Conventional vs. Photoselective Nets: Impacts on Tree Physiology, Yield, Fruit Quality and Sunburn in “Gala” Apples Grown in Mediterranean Climate
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Agronomic Determinations
2.3. Physiological Determinations
2.4. Fruit Quality Determinations
2.5. Statistical Analyses
3. Results and Discussion
3.1. Productivity and Vegetative Growth
3.2. Physiological Parameters
3.3. Fruit Quality and Economic Evaluation
3.3.1. Fruit Temperatures and Sunburn Damage
3.3.2. Fruit Weight and Economic Evaluation
3.3.3. Fruit Quality Parameters
3.4. Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
An | cumulative photosynthetic rate |
B | blue (light range) |
CCI | chlorophyll content index |
Ci | intracellular CO2 concentration |
CO2 | carbon dioxide |
CTIFL | Centre Technique Interprofessionnel des Fruits et Légumes |
E | transpiration rate |
FR | far-red (light range) |
Fv/Fm | maximum quantum efficiency of photosystem II with dark adaptation |
Fv’/Fm’ | maximum quantum efficiency of photosystem II without dark adaptation |
gs | stomatal conductance |
HDPE | high-density polyethylene |
IRGA | infra-red gas analyzer |
KMO | Kaiser–Meyer–Olkim |
MSA | measure sampling adequacy |
NDVI | normalized difference vegetation index |
NIR | near infrared |
NPQ | non-photochemical quenching |
PAR | photosynthetic active radiation |
PCA | principal component analysis |
PC | principal components |
PRI | photochemical reflectance index |
R | red (light range) |
RGR | relative growth rate |
SLA | specific leaf area |
SSC | soluble solids content |
TCSA | trunk cross-sectional area |
TFE | temperature of fruit at the exterior of canopy |
TLE | temperature of leaf at the exterior of canopy |
UV | ultraviolet |
References
- Manja, K.; Aoun, M. The use of nets for tree fruit crops and their impact on the production: A review. Sci. Hortic. 2019, 246, 110–122. [Google Scholar] [CrossRef]
- Vuković, M.; Jurić, S.; Maslov, B.L.; Levaj, B.; Fu, D.Q.; Jemrić, T. Sustainable food production: Innovative netting concepts and their mode of action on fruit crops. Sustainability 2022, 14, 9264. [Google Scholar] [CrossRef]
- Mupambi, G.; Anthony, B.M.; Layne, D.R.; Musacchi, S.; Serra, S.; Schmidt, T.; Kalcsits, L.A. The influence of protective netting on tree physiology and fruit quality of apple: A review. Sci. Hortic. 2018, 236, 60–72. [Google Scholar] [CrossRef]
- Amarante, C.V.T.; Steffens, C.A.; Miqueloto, A.; Zanardi, O.Z.; Santos, H.P. Light supply to ‘Fuji’ apple trees covered with hail protection nets and its effects on photosynthesys, yield and fruit quality. Rev. Bras. Frutic. 2009, 31, 664–670. [Google Scholar] [CrossRef]
