Comparative Analysis of the Physicochemical Properties of Fresh, Solar-Dried, Oven-Dried and Commercial Royal Gala Apple Snacks
Abstract
1. Introduction
2. Materials and Methods
2.1. Apple Samples
2.2. Color Analysis (L*a*b*) and Browning Index
2.3. Microstructure-Scanning Electron Microscopy
2.4. pH, Titratable Acidity (TA) and Soluble Solids Content (SSC)
2.5. Sample Extract Preparation
2.6. Phenolic Compounds
2.6.1. Total Phenolic Content
2.6.2. Phenolic Profile
2.7. Assessment of Acrylamide Content
2.8. Antioxidant Activity
2.8.1. DPPH (2,20-Diphenyl-1-picrylhydrazyl) Assay
2.8.2. ABTS (2,20-Azino-bis-3-ethylbenzothiazoline-6-sulfonic Acid) Assay
2.9. Determination of Sugars
2.10. Vitamin C Content
2.11. Statistical Analysis
3. Results and Discussion
3.1. Color Analysis (L*a*b*) and Browning Index
3.2. Scanning Electron Microscopy
3.3. pH, Titratable Acidity (TA) and Soluble Solids Content (SSC)
3.4. Phenolic Compounds
3.4.1. Total Phenolic Content (TPC)
3.4.2. Phenolic Profile
3.5. Acrylamide Content
3.6. Antioxidant Activity (AA)
3.7. Sugar Content
3.8. Vitamin C Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doğan, D.E.; Rashid, H.H.R.; Lizalo, A.; Soysal, D.; Demirsoy, H. Growth, fruit bearing behaviour, yield and quality of some apple cultivars. Sci. Hortic. 2023, 327, 112762. [Google Scholar] [CrossRef]
- Van Der Sluis, A.A.; Dekker, M.; Skrede, G.; Jongen, W.M.F. Activity and Concentration of Polyphenolic Antioxidants in Apple Juice. 2. Effect of Novel Production Methods. J. Agric. Food Chem. 2004, 52, 2840–2848. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Rouphael, Y. Towards a new definition of quality for fresh fruits and vegetables. Sci. Hortic. 2018, 234, 463–469. [Google Scholar] [CrossRef]
- Al Juhaimi, F.; Uslu, N.; Bozkurt, D.; Ghafoor, K.; Babiker, E.E.; Özcan, M.M. Effects of oven and microwave drying on phenolic contents and antioxidant activities in four apple cultivars. Qual. Assur. Saf. Crop. Foods 2016, 8, 51–55. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J. Antioxidant activity modulated by polyphenol contents in apple and leaves during fruit development and ripening. Antioxidants 2020, 9, 567. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Liu, Y.; Zhu, C.; Wei, M. Effects of different drying methods on the physical properties and sensory characteristics of apple chip snacks. LWT 2022, 154, 112829. [Google Scholar] [CrossRef]
- Nadian, M.H.; Rafiee, S.; Golzarian, M.R. Real-time monitoring of color variations of apple slices and effects of pre-treatment and drying air temperature. J. Food Meas. Charact. 2016, 10, 493–506. [Google Scholar] [CrossRef]
- Maiman, S.; Alsuliam, S.; Osman, M.A.; Hassan, A.B. The Potential of exploiting economical solar dryer in food. Foods 2021, 10, 734. [Google Scholar] [CrossRef]
- Timoumi, S.; Mihoubi, D.; Zagrouba, F. Shrinkage, vitamin C degradation and aroma losses during infra-red drying of apple slices. LWT 2007, 40, 1648–1654. [Google Scholar] [CrossRef]
