sci. Technol. 2019, 7, 490–497. [Google Scholar] [CrossRef]
- Salanță, L.-C.; Păucean, A.; Tofană, M.; Man, S.; Pop, C. Romanian Cuisine: Culinary Habits and Local Produce. J. Agroaliment. Process. Technol. 2015, 21, 186–191. [Google Scholar]
- Asale, Y.; Dessalegn, E.; Assefa, D.; Abdisa, M. Phytochemicals and Antioxidant Activity of Different Apple Cultivars Grown in South Ethiopia: Case of the Wolayta Zone. Int. J. Food Prop. 2021, 24, 354–363. [Google Scholar] [CrossRef]
- Boyer, J.; Liu, R.H. Apple Phytochemicals and Their Health Benefits. Nutr. J. 2004, 3, 5. [Google Scholar] [CrossRef]
- Delgado-Pelayo, R.; Gallardo-Guerrero, L.; Hornero-Méndez, D. Chlorophyll and Carotenoid Pigments in the Peel and Flesh of Commercial Apple Fruit Varieties. Food Res. Int. 2014, 65, 272–281. [Google Scholar] [CrossRef]
- Jia, K.-P.; Baz, L.; Al-Babili, S. From Carotenoids to Strigolactones. J. Exp. Bot. 2018, 69, 2189–2204. [Google Scholar] [CrossRef]
- ISO 1026:1982; Fruit and Vegetable Products—Determination of Dry Matter Content by Drying Under Reduced Pressure and of Water Content by Azeotropic Distillation. ISO: Geneva, Switzerland, 1982. Available online: https://www.iso.org/standard/5498.html (accessed on 3 July 2025).
- Zhou, Q.; Zheng, Z.; Li, L.; Gao, J.; Wu, Y.; Yang, F.; Zhong, K.; Gao, H. Effects of Variety on Quality and Taste of Spontaneous Fermented Dried Radish. Food Sci. Technol 2023, 43, e125322. [Google Scholar] [CrossRef]
- Constandache, D.; Andronoiu, D.-G.; Nistor, O.V.; Constantin, O.E.; Moraru, D.I.; Simionov, I.-A.; Botez, E.; Mocanu, G.-D. The Impact of Total Replacement of Sodium Chloride with Potassium and Magnesium Chloride on Pickling of Granny Smith Apples. Appl. Sci. 2025, 15, 3924. [Google Scholar] [CrossRef]
- Shan, B.; Cai, Y.Z.; Sun, M.; Corke, H. Antioxidant Capacity of 26 Spice Extracts and Characterization of Their Phenolic Constituents. J. Agric. Food Chem. 2005, 53, 7749–7759. [Google Scholar] [CrossRef]
- Escoto, D.F.; Ramborger, B.P.; Gayer, M.C.; Rodrigues, D.T.; Gasparoto Denardin, E.L.; Roehrs, R.; Roehrs, M. Lycopene Extraction and Analysis. In Lycopene: Food Sources, Potential Role in Human Health and Antioxidant Effects; Nova Science Publishers: New York, NY, USA, 2015; pp. 91–105. [Google Scholar]
- Gao, L.; Zhang, H.; Wang, H.; Li, A.-C.; Wu, M.; Wang, Q.-Z.; Zheng, Z.-A. Quality Evaluation and Browning Control in the Multi-Stage Processing of Mume Fructus (Wumei). Foods 2024, 13, 272. [Google Scholar] [CrossRef]