- Iglesias, I.; Alegre, S. The effect of anti-hail nets on fruit protection, radiation, temperature, quality and profitability of ‘Mondial Gala’ apples. J. Appl. Hortic. 2006, 8, 91–100. [Google Scholar] [CrossRef]
- Pandey, G.; Parks, S.; Thomas, R.G. Polymer and photo-selective covers on plant and fruit development: A review. Agron. J. 2023, 115, 3074–3091. [Google Scholar] [CrossRef]
- Shahak, Y.; Ratner, K.; Giller, Y.E.; Zur, N.; Or, E.; Gussakovsky, E.E.; Stern, R.; Sarig, P.; Raban, E.; Harcavi, E.; et al. Improving solar energy utilization, productivity and fruit quality in orchards and vineyards by photoselective netting. Acta Hortic. 2008, 772, 65–72. [Google Scholar] [CrossRef]
- Amarante, C.V.T.; Steffens, C.A.; Argenta, L.C. Yield and fruit quality of ‘Gala’ and ‘Fuji’ apple trees protected by white anti-hail net. Sci. Hortic. 2011, 129, 79–85. [Google Scholar] [CrossRef]
- Mihaljević, I.; Lepeduš, H.; Šimić, D.; Viljevac, V.M.; Tomaš, V.; Vuković, D.; Dugalić, K.; Teklić, T.; Babojelić, M.S.; Zdunić, Z. Photochemical efficiency of photosystem II in two apple cultivars affected by elevated temperature and excess light in vivo. S. Afr. J. Bot. 2020, 130, 316–326. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Ramakrishnan, M.; Singh Sidhu, G.P.; Bali, A.S.; Handa, N.; Kapoor, D.; Yadav, P.; Khanna, K.; et al. Photosynthetic response of plants under different abiotic stresses: A review. J. Plant Growth Regul. 2020, 39, 509–531. [Google Scholar] [CrossRef]
- Serra, S.; Borghi, S.; Mupambi, G.; Camargo-Alvarez, H.; Layne, D.; Schmidt, T.; Kalcsits, L.; Musacchi, S. Photoselective protective netting improves “Honeycrisp” fruit quality. Plants 2020, 9, 1708. [Google Scholar] [CrossRef]
- McCaskill, M.R.; McClymont, L.; Goodwin, I.; Green, S.; Partington, D.L. How hail netting reduces apple fruit surface temperature: A microclimate and modelling study. Agric. Meteorol. 2016, 226–227, 148–160. [Google Scholar]
- Racsko, J.; Schrader, L.E. Sunburn of apple fruit: Historical background, recent advances and future perspectives. CRC Crit. Rev. Plant Sci. 2012, 31, 455–504. [Google Scholar] [CrossRef]
- Teixeira, J.D.; Leão de Sousa, M.; Barros, S.C.; Parpot, P.; Almeida, C.; Sanches Silva, A. Impact of Photoselective Nets on Phenolic Composition and Antioxidant Capacity in Different Apple Cultivars Under the Same Edaphoclimatic Conditions. Molecules 2025, 30, 1995. [Google Scholar] [CrossRef]
- Cavaco, M. Normas Técnicas Para a Produção Integrada de Prunóideas; Série Divulgação n. 354; MADRP; DGADR: Lisboa, Portugal, 2011; Volume I, p. 91.
- Cavaco, M. Normas Técnicas Para a Produção Integrada de Pomóideas; Série Divulgação n. 362; MADRP; DGADR: Lisboa, Portugal, 2012; Volume II, p. 254.
- Fioravanço, J.C.; Czermainski, A.B.C. Biennial bearing in apple cultivars. Rev. Ceres. 2018, 65, 144–149. [Google Scholar] [CrossRef]