- Kowalska, H.; Marzec, A.; Kowalska, J.; Samborska, K.; Tywonek, M.; Lenart, A. Development of apple chips technology. Heat Mass Transf. 2018, 54, 3573–3586. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Ionica, M.E. Compositional characteristics of fruits of several apple (Malus domestica Borkh.) cultivars. Not. Bot. Horti Agrobot. Cluj Napoca 2010, 38, 228–233. [Google Scholar] [CrossRef]
- Heras-Ramírez, M.E.; Quintero-Ramos, A.; Camacho-Dávila, A.A.; Barnard, J.; Talamás-Abbud, R.; Torres-Muñoz, J.V.; Salas-Muñoz, E. Effect of Blanching and Drying Temperature on Polyphenolic Compound Stability and Antioxidant Capacity of Apple Pomace. Food Bioprocess Technol. 2011, 5, 2201–2210. [Google Scholar] [CrossRef]
- Butkeviciute, A.; Viskelis, J.; Viskelis, P.; Liaudanskas, M.; Janulis, V. Changes in the biochemical composition and physicochemical properties of apples stored in controlled atmosphere conditions. Appl. Sci. 2021, 11, 6215. [Google Scholar] [CrossRef]
- Fernandes, L.; Fernandes, J.R.; Tavares, P.B. Design of a Friendly Solar Food Dryer for Domestic Over-Production. Solar 2022, 2, 495–508. [Google Scholar] [CrossRef]
- Kahraman, O.; Malvandi, A.; Vargas, L.; Feng, H. Drying characteristics and quality attributes of apple slices dried by a non-thermal ultrasonic contact drying method. Ultrason. Sonochem. 2021, 73, 105510. [Google Scholar] [CrossRef]
- Kidoń, M.; Grabowska, J. Bioactive compounds, antioxidant activity, and sensory qualities of red-fleshed apples dried by different methods. LWT 2021, 136, 110302. [Google Scholar] [CrossRef]
- Golding, J.B.; McGlasson, W.B.; Wyllie, S.G.; Leach, D.N. Fate of apple peel phenolics during cool storage. J. Agric. Food Chem. 2001, 49, 2283–2289. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, S.; Takatsuki, T.; Sasaki, K.; Maitani, T. Determination of Acrylamide in Foods by GC/MS Using C-labeled Acrylamide as an Internal Standard. J. Food Hyg. Soc. Japan 2002, 46, 371–376. [Google Scholar] [CrossRef]
- Ergün, Z.; Jeandet, P. Determination of Biochemical Contents of Fresh, Oven-Dried, and Sun-Dried Peels and Pulps of Five Apple Cultivars (Amasya, Braeburn, Golden Delicious, Granny Smith, and Starking). J. Food Qual. 2021, 2021, 9916694. [Google Scholar] [CrossRef]
- Ma, Q.; Bi, J.; Yi, J.; Wu, X.; Li, X.; Zhao, Y. Stability of phenolic compounds and drying characteristics of apple peel as affected by three drying treatments. Food Sci. Hum. Wellness 2021, 10, 174–182. [Google Scholar] [CrossRef]
- Wojdyło, A.; Figiel, A.; Oszmiański, J. Influence of Temperature and Time of Apple Drying on Phenolic Compounds Content and Their Antioxidant Activity. Pol. J. Food Nutr. Sci. 2007, 57, 601–605. [Google Scholar]
- Akšić, M.F.; Nešović, M.; Ćirić, I.; Tešić, Ž.; Pezo, L.; Tosti, T.; Gašić, U.; Dojčinović, B.; Lončar, B.; Meland, M. Polyphenolics and Chemical Profiles of Domestic Norwegian Apple (Malus × domestica Borkh.) Cultivars. Front. Nutr. 2022, 9, 941487. [Google Scholar] [CrossRef]