- Hien, T.T.; Truc, T.T.; Muoi, N.V. Effect of Salt Concentration and pH Value on the Lactic Fermentation Process of Kohlrabi (Brassica Oleracea L.). Res. Innov. Food Sci. Technol. 2022, 10, 399–412. [Google Scholar] [CrossRef]
- Chen, M.; Wang, X.; Liu, Y.; Li, P.; Wang, R.; Jiang, L. Discoloration Investigations of Yellow Lantern Pepper Sauce (Capsicum Chinense Jacq.) Fermented by Lactobacillus Plantarum: Effect of Carotenoids and Physiochemical Indices. Molecules 2022, 27, 7139. [Google Scholar] [CrossRef]
- Fadhil, R.; Hayati, R.; Agustina, R. Quality Characteristics of Sauerkraut from Cabbage (Brassica Oleracea) during Fermentation and Variation of Salt Concentration. Int. J. Sci. Technol. Res. 2019, 8, 2906–2909. [Google Scholar]
- Anoraga, S.B.; Sari, A.R.; Wikarta, J.; Sabarisman, I. Preliminary Study on the Fermentation Medium of the Black Garlic Production. IOP Conf. Ser. Earth Environ. Sci. 2021, 686, 012059. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, G.; Wang, D.; Hu, R.; Li, H.; Liu, S.; Zhang, Q.; Ming, J.; Chi, Y. Effects of Dry-Salting and Brine-Pickling Processes on the Physicochemical Properties, Nonvolatile Flavour Profiles and Bacterial Community during the Fermentation of Chinese Salted Radishes. LWT 2022, 157, 113084. [Google Scholar] [CrossRef]
- Zong, K.; Jin, F.; Wang, D.; Hu, H.; Cui, H.; Yang, J. Effects of Different Pickling Methods on Physicochemical Properties and Flavor Profiles of Tongling White Ginger: Dry-Salting, Brine-Pickling, and Inoculation-Pickling. Food Sci. Nutr. 2024, 12, 2597–2610. [Google Scholar] [CrossRef]
- Chen, Y.; Gong, H.; Wang, J.; Liu, T.; Zhao, M.; Zhao, Q. Study on the Improvement of Quality Characteristics of Pickles During Fermentation and Storage. Foods 2024, 13, 3989. [Google Scholar] [CrossRef]
- Lee, D.-Y.; Park, S.-E.; Kim, E.-J.; Kim, H.-W.; Cho, K.-M.; Kwon, S.J.; Roh, S.W.; Kwak, S.; Whon, T.W.; Son, H.-S. A Comparative Study of the Physicochemical, Microbial, and Metabolic Profiling of Kimchi during Long-Term Fermentation Under Varying Salinity Conditions. LWT 2024, 196, 115838. [Google Scholar] [CrossRef]
- George, F.; Daniel, C.; Thomas, M.; Singer, E.; Guilbaud, A.; Tessier, F.J.; Revol-Junelles, A.-M.; Borges, F.; Foligné, B. Occurrence and Dynamism of Lactic Acid Bacteria in Distinct Ecological Niches: A Multifaceted Functional Health Perspective. Front. Microbiol. 2018, 9, 2899. [Google Scholar] [CrossRef]