- Khezri, M.; Heerema, R.; Brar, G.; Ferguson, L. Alternate bearing in pistachio (Pistacia vera L.): A review. Trees 2020, 34, 855–868. [Google Scholar] [CrossRef]
- Yeatts, D.F. Tree shape and branch structure: Mathematical models. Math. Comput. Nat. Resour. Sci. 2012, 4, 2–15. [Google Scholar]
- Evans, G.C. The Quantitative Analysis of Plant Growth; University of California Press: Berkeley, CA, USA; Los Angeles, CA, USA, 1972. [Google Scholar]
- Ma, H.; Huang, J.; Zhu, D.; Liu, J.; Su, W.; Zhang, C.; Fan, J. Estimating regional winter wheat yield by assimilation of time series of HJ-1 CCD NDVI into WOFOST–ACRM model with Ensemble Kalman Filter. Math. Comput. Model. 2013, 58, 759–770. [Google Scholar] [CrossRef]
- Gamon, J.A.; Serrano, L.; Surfus, J.S. The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 1997, 112, 492–501. [Google Scholar] [CrossRef]
- Reich, P.B.; Walters, M.B.; Ellsworth, D.S.; Uhl, C. Photosynthesis-nitrogen relations in Amazonian tree species: I. Patterns among species and communities. Oecologia 1994, 97, 62–72. [Google Scholar] [CrossRef]
- Maroco, J. Análise Estatística Com o SPSS, 5th ed.; ReportNumber: Pero Pinheiro, Portugal, 2014; pp. 183–466. [Google Scholar]
- Aoun, M.; Manja, K. Effects of a photoselective netting system on Fuji and Jonagold apples in a Mediterranean orchard. Sci. Hortic. 2020, 263, 109104. [Google Scholar] [CrossRef]
- Krasniqi, A.L.; Blanke, M.M.; Kunz, A.; Damerow, L.; Lakso, A.N.; Meland, M. Alternate bearing in fruit tree crops: Past, present and future. Acta Hortic. 2017, 1177, 241–248. [Google Scholar] [CrossRef]
- Bastias, R. Morphological and Physiological Responses of Apple Trees Under Photoselective Colored Nets. Ph.D. Thesis, Universita di Bologna, Bologna, Italy, 2011. [Google Scholar]
- Solomakhin, A.; Blanke, M.M. Coloured hailnets alter light transmission, spectra and phytochrome, as well as vegetative growth, leaf chlorophyll and photosynthesis and reduce flower induction of apple. Plant Growth Regul. 2008, 56, 211–218. [Google Scholar] [CrossRef]
- Smith, H.M.; Samach, A. Constraints to obtaining consistent annual yields in perennial tree crops. I: Heavy fruit load dominates over vegetative growth. Plant Sci. 2013, 207, 158–167. [Google Scholar] [CrossRef]
- Corelli-Grappadelli, L.; Lakso, A.N. Fruit development in deciduous tree crops as affected by physiological factors and environmental conditions (keynote). Acta Hortic. 2004, 636, 425–441. [Google Scholar] [CrossRef]
- Ullah, H.; Santiago-Arenas, R.; Ferdous, Z.; Attia, A.; Datta, A. Improving water use efficiency, nitrogen use efficiency, and radiation use efficiency in field crops under drought stress: A review. Adv. Agron. 2019, 156, 109–157. [Google Scholar]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Boini, A.; Bresilla, K.; Perulli, G.D.; Manfrini, L.; Corelli Grappadelli, L.; Morandi, B. Photoselective nets impact apple sap flow and fruit growth. Agric. Water Manag. 2019, 226, 105738. [Google Scholar] [CrossRef]