- Barros, A.I.R.N.A.; Silva, A.P.; Gonçalves, B.; Nunes, F.M. A fast, simple, and reliable hydrophilic interaction liquid chromatography method for the determination of ascorbic and isoascorbic acids. Anal. Bioanal. Chem. 2010, 396, 1863–1875. [Google Scholar] [CrossRef]
- Fernandes, L.; Fernandes, J.R.; Nunes, F.M.; Tavares, P.B. Effect of drying temperature and storage time on the crispiness of homemade apple snacks. J. Sci. Food Agric. 2023, 104, 916–931. [Google Scholar] [CrossRef] [PubMed]
- Baeghbali, V.; Niakousari, M.; Ngadi, M.O.; Eskandari, M.H. Combined ultrasound and infrared assisted conductive hydro-drying of apple slices. Dry. Technol. 2018, 37, 1793–1805. [Google Scholar] [CrossRef]
- Li, X.; Wu, X.; Bi, J.; Liu, X.; Li, X.; Guo, C. Polyphenols accumulation effects on surface color variation in apple slices hot air drying process. LWT 2019, 108, 421–428. [Google Scholar] [CrossRef]
- Djekic, I.; Tomic, N.; Bourdoux, S.; Spilimbergo, S.; Smigic, N.; Udovicki, B.; Hofland, G.; Devlieghere, F.; Rajkovic, A. Comparison of three types of drying (supercritical CO2, air and freeze) on the quality of dried apple–Quality index approach. LWT 2018, 94, 64–72. [Google Scholar] [CrossRef]
- Putnik, P.; Roohinejad, S.; Greiner, R.; Granato, D.; Bekhit, A.E.D.A.; Kovačević, D.B. Prediction and modeling of microbial growth in minimally processed fresh-cut apples packaged in a modified atmosphere: A review. Food Control 2017, 80, 411–419. [Google Scholar] [CrossRef]
- Arnold, M.; Gramza-Michalowska, A. Recent Development on the Chemical Composition and Phenolic Extraction Methods of Apple (Malus domestica)—A Review; Springer: New York, NY, USA, 2023. [Google Scholar]
- Matys, A.; Witrowa-Rajchert, D.; Parniakov, O.; Wiktor, A. Application of pulsed electric field prior to vacuum drying: Effect on drying time and quality of apple tissue. Res. Agric. Eng. 2022, 68, 93–101. [Google Scholar] [CrossRef]
- Zhu, R.; Jiang, S.; Li, D.; Law, C.L.; Han, Y.; Tao, Y.; Kiani, H.; Liu, D. Dehydration of apple slices by sequential drying pretreatments and airborne ultrasound-assisted air drying: Study on mass transfer, profiles of phenolics and organic acids and PPO activity. Innov. Food Sci. Emerg. Technol. 2022, 75, 102871. [Google Scholar] [CrossRef]
- Huang, L.L.; Zhang, M.; Wang, L.P.; Mujumdar, A.S.; Sun, D.F. Influence of combination drying methods on composition, texture, aroma and microstructure of apple slices. LWT 2012, 47, 183–188. [Google Scholar] [CrossRef]
- Önal, B.; Adiletta, G.; Crescitelli, A.; Di Matteo, M.; Russo, P. Optimization of hot air drying temperature combined with pre-treatment to improve physico-chemical and nutritional quality of ‘Annurca’ apple. Food Bioprod. Process. 2019, 115, 87–99. [Google Scholar] [CrossRef]
- Harker, F.R.; Marsh, K.B.; Young, H.; Murray, S.H.; Gunson, F.A.; Walker, S.B. Sensory interpretation of instrumental measurements 2: Sweet and acid taste of apple fruit. Postharvest Biol. Technol. 2002, 24, 241–250. [Google Scholar] [CrossRef]