- Di Cagno, R.; Coda, R.; De Angelis, M.; Gobbetti, M. Exploitation of Vegetables and Fruits through Lactic Acid Fermentation. Food Microbiol. 2013, 33, 1–10. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front. Bioeng. Biotechnol. 2021, 9, 612285. [Google Scholar] [CrossRef]
- Wang, E.; Lv, X.; Liu, S.; Dong, Q.; Li, J.; Li, H.; Su, B. A Selective Separation Mechanism for Mono/Divalent Cations and Properties of a Hollow-Fiber Composite Nanofiltration Membrane Having a Positively Charged Surface. Membranes 2024, 14, 1. [Google Scholar] [CrossRef]
- Francini, A.; Sodini, M.; Vicario, G.; Raffaelli, A.; Gucci, R.; Caruso, G.; Sebastiani, L. Cations and Phenolic Compounds Concentrations in Fruits of Fig Plants Exposed to Moderate Levels of Salinity. Antioxidants 2021, 10, 1865. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.J.N.; Sanches, M.A.R.; Polachini, T.C.; de Oliveira, E.B.; Coimbra, J.S.d.R.; Telis-Romero, J. Solubility of Different Salts Used in the Control of the Water Activity of Foods. Ciênc. Agrotec. 2023, 47, e018722. [Google Scholar] [CrossRef]
- Jahnen-Dechent, W.; Ketteler, M. Magnesium Basics. Clin. Kidney J. 2012, 5, i3–i14. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhang, J. Chloride-Induced Stress Corrosion Cracking of Used Nuclear Fuel Welded Stainless Steel Canisters: A Review. J. Nucl. Mater. 2015, 466, 85–93. [Google Scholar] [CrossRef]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Valéro, J.R. Solid-State Fermentation of Apple Pomace Using Phanerocheate chrysosporium—Liberation and Extraction of Phenolic Antioxidants. Food Chem. 2011, 126, 1071–1080. [Google Scholar] [CrossRef]
- Charde, M.; Chakole, R.D.; Ahmed, A. Apple phytochemicals for human benefits. Int. J. Pharmacol. Res. 2011, 1, 40–55. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, H.; Wang, Y.; Nussio, L.G.; Yang, F.; Ni, K. Insights into Fermentation with Lactic Acid Bacteria on the Flavonoids Biotransformation of Alfalfa Silage. Chem. Biol. Technol. Agric. 2024, 11, 73. [Google Scholar] [CrossRef]
- Ahrazem, O.; Gómez-Gómez, L.; Rodrigo, M.J.; Avalos, J.; Limón, M.C. Carotenoid Cleavage Oxygenases from Microbes and Photosynthetic Organisms: Features and Functions. Int. J. Mol. Sci. 2016, 17, 1781. [Google Scholar] [CrossRef]
- Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limon, M.C.; Meléndez-Martínez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A Global Perspective on Carotenoids: Metabolism, Biotechnology, and Benefits for Nutrition and Health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef]