- Salazar-Canales, F.; Bastías, R.M.; Calderón-Orellana, A.; Wilckens, R.; González, E. Photo-selective nets differentially affect microclimatic conditions, leaf physiological characteristics, and yield in hazelnut (Corylus avellana L.). Hortic. Environ. Biotechnol. 2021, 62, 845–858. [Google Scholar] [CrossRef]
- Kior, A.; Sukhov, V.; Sukhova, E. Application of reflectance indices for remote sensing of plants and revealing actions of stressors. Photonics 2021, 8, 582. [Google Scholar] [CrossRef]
- Murchie, E.H.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef]
- Feng, Y.; Li, S.; Jia, R.; Yang, J.; Su, Q.; Zhao, Z. Physiological characteristics of sunburn peel after apple debagged. Molecules 2022, 27, 3775. [Google Scholar] [CrossRef]
- Henriques, F.S. Leaf chlorophyll fluorescence: Background and fundamentals for plant biologists. Bot. Rev. 2009, 75, 249–270. [Google Scholar] [CrossRef]
- Adams, W.W.; Demmig-Adams, B. Chlorophyll fluorescence as a tool to monitor plant response to the environment. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Papageorgiou, G.C., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; Volume 19, pp. 583–604. [Google Scholar]
- Özkaya, O.; Küden, A.; Imrak, B.; Dündar, Ö.; Demircioğlu, H.; Dölek, N. Effect of photo-selective colored anti-hail nets on photosynthesis and quality of apple fruits. Acta Hortic. 2018, 1194, 39–42. [Google Scholar] [CrossRef]
- Kalcsits, L.; Musacchi, S.; Layne, D.R.; Schmidt, T.; Mupambi, G.; Serra, S.; Mendoza, M.; Asteggiano, L.; Jarolmasjed, S.; Sankaran, S.; et al. Above and below-ground environmental changes associated with the use of photoselective protective netting to reduce sunburn in apple. Agric. Meteorol. 2017, 237–238, 9–17. [Google Scholar] [CrossRef]
- Schrader, L.; Zhang, J.; Sun, J. Environmental stresses that cause sunburn of apple. Acta. Hort. 2003, 618, 397–405. [Google Scholar] [CrossRef]
- Darbyshire, R.; McClymont, L.; Goodwin, I. Sun damage risk of Royal Gala apple in fruit-growing districts in Australia. NZ J. Crop. Hortic. Sci. 2015, 43, 222–232. [Google Scholar] [CrossRef]
- Sousa, M.; Rodrigues, M.; Martinho, F.; Afonso, S.; Gonçalves, M. Produção de pomóideas sob cobertura com redes fotoseletivas: Uma resposta às Alterações Climáticas? Resultados em macieira cv. Gala. Rev. Assoc. Port. Hortic. 2024, 46, 46–52. (In Portuguese) [Google Scholar]
- Jemrić, T.; Brkljača, M.; Vinceković, M.; Antolković, A.M.; Mikec, D.; Vuković, M. Generative and vegetative traits of the ‘Granny Smith’apple grown under an anti-insect photoselective red net. Poljoprivreda 2021, 27, 34–42. [Google Scholar] [CrossRef]