- Ban, S.; Xu, K. Identification of two QTLs associated with high fruit acidity in apple using pooled genome sequencing analysis. Hortic. Res. 2020, 7, 171. [Google Scholar] [CrossRef]
- Bai, Y.; Dougherty, L.; Cheng, L.; Zhong, G.Y.; Xu, K. Uncovering co-expression gene network modules regulating fruit acidity in diverse apples. BMC Genom. 2015, 16, 612. [Google Scholar] [CrossRef] [PubMed]
- Sadler, G.; Murphy, P. Food Analyses, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Ghinea, C.; Prisacaru, A.E.; Leahu, A. Physico-Chemical and Sensory Quality of Oven-Dried and Dehydrator-Dried Apples of the Starkrimson, Golden Delicious and Florina Cultivars. Appl. Sci. 2022, 12, 2350. [Google Scholar] [CrossRef]
- Musacchi, S.; Serra, S. Apple fruit quality: Overview on pre-harvest factors. Sci. Hortic. 2018, 234, 409–430. [Google Scholar] [CrossRef]
- Sharabiani, V.R.; Sabzi, S.; Pourdarbani, R.; Solis-Carmona, E.; Hernández-Hernández, M.; Hernández-Hernández, J.L. Non-destructive prediction of titratable acidity and taste index properties of gala apple using combination of different hybrids ANN and PLSR-model based spectral data. Plants 2020, 9, 1718. [Google Scholar] [CrossRef]
- Harker, F.R.; Kupferman, E.M.; Marin, A.B.; Gunson, F.A.; Triggs, C.M. Eating quality standards for apples based on consumer preferences. Postharvest Biol. Technol. 2008, 50, 70–78. [Google Scholar] [CrossRef]
- Gurtler, J.B.; Keller, S.E.; Fan, X.; Olanya, O.M.; Jin, T.; Camp, M.J. Survival of Salmonella during Apple Dehydration as Affected by Apple Cultivar and Antimicrobial Pretreatment. J. Food Prot. 2020, 83, 902–909. [Google Scholar] [CrossRef]
- Dejchanchaiwong, R.; Arkasuwan, A.; Kumar, A.; Tekasakul, P. Mathematical modeling and performance investigation of mixed-mode and indirect solar dryers for natural rubber sheet drying. Energy Sustain. Dev. 2016, 34, 44–53. [Google Scholar] [CrossRef]
- Radenkovs, V.; Juhnevica-Radenkova, K. Effect of storage technology on the chemical composition of apples of the cultivar ‘Auksis’. Zemdirb. Agric. 2017, 104, 359–368. [Google Scholar] [CrossRef]
- Chong, C.H.; Law, C.L.; Figiel, A.; Wojdylo, A.; Oziemblowski, M. Colour, phenolic content and antioxidant capacity of some fruits dehydrated by a combination of different methods. Food Chem. 2013, 141, 3889–3896. [Google Scholar] [CrossRef]
- Zielinska, M.; Michalska, A. Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture. Food Chem. 2016, 212, 671–680. [Google Scholar] [CrossRef]
- Wolfe, K.L.; Liu, R.H. Apple peels as a value-added food ingredient. J. Agric. Food Chem. 2003, 51, 1676–1683. [Google Scholar] [CrossRef] [PubMed]
- Akšić, M.F.; Zagorac, D.D.; Gašić, U.; Tosti, T.; Natić, M.; Meland, M. Analysis of Apple Fruit (Malus × domestica Borkh.) Quality Attributes Obtained from Organic and Integrated Production Systems. Sustainability 2022, 14, 5300. [Google Scholar] [CrossRef]