- Mapelli-Brahm, P.; Barba, F.J.; Remize, F.; Garcia, C.; Fessard, A.; Mousavi Khaneghah, A.; Sant’Ana, A.S.; Lorenzo, J.M.; Montesano, D.; Meléndez-Martínez, A.J. The Impact of Fermentation Processes on the Production, Retention and Bioavailability of Carotenoids: An Overview. Trends Food Sci. Technol. 2020, 99, 389–401. [Google Scholar] [CrossRef]
- Cakir, M.A.; Helvacioglu, I. Bioavailability and Health Effects of Some Carotenoids by Different Cooking Methods. Int. J. Gastron. Res. 2023, 2, 70–77. [Google Scholar] [CrossRef]
- Pérez-Llorca, M.; Muñoz, P.; Müller, M.; Munné-Bosch, S. Biosynthesis, Metabolism and Function of Auxin, Salicylic Acid and Melatonin in Climacteric and Non-Climacteric Fruits. Front. Plant Sci. 2019, 10, 136. [Google Scholar] [CrossRef]
- Yoo, K.M.; Hwang, I.K.; Eog Jr, G.; Moon, B. Effects of Salts and Preheating Temperature of Brine on the Texture of Pickled Cucumbers. J. Food Sci. 2006, 71, C97–C101. [Google Scholar] [CrossRef]
- Gu, Y.S.; Howard, L.R.; Wagner, A.B. Physicochemical Factors Affecting Firmness of Pasteurized Jalapeno Pepper Rings. J. Food Qual. 1999, 22, 619–629. [Google Scholar] [CrossRef]
- Llorca, E.; Puig, A.; Hernando, I.; Salvador, A.; Fiszman, S.M.; Lluch, M.A. Effect of Fermentation Time on Texture and Microstructure of Pickled Carrots. J. Sci. Food Agric. 2001, 81, 1553–1560. [Google Scholar] [CrossRef]
- Adebo, O.A.; Gabriela Medina-Meza, I. Impact of Fermentation on the Phenolic Compounds and Antioxidant Activity of Whole Cereal Grains: A Mini Review. Molecules 2020, 25, 927. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Adhikari, B.; Fang, Z. Fermentation Transforms the Phenolic Profiles and Bioactivities of Plant-Based Foods. Biotechnol. Adv. 2021, 49, 107763. [Google Scholar] [CrossRef]
- McFeeters, R.F.; Pérez-Díaz, I. Fermentation of Cucumbers Brined with Calcium Chloride Instead of Sodium Chloride. J. Food Sci. 2010, 75, C291–C296. [Google Scholar] [CrossRef]
- Hayek, S.A.; Ibrahim, S.A. Current Limitations and Challenges with Lactic Acid Bacteria: A Review. FNS 2013, 4, 73–87. [Google Scholar] [CrossRef]
- Alvanoudi, P.; Ordoudi, S.A.; Nakas, A.; Assimopoulou, A.N.; Mantzouridou, F.T. Brine Volatilome Changes Along the Spontaneous Fermentation of Spanish-Style Cv. Chalkidiki Green Olives Under High and Low NaCl Conditions. Food Bioprocess. Technol. 2024, 17, 1462–1478. [Google Scholar] [CrossRef]