- Selahle, K.M.; Sivakumar, D.; Jifon, J.; Soundy, P. Postharvest responses of red and yellow sweet peppers grown under photo-selective nets. Food Chem. 2015, 173, 951–956. [Google Scholar] [CrossRef]
- Shameena, S.; Lekshmi, P.R.; Gopinath, P.P.; Gidagiri, P.; Kanagarajan, S. Dynamic transformations in fruit color, bioactive compounds, and textural characteristics of purple-fleshed dragon fruit (Hylocereus costaricensis) across fruit developmental stages under humid tropical climate. Horticulturae 2024, 10, 1280. [Google Scholar] [CrossRef]
- Iglesias, I.; Echeverría, G.; Soria, Y. Differences in fruit colour development, anthocyanin content, fruit quality and consumer acceptability of eight ‘Gala’apple strains. Sci. Hortic. 2008, 119, 32–40. [Google Scholar] [CrossRef]
- Tafesse, E.G.; Warkentin, T.D.; Shirtliffe, S.; Noble, S.; Bueckert, R. Leaf pigments, surface wax and spectral vegetation indices for heat stress resistance in pea. Agronomy 2022, 12, 739. [Google Scholar] [CrossRef]
- Solomakhin, A.; Blanke, M.M. Can coloured hailnets improve taste (sugar, sugar: Acid ratio), consumer appeal (colouration) and nutritional value (anthocyanin, vitamin C) of apple fruit? LWT Food Sci. Technol. 2010, 43, 1277–1284. [Google Scholar] [CrossRef]
- García-Sánchez, F.; Simón, I.; Lidón, V.; Manera, F.J.; Simón-Grao, S.; Pérez-Pérez, J.G.; Gimeno, V. Shade screen increases the vegetative growth but not the production in ‘Fino 49’ lemon trees grafted on Citrus macrophylla and Citrus aurantium L. Sci. Hortic. 2015, 194, 175–180. [Google Scholar] [CrossRef]
Modality | ||||||||
---|---|---|---|---|---|---|---|---|
Year | Parameter | Position | Black | Red | Grey | Yellow | White | Control |
2021 | T. Leaf | Exterior | 32.5 ± 0.77 a | 31.2 ± 1.98 a | 32.5 ± 0.87 a | 32.8 ± 1.12 a | 31.3 ± 0.77 a | 32.4 ± 0.67 a |
Interior | 29.7 ± 0.58 a | 28.8 ± 0.22 a | 28.1 ± 0.55 a | 29.7 ± 0.23 a | 29.2 ± 0.46 a | 28.9 ± 0.24 a | ||
p-value (position) | 0.0213 * | 0.2739 | 0.0029 ** | 0.0267 * | 0.0465 | <0.001 *** | ||
T. Fruit | Exterior | 38.8 ± 1.46 b | 44.5 ± 1.07 a | 39.8 ± 1.25 ab | 42.7 ± 1.03 ab | 41.7 ± 0.73 ab | 42.9 ± 0.97 ab | |
Interior | 32.5 ± 0.33 ab | 33.5 ± 0.24 a | 30.3 ± 0.59 c | 32.7 ± 0.26 ab | 32.6 ± 0.54 ab | 31.5 ± 0.39 bc | ||
p-value (position) | 0.0031 ** | 0.0088 ** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | ||
2022 | T. Leaf | Exterior | 43.2 ± 0.87 a | 42.8 ± 0.72 ab | 39.2 ± 0.82 b | 42.8 ± 1.26 ab | 43.9 ± 0.74 a | 43.3 ± 0.58 a |
Interior | 37.4 ± 0.47 ab | 38.3 ± 0.53 a | 34.8 ± 0.22 c | 37.7 ± 0.66 ab | 38.0 ± 0.28 ab | 36.2 ± 0.32 bc | ||
p-value (position) | <0.001 *** | <0.001 *** | <0.001 *** | 0.0048 ** | <0.001 *** | <0.001 *** | ||