- Preti, R.; Tarola, A.M. Study of polyphenols, antioxidant capacity and minerals for the valorisation of ancient apple cultivars from Northeast Italy. Eur. Food Res. Technol. 2020, 247, 273–283. [Google Scholar] [CrossRef]
- Butkeviciute, A.; Abukauskas, V.; Janulis, V.; Kviklys, D. Phenolic Content and Antioxidant Activity in Apples of the ‘Galaval’ Cultivar Grown on 17 Different Rootstocks. Antioxidants 2022, 11, 266. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Ah-Hen, K.; Chacana, M.; Vergara, J.; Martínez-Monzó, J.; García-Segovia, P.; Lemus-Mondaca, R.; Di Scala, K. Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny smith) slices. Food Chem. 2012, 132, 51–59. [Google Scholar] [CrossRef]
- Filiz, B.E.; Seydim, A.C. Kinetic changes of antioxidant parameters, ascorbic acid loss, and hydroxymethyl furfural formation during apple chips production. J. Food Biochem. 2018, 42, e12676. [Google Scholar] [CrossRef]
- Arnold, M.; Gramza-Michałowska, A. Enzymatic browning in apple products and its inhibition treatments: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 5038–5076. [Google Scholar] [CrossRef]
- Lutz, M.; Hernández, J.; Henríquez, C. Phenolic content and antioxidant capacity in fresh and dry fruits and vegetables grown in Chile. CYTA J. Food 2015, 13, 541–547. [Google Scholar] [CrossRef]
- Juhart, J.; Medic, A.; Jakopic, J.; Veberic, R.; Hudina, M.; Stampar, F. Using HPLC-MS/MS to Determine the Loss of Primary and Secondary Metabolites in the Dehydration Process of Apple Slices. Foods 2023, 12, 1201. [Google Scholar] [CrossRef] [PubMed]
- Uğurlu, S.; Bakkalbaşı, E. A comparison of phenolic compounds, antioxidant activity, and α-glucosidase inhibitory activities of apple chips dried and fried by vacuum combined infrared radiation. J. Food Meas. Charact. 2024, 18, 3783–3792. [Google Scholar] [CrossRef]
- Cossignani, L.; Ianni, F.; Blasi, F.; Pollini, L.; Di Michele, A.; Pagano, C.; Ricci, M.; Perioli, L. Effect of Different Drying Treatments and Sieving on Royal gala Apple Pomace, a Thickening Agent with Antioxidant Properties. Plants 2023, 12, 906. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.P.K.; Rupasinghe, H.P.V.; Khanizadeh, S. Impact of drying processes on bioactive phenolics, vitamin c and antioxidant capacity of red-fleshed apple slices. J. Food Process. Preserv. 2011, 35, 453–457. [Google Scholar] [CrossRef]
- Murkovic, M.; Pichler, N. Analysis of 5-hydroxymethylfurfual in coffee, dried fruits and urine. Mol. Nutr. Food Res. 2006, 50, 842–846. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, S.; Lukasiewicz, M.; Duda-Chodak, A.; Ziȩc, G. 5-Hydroxymethyl-2-furfural (HMF)—Heat-induced formation, occurrence in food and biotransformation-A review. Pol. J. Food Nutr. Sci. 2013, 63, 207–225. [Google Scholar] [CrossRef]
- Gao, K.; Zhou, L.; Bi, J.; Yi, J.; Wu, X.; Zhou, M.; Wang, X.; Liu, X. Evaluation of browning ratio in an image analysis of apple slices at different stages of instant controlled pressure drop-assisted hot-air drying (AD-DIC). J. Sci. Food Agric. 2016, 97, 2533–2540. [Google Scholar] [CrossRef]