7 Days | 14 Days | 21 Days | 28 Days | 35 Days | |
---|---|---|---|---|---|
NaCl | 0 ± 0.01 A | −0.33 ± 0.02 B | −0.97 ± 0.01 C | −1.26 ± 0.02 D | 0.94 ± 0.02 E |
KCl | 0 ± 0.01 A | −0.24 ± 0.01 B | −1.25 ± 0.02 B | −1.01 ± 0.02 C | −0.67 ± 0.02 D |
MgCl2 | 0 ± 0.02 A | −0.32 ± 0.01 B | −1.25 ± 0.01 C | −2.10 ± 0.01 D | −0.97 ± 0.01 E |
Fermentation Interval | KCl | NaCl | MgCl2 |
---|---|---|---|
7 days | 5.71 ± 0.01 a | 14.00 ± 0.09 a | 97.3 ± 1.63 a |
14 days | 4.56 ± 0.03 a | 15.31 ± 0.17 a,d | 59.0 ± 4.15 b |
21 days | 7.50 ± 0.009 a,b | 21.02 ± 0.08 b | 55.4 ± 2.93 c |
28 days | 7.25 ± 0.03 a | 17.71 ± 0.17 c,d | 42.8 ± 1.63 d |
35 days | 10.41 ± 0.10 b | 12.5 ± 0.24 a | 78.6 ± 1.22 e |
Fermentation Time, Days | Phytochemical Compounds | |||||
---|---|---|---|---|---|---|
TPC mg GAE/g d.w. | TFC, mg EQ/g d.w. | TC, mg/g d.w. | β-Carotene, mg/g d.w. | Lycopene, mg/g d.w. | Chl, μg/g d.w. | |
NaCl | ||||||
0 | 5.95 ± 0.63 E | 7.23 ± 0.30 E | 1.59 ± 0.01 D | 1.03 ± 0.00 B,C | 0.45 ± 0.05 E | 15.40 ± 0.00 B |
7 | 10.93 ± 0.58 D | 9.57 ± 0.40 D | 1.89 ± 0.21 B,C | 1.12 ± 0.00 A | 0.57 ± 0.07 C,D | 16.60 ± 0.00 A |
14 | 11.85 ± 0.77 C | 12.30± 0.43 C | 2.04 ± 0.07 A,B | 1.25 ± 0.00 A | 0.67 ± 0.04 B | 15.70 ± 0.12 B |
21 | 12.32 ± 0.38 B,C | 13.04 ± 0.39 B | 2.16 ± 0.01 A | 1.07 ± 0.02 A,B | 0.82 ± 0.00 A | 14.30 ± 0.00 C |
28 | 13.65 ± 0.17 B | 13.34 ± 0.79 A | 1.70 ±0.02 C | 0.95 ± 0.02 B,C | 0.66 ± 0.01 C | 14.00 ± 0.14 C |
35 | 19.88 ± 0.41 A | 15.26 ± 0.42 A | 1.32 ± 0.09 D | 0.76 ± 0.02 C | 0.52 ± 0.01 D | 16.30 ± 0.00 A |
KCl | ||||||
7 | 8.69 ± 0.32 D | 8.03 ± 0.35 D | 2.25 ± 0.26 B,C | 1.46 ± 0.02 A | 0.63 ± 0.00 C,D | 15.60 ± 0.00 A |
14 | 12.34 ± 0.43 C | 10.44 ± 0.12 C | 2.56 ± 0.01 A,B | 1.35 ± 0.13 A | 0.74 ± 0.08 B | 15.00 ± 0.03 B |
21 | 15.65 ± 0.21 B,C | 13.02 ± 0.20 B | 2.64 ± 0.02 A | 1.24 ± 0.01 A,B | 0.90 ± 0.00 A | 14.00 ± 0.00 C |
28 | 16.52 ± 0.44 B | 16.24 ± 0.13 A | 1.90 ± 0.03 C | 1.16 ± 0.00 B,C | 0.68 ± 0.01 C | 13.50 ± 0.00 C |
35 | 16.81 ± 0.76 A | 16.30 ± 0.33 A | 1.52 ± 0.02 D | 1.01 ± 0.01 C | 0.48 ± 0.01 D | 16.70 ± 0.01 A |
MgCl2 | ||||||
7 | 9.23 ± 0.37 D | 9.21 ± 0.50 D | 2.24 ± 0.14 B,C | 1.44 ± 0.00 A | 0.65 ± 0.00 C,D | 18.20 ± 0.00 A |
14 | 13.04 ± 0.32 C | 12.08 ± 0.77 C | 2.30 ± 0.04 A,B | 1.40 ± 0.02 A | 0.87 ± 0.01 B | 14.00 ± 0.14 B |
21 | 14.02 ± 0.76 B,C | 13.49± 0.93 B | 2.43 ± 0.05 A | 1.28 ± 0.00 A,B | 0.93 ± 0.01 A | 13.80 ± 0.14 C |