T. Fruit | Exterior | 46.0 ± 0.88 ab | 47.4 ± 0.48 ab | 43.7 ± 1.09 b | 46.3 ± 0.63 ab | 47.7 ± 1.34 a | 49.2 ± 0.42 a | |
Interior | 39.1 ± 0.19 b | 39.7 ± 0.28 ab | 36.8 ± 0.16 c | 39.0 ± 0.25 b | 39.8 ± 0.14 a | 39.3 ± 0.15 ab | ||
p-value (position) | <0.001 *** | <0.001 *** | 0.0012 ** | <0.001 *** | 0.0020 ** | 0.0038 ** | ||
2023 | T. Leaf | Exterior | 34.7 ± 0.59 a | 33.8 ± 0.49 a | 33.7 ± 0.55 a | 34.7 ± 0.39 a | 35.3 ± 0.67 a | 35.2 ± 0.42 a |
Interior | 29.9 ± 0.33 a | 29.7 ± 0.22 a | 30.9 ± 0.48 a | 29.7 ± 0.39 a | 30.6 ± 1.37 a | 29.6 ± 0.21 a | ||
p-value (position) | <0.001 *** | <0.001 *** | 0.0020 ** | <0.001 *** | 0.0082 ** | <0.001 *** | ||
T. Fruit | Exterior | 39.6 ± 0.79 ab | 39.4 ± 0.81 ab | 37.2 ± 0.64 b | 38.1 ± 0.60 ab | 40.7 ± 0.76 a | 40.5 ± 0.70 a | |
Interior | 31.3 ± 0.13 c | 33.0 ± 0.17 a | 31.6 ± 0.29 bc | 31.7 ± 0.13 bc | 32.2 ± 0.09 ab | 31.6 ± 0.28 bc | ||
p-value (position) | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | ||
2024 | T. Leaf | Exterior | 34.5 ± 0.65 abc | 36.8 ± 0.66 a | 32.3 ± 0.46 c | 33.5 ± 0.61 bc | 35.6 ± 0.38 ab | 36.6 ± 0.60 a |
Interior | 32.4 ± 0.20 c | 34.1 ± 0.37 a | 30.3 ± 0.30 d | 31.2 ± 0.42 cd | 32.4 ± 0.37 bc | 33.7 ± 0.18 ab | ||
p-value (position) | 0.0016 ** | 0.0042 ** | 0.0031 ** | 0.0065 ** | <0.001 *** | 0.0015 ** | ||
T. Fruit | Exterior | 43.1 ± 0.83 bc | 44.7 ± 0.83 ab | 38.8 ± 1.30 c | 39.9 ± 0.74 c | 46.0 ± 0.52 ab | 47.9 ± 0.87 a | |
Interior | 34.8 ± 0.23 ab | 36.1 ± 0.23 a | 32.5 ± 0.43 c | 33.8 ± 0.33 bc | 35.8 ± 0.39 a | 35.6 ± 0.75 ab | ||
p-value (position) | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
Year | Color | Black | Red | Grey | Yellow | White | Control | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | L* | 41.9 ± 0.79 | ab | 43.0 ± 0.78 | a | 38.6 ± 0.73 | c | 42.3 ± 1.00 | ab | 39.3 ± 0.77 | bc | 39.3 ± 0.51 | bc |
C* | 52.1 ± 0.49 | ab | 53.1 ± 0.40 | a | 50.0 ± 0.63 | bc | 51.9 ± 0.52 | ab | 49.6 ± 0.60 | c | 49.5 ± 0.51 | c | |
°Hue | 30.3 ± 0.75 | a | 31.0 ± 0.65 | a | 27.9 ± 0.66 | b | 32.4 ± 1.19 | a | 28.2 ± 0.79 | b | 26.2 ± 0.42 | b | |
2021 | L* | 39.4 ± 0.80 | c | 46.7 ± 1.38 | a | 39.8 ± 0.84 | c | 45.4 ± 1.68 | ab | 42.3 ± 1.28 | bc | 43.3 ± 1.02 | ab |
C* | 49.3 ± 0.59 | a | 48.3 ± 0.79 | a | 47.7 ± 0.71 | a | 48.6 ± 0.72 | a | 49.1 ± 0.93 | a | 48.6 ± 0.63 | a | |
°Hue | 27.3 ± 0.57 | b | 33.6 ± 1.57 | a | 29.8 ± 0.92 | ab | 33.5 ± 1.72 | ab | 31.1 ± 1.56 | ab | 31.5 ± 1.26 | ab | |
2022 | L* | 44.4 ± 0.80 | bcd | 55.5 ± 1.35 | a | 42.9 ± 0.97 | bcd | 47.2 ± 1.32 | bc | 40.6 ± 0.83 | d | 47.7 ± 1.53 | bc |
C* | 50.8 ± 0.76 | a | 46.6 ± 0.83 | b | 48.9 ± 0.97 | a | 50.1 ± 0.68 | a | 51.1 ± 0.72 | a | 49.6 ± 0.89 | a | |