- Aljilji, A.; Mahmutovic, O.; Prazina, N.; Sejfopapic; Velic, S. Sensory Characteristics and Content of Hydroxymethyl-Furfural and Polyphenols in Dried Apples and Health-Related Considerations. Int. J. Life Sci. Pharma Res. 2022, 12, L30–L35. [Google Scholar] [CrossRef]
- Dzugan, M.; Tomczyk, M.; Miłek, M.; Sowa, P.; Wojtuszek, Z.; Pasternakiewicz, A.; Zaguła, G. Species-Dependent 5′-Hydroxymethylfurfural Formation in Slowly Dried Fruits. J. Microbiol. Biotechnol. Food Sci. 2021, 10, 586–591. [Google Scholar] [CrossRef]
- Karadeniz, F.; Atalay, D.; Erge, H.S.; Kaya, S.; Işık, B.; Aslanali, O. Kinetics of 5-hydroxymethylfurfural (5-HMF) formation and colour change in date fruit fillings stored at different temperatures. J. Food Compos. Anal. 2024, 127, 105986. [Google Scholar] [CrossRef]
- Farag, M.R.; Alagawany, M.; Bin-Jumah, M.; Othman, S.I.; Khafaga, A.F.; Shaheen, H.M.; Samak, D.; Shehata, A.M.; Allam, A.A.; El-Hack, M.E.A. The toxicological aspects of the heat-borne toxicant 5-hydroxymethylfurfural in animals: A review. Molecules 2020, 25, 1941. [Google Scholar] [CrossRef] [PubMed]
- Martins, F.C.O.L.; Alcantara, G.M.R.N.; Silva, A.F.S.; Melchert, W.R.; Rocha, F.R.P. The role of 5-hydroxymethylfurfural in food and recent advances in analytical methods. Food Chem. 2022, 395, 133539. [Google Scholar] [CrossRef]
- Stojanovska, S.; Tomovska, J. Factors Influence to Formation of Acrylamide in Food. J. Hyg. Eng. Des. 2015, 13, 10–15. [Google Scholar]
- Becalski, A.; Brady, B.; Feng, S.; Gauthier, B.R.; Zhao, T. Formation of acrylamide at temperatures lower than 100 °C: The case of prunes and a model study. Food Addit. Contam. Part A 2011, 28, 726–730. [Google Scholar] [CrossRef]
- Gökmen, V.; Palazoǧlu, T.K.; Şenyuva, H.Z. Relation between the acrylamide formation and time-temperature history of surface and core regions of French fries. J. Food Eng. 2006, 77, 972–976. [Google Scholar] [CrossRef]
- Gil, M.; Ruiz, P.; Quijano, J.; Londono-Londono, J.; Jaramillo, Y.; Gallego, V.; Tessier, F.; Notario, R. Effect of temperature on the formation of acrylamide in cocoa beans during drying treatment: An experimental and computational study. Heliyon 2020, 6, e03312. [Google Scholar] [CrossRef]
- Ahmad, M.M.; Qureshi, T.M.; Mushtaq, M.; Aqib, A.I.; Mushtaq, U.; Ibrahim, S.A.; Rehman, A.; Iqbal, M.W.; Imran, T.; Siddiqui, S.A.; et al. Influence of baking and frying conditions on acrylamide formation in various prepared bakery, snack, and fried products. Front. Nutr. 2022, 9, 1011384. [Google Scholar] [CrossRef]
- Fan, M.; Xu, X.; Lang, W.; Wang, W.; Wang, X.; Xin, A.; Zhou, F.; Ding, Z.; Ye, X.; Zhu, B. Toxicity, formation, contamination, determination and mitigation of acrylamide in thermally processed plant-based foods and herbal medicines: A review. Ecotoxicol. Environ. Saf. 2023, 260, 115059. [Google Scholar] [CrossRef]