28 | 15.27 ± 0.32 B | 13.77 ± 0.21 A | 1.99 ± 0.05 C | 1.25 ± 0.00 B,C | 0.67 ± 0.01 C | 13.40 ± 0.14 C |
35 | 16.53 ± 0.21 A | 15.21 ± 0.61 A | 1.80 ± 0.11 D | 1.09 ± 0.01 C | 0.67 ± 0.01 D | 16.60 ± 0.01 A |
Days of Fermentation | 0 | 7 | 14 | 21 | 28 | 35 |
---|---|---|---|---|---|---|
NaCl | ||||||
Firmness, N | 2.53 ± 0.08 A | 2.13 ± 0.02 B | 2.01 ± 0.04 B | 0.95 ± 0.02 C | 0.93 ± 0.01 C | 0.95 ± 0.02 C |
Cohesiveness | 0.64 ± 0.01 A | 0.52 ± 0.01 B | 0.48 ± 0.02 C | 0.45 ± 0.01 D | 0.45 ± 0.01 D | 0.45 ± 0.01 D |
Springiness, mm | 2.53 ± 0.01 A | 2.16 ± 0.06 B | 1.98 ± 0.02 C | 1.47 ± 0.03 D | 1.46 ± 0.03 D | 1.44 ± 0.01 D |
Chewiness, mJ | 4.27 ± 0.04 A | 3.12 ± 0.04 B | 2.17 ± 0.04 C | 1.06 ± 0.02 D | 1.05 ± 0.02 D | 1.03 ± 0.01 D |
KCl | ||||||
Firmness, N | 2.53 ± 0.08 A | 2.06 ± 0.04 B | 1.93 ± 0.09 B | 0.73 ± 0.02 C | 0.72 ± 0.02 C | 0.72 ± 0.02 C |
Cohesiveness | 0.64 ± 0.01 A | 0.50 ± 0.01 B | 0.46 ± 0.02 C | 0.41 ± 0.02 D | 0.40 ± 0.02 D | 0.40 ± 0.01 D |
Springiness, mm | 2.53 ± 0.01 A | 2.07 ± 0.07 B | 1.82 ± 0.04 C | 1.26 ± 0.05 D | 1.24 ± 0.03 D | 1.25 ± 0.02 D |
Chewiness, mJ | 4.27 ± 0.04 A | 3.03 ± 0.08 B | 1.92 ± 0.08 C | 0.74 ± 0.01 D | 0.74 ± 0.01 D | 0.73 ± 0.04 D |
MgCl2 | ||||||
Firmness, N | 2.53 ± 0.08 A | 2.11 ± 0.05 B | 2.00 ± 0.04 B | 1.12 ± 0.02 C | 1.12 ± 0.02 C | 1.11 ± 0.02 C |
Cohesiveness | 0.64 ± 0.01 A | 0.51 ± 0.01 B | 0.47 ± 0.01 C | 0.45 ± 0.01 D | 0.44 ± 0.02 D | 0.44 ± 0.02 D |
Springiness, mm | 2.53 ± 0.01 A | 2.18 ± 0.05 B | 1.99 ± 0.04 C | 1.49 ± 0.02 D | 1.47 ± 0.01 D | 1.49 ± 0.05 D |
Chewiness, mJ | 4.27 ± 0.04 A | 3.14 ± 0.06 B | 2.09 ± 0.09 C | 1.03 ± 0.02 D | 1.02 ± 0.02 D | 1.02 ± 0.05 D |
Parameter | Fermentation Intervals, Days | |||||
---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | 35 | |
NaCl | ||||||
L* | 69.19 ± 0.77 D | 74.00 ± 0.31 A | 72.82 ± 0.84 A,B | 72.26 ± 0.53 B,C | 70.98 ± 0.58 C,D | 69.09 ± 0.77 D |
a* | 6.05 ± 0.57 A | 3.92 ± 0.39 B | 2.65 ± 0.11 C | 2.59 ± 0.15 C,D | 2.48 ± 0.29 D | 2.35 ± 0.14 D |
b* | 30.51 ± 0.18 A | 26.79 ± 0.52 B | 26.24 ± 0.40 B | 25.61 ± 0.45 B,C | 24.08 ± 0.86 C,D | 22.32 ± 0.87 D |
C* | 31.11 ± 0.29 A | 27.07 ± 0.56 B | 26.37 ± 0.41 B,C | 25.74 ± 0.46 C,D | 24.21 ± 0.87 D,E | 22.45 ± 0.87 E |
h* | 78.79 ± 0.97 C | 81.67 ± 0.69 B | 84.22 ± 0.16 A | 84.23 ± 0.29 A | 84.12 ± 0.62 A | 83.98 ± 0.34 A |
BI | 63.09 ± 1.99 A | 47.83 ± 1.19 B | 46.29 ± 1.36 B | 45.36 ± 1.41 B,C | 43.12 ± 1.30 C,D | 40.69 ± 2.17 D |