°Hue | 31.9 ± 0.72 | bcd | 44.9 ± 2.12 | a | 30.5 ± 1.15 | cd | 35.6 ± 1.43 | bc | 28.8 ± 0.84 | d | 37.5 ± 1.82 | ab | |
2023 | L* | 48.9 ± 0.97 | bc | 52.6 ± 1.15 | a | 46.1 ± 1.12 | c | 49.3 ± 1.20 | b | 47.3 ± 1.00 | bc | 47.6 ± 1.28 | bc |
C* | 49.3 ± 0.69 | a | 50.3 ± 0.72 | a | 50.5 ± 0.74 | a | 50.4 ± 0.50 | a | 51.1 ± 0.40 | a | 52.0 ± 0.30 | a | |
°Hue | 36.5 ± 1.11 | ab | 42.0 ± 1.62 | a | 35.2 ± 1.63 | b | 36.7 ± 1.41 | ab | 35.2 ± 1.04 | b | 37.2 ± 1.48 | ab | |
2024 | L* | 48.3 ± 0.69 | ab | 51.3 ± 1.27 | a | 43.4 ± 0.86 | c | 50.2 ± 1.22 | a | 45.7 ± 0.88 | bc | 44.3 ± 1.22 | bc |
C* | 44.2 ± 0.69 | bc | 43.2 ± 0.91 | c | 46.4 ± 0.75 | a | 44.8 ± 0.95 | abc | 44.8 ± 0.61 | abc | 46.0 ± 0.63 | ab | |
°Hue | 39.5 ± 1.03 | ab | 44.2 ± 1.94 | a | 34.7 ± 0.97 | c | 44.7 ± 2.08 | a | 35.6 ± 1.06 | bc | 36.0 ± 1.57 | bc |
PC1 | PC2 | PC3 | Uniqueness | |
---|---|---|---|---|
Eigenvalues | 5.166 | 3.470 | 1.025 | |
Explained variance (%) | 32.40 | 24.30 | 12.30 | |
Cumulative variance (%) | 32.40 | 56.70 | 69.00 | |
Component Loadings: | ||||
PRI | −0.921 | 0.1426 | ||
NDVI | −0.913 | 0.1431 | ||
TLE | 0.893 | 0.1948 | ||
TFE | 0.822 | 0.2586 | ||
Ci | 0.725 | 0.3607 | ||
Yield | −0.575 | 0.487 | 0.3229 | |
Fruit weight | 0.534 | 0.5995 | ||
An | 0.899 | 0.1311 | ||
E | 0.899 | 0.1002 | ||
rL | −0.814 | 0.3333 | ||
gS | 0.770 | 0.3668 | ||
CCI | 0.760 | 0.3679 | ||
RGR | −0.707 | 0.3350 | ||
Fv/Fm | 0.465 | 0.6827 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afonso, S.; Gonçalves, M.; Rodrigues, M.; Martinho, F.; Amado, V.; Rodrigues, S.; de Sousa, M.L. Conventional vs. Photoselective Nets: Impacts on Tree Physiology, Yield, Fruit Quality and Sunburn in “Gala” Apples Grown in Mediterranean Climate. Agronomy 2025, 15, 1812. https://doi.org/10.3390/agronomy15081812
Afonso S, Gonçalves M, Rodrigues M, Martinho F, Amado V, Rodrigues S, de Sousa ML. Conventional vs. Photoselective Nets: Impacts on Tree Physiology, Yield, Fruit Quality and Sunburn in “Gala” Apples Grown in Mediterranean Climate. Agronomy. 2025; 15(8):1812. https://doi.org/10.3390/agronomy15081812
Chicago/Turabian StyleAfonso, Sandra, Marta Gonçalves, Margarida Rodrigues, Francisco Martinho, Verónica Amado, Sidónio Rodrigues, and Miguel Leão de Sousa. 2025. "Conventional vs. Photoselective Nets: Impacts on Tree Physiology, Yield, Fruit Quality and Sunburn in “Gala” Apples Grown in Mediterranean Climate" Agronomy 15, no. 8: 1812. https://doi.org/10.3390/agronomy15081812
APA StyleAfonso, S., Gonçalves, M., Rodrigues, M., Martinho, F., Amado, V., Rodrigues, S., & de Sousa, M. L. (2025). Conventional vs. Photoselective Nets: Impacts on Tree Physiology, Yield, Fruit Quality and Sunburn in “Gala” Apples Grown in Mediterranean Climate. Agronomy, 15(8), 1812. https://doi.org/10.3390/agronomy15081812