- Tomaino, A.; Cimino, F.; Zimbalatti, V.; Venuti, V.; Sulfaro, V.; De Pasquale, A.; Saija, A. Influence of heating on antioxidant activity and the chemical composition of some spice essential oils. Food Chem. 2005, 89, 549–554. [Google Scholar] [CrossRef]
- Asma, U.; Morozova, K.; Ferrentino, G.; Scampicchio, M. Apples and Apple By-Products: Antioxidant Properties and Food Applications. Antioxidants 2023, 12, 1456. [Google Scholar] [CrossRef]
- Wojdyło, A.; Lech, K.; Nowicka, P. Effects of Different Drying Methods on the Retention of Bioactive Compounds, On-Line Antioxidant Capacity and Color of the Novel Snack from Red-Fleshed Apples. Molecules 2020, 25, 5521. [Google Scholar] [CrossRef] [PubMed]
- Sonawane, S.K.; Arya, S.S. Effect of drying and storage on bioactive components of jambhul and wood apple. J. Food Sci. Technol. 2014, 52, 2833–2841. [Google Scholar] [CrossRef] [PubMed]
- Pires, T.C.; Dias, M.I.; Barros, L.; Alves, M.J.; Oliveira, M.B.P.; Santos-Buelga, C.; Ferreira, I.C. Antioxidant and antimicrobial properties of dried Portuguese apple variety (Malus domestica Borkh. cv Bravo de Esmolfe). Food Chem. 2018, 240, 701–706. [Google Scholar] [CrossRef]
- Elhakem, A.H.; Almatrafi, M.M.; Benajiba, N.; Koko, M.Y.; Sami, R. Comparative analysis of bioactive compounds, antioxidant and anti-inflammatory activities of apple varieties. Asian J. Plant Sci. 2020, 20, 61–66. [Google Scholar] [CrossRef]
- Grabska, J.; Beć, K.B.; Ueno, N.; Huck, C.W. Analyzing the Quality Parameters of Apples by Spectroscopy. Foods 2023, 12, 1946. [Google Scholar] [CrossRef]
- Aprea, E.; Charles, M.; Endrizzi, I.; Corollaro, M.L.; Betta, E.; Biasioli, F.; Gasperi, F. Sweet taste in apple: The role of sorbitol, individual sugars, organic acids and volatile compounds. Sci. Rep. 2017, 7, srep44950. [Google Scholar] [CrossRef]
- Bonazzi, C.; Dumoulin, E. Quality Changes in Food Materials as Influenced by Drying Processes. Mod. Dry. Technol. 2011, 3, 1–20. [Google Scholar] [CrossRef]
- Laroque, D.; Inisan, C.; Berger, C.; Vouland, É.; Dufossé, L.; Guérard, F. Kinetic study on the Maillard reaction. Consideration of sugar reactivity. Food Chem. 2008, 111, 1032–1042. [Google Scholar] [CrossRef]
- Kidoń, M.; Radziejewska-Kubzdela, E.; Biegańska-Marecik, R.; Kowalczewski, P.Ł. Suitability of Apples Flesh from Different Cultivars for Vacuum Impregnation Process. Appl. Sci. 2023, 13, 1528. [Google Scholar] [CrossRef]
- Lemmens, E.; Alós, E.; Rymenants, M.; De Storme, N.; Keulemans, W. Dynamics of ascorbic acid content in apple (Malus × domestica) during fruit development and storage. Plant Physiol. Biochem. 2020, 151, 47–59. [Google Scholar] [CrossRef]
- Kotiyal, A.; Dimri, D.C.; Goswami, A.P. Physico-chemical evaluation of ten apple (Malus domestica borkh.) Cultivars grown in uttarakhand hills of India. Plant Arch. 2017, 17, 573–579. [Google Scholar]
- Kumar, P.; Sethi, S.; Sharma, R.R.; Singh, S.; Saha, S.; Sharma, V.K.; Verma, M.K.; Sharma, S.K. Nutritional characterization of apple as a function of genotype. J. Food Sci. Technol. 2018, 55, 2729–2738. [Google Scholar] [CrossRef]