WI | 56.21 ± 0.75 B | 62.46 ± 0.23 A | 62.12 ± 0.35 A | 62.16 ± 0.69 A | 62.21 ± 0.76 A | 61.78 ± 0.48 A |
YI | 63.01 ± 1.08 A | 51.71 ± 0.82 B | 51.48 ± 0.34 B,C | 50.64 ± 1.23 B,C | 48.50 ± 1.77 C,D | 46.18 ± 2.01 D |
KCl | ||||||
L* | 69.19 ± 0.77 D | 72.19 ± 0.77 A | 71.89 ± 0.31 A,B | 70.99 ± 0.87 B,C | 69.34 ± 0.69 C,D | 67.20 ± 1.09 D |
a* | 6.05 ± 0.57 A | 3.72 ± 0.12 B | 2.84 ± 0.39 C | 2.41 ± 0.26 C,D | 2.39 ± 0.20 D | 2.13 ± 0.10 D |
b* | 30.51 ± 0.18 A | 26.37 ± 0.78 B | 25.87 ± 0.52 B | 24.27 ± 0.27 B,C | 23.58 ± 0.87 C,D | 22.78 ± 1.11 D |
C* | 31.11 ± 0.29 A | 26.63 ± 0.78 B | 26.03 ± 0.55 B,C | 24.39 ± 0.29 C,D | 23.70 ± 0.89 D,E | 22.88 ± 1.10 E |
h* | 78.79 ± 0.97 C | 81.98 ± 0.14 B | 83.74 ± 0.76 A | 84.34 ± 0.57 A | 84.22 ± 0.30 A | 84.65 ± 0.39 A |
BI | 63.09 ± 1.99 A | 48.21 ± 1.59 B | 46.47 ± 1.50 B | 43.35 ± 1.33 B,C | 43.15 ± 1.34 C,D | 42.76 ± 1.77 D |
WI | 56.21 ± 0.75 B | 61.49 ± 0.59 A | 61.68 ± 0.46 A | 62.09 ± 0.49 A | 61.25 ± 0.64 A | 60.00 ± 0.53 A |
YI | 63.01 ± 1.08 A | 52.18 ± 1.39 B | 51.42 ± 1.09 B,C | 48.83 ± 1.43 B,C | 48.58 ± 2.07 C,D | 48.42 ± 1.78 D |
MgCl2 | ||||||
L* | 69.19 ± 0.77 D | 74.50 ± 1.14 A | 73.39 ± 0.49 A,B | 73.11 ± 0.26 B,C | 71.40 ± 0.58 C,D | 70.81 ± 0.77 D |
a* | 6.05 ± 0.57 A | 4.17 ± 0.16 B | 2.98 ± 0.48 C | 2.74 ± 0.19 C,D | 2.30 ± 0.21 D | 2.16 ± 0.19 D |
b* | 30.51 ± 0.18 A | 27.12 ± 0.12 B | 26.40 ± 0.14 B | 26.19 ± 0.17 B,C | 25.02 ± 0.77 C,D | 24.38 ± 0.63 D |
C* | 31.11 ± 0.29 A | 27.44 ± 0.12 B | 26.57 ± 0.18 B,C | 26.34 ± 0.17 C,D | 25.13 ± 0.76 D,E | 24.48 ± 0.62 E |
h* | 78.79 ± 0.97 C | 81.26 ± 0.34 B | 83.56 ± 0.99 A | 84.04 ± 0.41 A | 84.75 ± 0.49 A | 84.94 ± 0.47 A |
BI | 63.09 ± 1.99 A | 48.37 ± 0.86 B | 46.52 ± 0.45 B | 46.06 ± 0.46 B,C | 44.50 ± 1.37 C,D | 43.45 ± 1.14 D |
WI | 56.21 ± 0.75 B | 62.53 ± 0.72 A | 62.40 ± 0.25 A | 62.36 ± 0.24 A | 61.93 ± 0.79 A | 61.90 ± 0.57 A |
YI | 63.01 ± 1.08 A | 52.01 ± 0.61 B | 51.39 ± 0.23 B,C | 51.19 ± 0.43 B,C | 50.07 ± 0.75 C,D | 49.19 ± 1.18 D |
Brine Sol. | Variables | Reducing Sugars | Fermentable Sugars | Reducing Uronic Acids | Fermentable Uronic Acid | Lactic Acid | Total Polyphenols | Total Flavonoids | Firmness | Cohesi-veness |
---|---|---|---|---|---|---|---|---|---|---|
NaCl | Reducing sugars | 1 | ||||||||
KCl | 1 | |||||||||
MgCl2 | 1 | |||||||||
NaCl | Fermentable sugars | 0.905 | 1 | |||||||
KCl | 0.867 | 1 | ||||||||
MgCl2 | 0.912 | 1 | ||||||||
NaCl | Reducing uronic acids | 0.888 | 0.984 | 1 | ||||||
KCl | 0.962 | 0.862 | 1 | |||||||
MgCl2 | 0.859 | 0.854 | 1 | |||||||
NaCl | Fermentable uronic acids | 0.919 | 0.899 | 0.868 | 1 | |||||
KCl | 0.969 | 0.922 | 0.918 | 1 | ||||||
MgCl2 | 0.846 | 0.952 | 0.724 | 1 | ||||||
NaCl | Lactic acid | −0.928 | −0.958 | −0.909 | −0.953 | 1 | ||||
KCl | −0.922 | −0.955 | −0.942 | −0.960 | 1 | |||||
MgCl2 | −0.951 | −0.945 | −0.859 | −0.842 | 1 | |||||
NaCl | Total polyphenols | −0.842 | −0.928 | −0.884 | −0.860 | 0.964 | 1 | |||
KCl | −0.961 | −0.891 | −0.984 | −0.923 | 0.952 | 1 | ||||
MgCl2 | −0.985 | −0.884 | −0.860 | −0.775 | 0.970 | 1 | ||||
NaCl | Total flavonoids | −0.787 | −0.951 | −0.936 | −0.895 | 0.925 | 0.922 | 1 | ||
KCl | −0.951 | −0.930 | −0.971 | −0.967 | 0.987 | 0.957 | 1 | |||
MgCl2 | −0.981 | −0.908 | −0.897 | −0.789 | 0.974 | 0.995 | 1 | |||
NaCl | Firmness | 0.862 | 0.887 | 0.927 | 0.915 | −0.847 | −0.778 | −0.891 | 1 | |
KCl | 0.984 | 0.880 | 0.970 | 0.934 | −0.908 | −0.964 | −0.943 | 1 | ||
MgCl2 | 0.924 | 0.840 | 0.974 | 0.732 | −0.878 | −0.920 | −0.937 | 1 | ||
NaCl | Cohesiveness | 0.608 | 0.887 | 0.835 | 0.771 | −0.772 | −0.817 | −0.936 | 0.857 | 1 |
KCl | 0.862 | 0.875 | 0.901 | 0.809 | −0.877 | −0.952 | −0.856 | 0.899 | 1 | |
MgCl2 | 0.919 | 0.694 | 0.754 | 0.671 | −0.840 | −0.945 | −0.923 | 0.863 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Constandache, D.; Andronoiu, D.-G.; Nistor, O.V.; Moraru, D.I.; Simionov, I.-A.; Botez, E.; Mocanu, G.-D. Insights into Native Fermentation Process of Apples (Malus domestica) in Low Sodium Conditions. Appl. Sci. 2025, 15, 7799. https://doi.org/10.3390/app15147799
Constandache D, Andronoiu D-G, Nistor OV, Moraru DI, Simionov I-A, Botez E, Mocanu G-D. Insights into Native Fermentation Process of Apples (Malus domestica) in Low Sodium Conditions. Applied Sciences. 2025; 15(14):7799. https://doi.org/10.3390/app15147799
Chicago/Turabian StyleConstandache (Lungeanu), Daniela, Doina-Georgeta Andronoiu, Oana Viorela Nistor, Dana Iulia Moraru, Ira-Adeline Simionov, Elisabeta Botez, and Gabriel-Dănuț Mocanu. 2025. "Insights into Native Fermentation Process of Apples (Malus domestica) in Low Sodium Conditions" Applied Sciences 15, no. 14: 7799. https://doi.org/10.3390/app15147799
APA StyleConstandache, D., Andronoiu, D.-G., Nistor, O. V., Moraru, D. I., Simionov, I.-A., Botez, E., & Mocanu, G.-D. (2025). Insights into Native Fermentation Process of Apples (Malus domestica) in Low Sodium Conditions. Applied Sciences, 15(14), 7799. https://doi.org/10.3390/app15147799