- Jan, I.; Rab, A. Influence of storage duration on physico-chemical changes in fruit of apple cultivars. J. Anim. Plant Sci. 2012, 22, 708–714. [Google Scholar]
- Ferreira, C.; Ribeiro, C.; Nunes, F.M. Effect of storage conditions on phenolic composition, vitamin C and antioxidant activity of ‘Golden Delicious’ and ‘Red Delicious’ apples. Postharvest Biol. Technol. 2024, 210, 112754. [Google Scholar] [CrossRef]
- Arora, B.; Sethi, S.; Joshi, A.; Sagar, V.R.; Sharma, R.R. Antioxidant degradation kinetics in apples. J. Food Sci. Technol. 2018, 55, 1306–1313. [Google Scholar] [CrossRef]
Sample | L* | a* | b* | ΔE | BI | BI/BI0 | Color Simulation |
---|---|---|---|---|---|---|---|
fresh | 92.8 ± 1.5 a | −7.6 ± 0.5 c | 32.5 ± 1.6 d | - | 31.3 ± 1.1 e | - | |
SD | 82.3 ± 2.4 b | −4.8 ± 1.0 c | 43.2 ± 1.0 c | 15.3 ± 1.8 b | 62.5 ± 1.4 d | 2.0 ± 0.1 b | |
OD65° | 81.7 ± 3.3 b | −4.7 ± 1.9 c | 42.5 ± 1.2 c | 15.5 ± 2.3 b | 63.6 ± 1.8 d | 2.0 ± 0.1 b | |
OD85° | 77.7 ± 1.8 b | 1.4 ± 1.0 b | 50.8 ± 2.8 b | 25.4 ± 1.1 a | 100.5 ± 1.3 c | 3.2 ± 0.3 a | |
CC | 66.6 ± 3.6 c | 16.0 ± 3.7 a | 60.5 ± 2.8 a | - | 219.9 ± 2.5 b | - | |
CF | 58.9 ± 2.0 d | 17.3 ± 2.0 a | 58.2 ± 1.9 a | - | 268.1 ± 2.2 a | - |
Sample | pH | TA (% Malic Acid) | SSC (° Brix) | SSC/TA Ratio |
---|---|---|---|---|
fresh | 3.8 ± 0.1 b,c | 0.8 ± 0.1 b | 14.3 ± 0.6 f | 18.9 ± 1.2 c |
SD | 3.8 ± 0.1 c | 0.8 ± 0.1 b | 22.1 ± 0.1 e | 29.3 ± 2.9 b |
OD65° | 3.9 ± 0.1 a,b | 1.3 ± 0.1 a | 28.0 ± 0.2 c | 21.6 ± 1.2 b,c |
OD85° | 3.9 ± 0.1 a,b | 1.3 ± 0.2 a | 26.7 ± 0.3 d | 20.9 ± 3.4 c |
CC | 4.0 ± 0.2 a | 0.4 ± 0.1 c | 33.8 ± 0.1 a | 24.5 ± 1.5 b,c |
CF | 4.0 ± 0.1 a | 0.7 ± 0.1 b | 31.5 ± 0.5 b | 44.3 ± 5.4 a |
Fresh | SD | Oven 65° | Oven 85° | CC | CF | |
---|---|---|---|---|---|---|
Gallic acid | 0.21 ± 0.03 b,c | 0.07 ± 0.03 c | 0.40 ± 0.16 a,b,c | 0.64 ± 0.06 a,b | 0.59 ± 0.15 a,b | 0.66 ± 0.02 a |
Protocatechuic acid | 0 d | 0 d | 0.12 ± 0.01 c | 0.33 ± 0.03 b | 0.47 ± 0.07 a | 0.36 ± 0.02 b |
Total Hydroxybenzoic Acids | 0.21 | 0.07 | 0.52 | 0.97 | 1.06 | 1.02 |
Chlorogenic acid | 2.96 ± 0.12 a | 1.78 ± 0.11 b | 2.60 ± 0.17 a | 2.98 ± 0.09 a | 1.85 ± 0.21 b | 1.08 ± 0.14 c |
Coumaric acid | 0.62 ± 0.01 a | 0.29 ± 0.01 c,d | 0.54 ± 0.01 b | 0.61 ± 0.03 a | 0.27 ± 0.02 d | 0.33 ± 0.02 c |
Total Hydroxycinnamic Acids | 3.58 | 2.07 | 3.14 | 3.59 | 2.12 | 1.41 |
Procyanidin B1 | 0.36 ± 0.01 a | 0.20 ± 0.03 c | 0.29 ± 0.02 b | 0.17 ± 0.01 c | 0.03 ± 0.01 d | 0.06 ± 0.01 d |
Procyanidin B2 | 0.77 ± 0.01 a | 0.15 ± 0.03 c | 0.60 ± 0.06 b | 0.06 ± 0.02 c,d | 0 d | 0.07 ± 0.05 c,d |
Procyanidin trimer | 0.16 ± 0.03 a | 0.15 ± 0.01 a,b | 0.10 ± 0.03 b,c | 0.09 ± 0.03 b,c | 0.08 ± 0.01 c | 0.05 ± 0.01 c |
Total Procyanidins | 1.29 | 0.50 | 0.99 | 0.32 | 0.11 | 0.18 |
(+)-catechin | 0.36 ± 0.07 a | 0.17 ± 0.03 b | 0.36 ± 0.05 a | 0.10 ± 0.01 b,c | 0 d | 0.02 ± 0.01 c,d |
(−)-epicatechin | 0.06 ± 0.01 a | 0.03 ± 0.01 c | 0.06 ± 0.01 a | 0.06 ± 0.01 a | 0.05 ± 0.01 a,b | 0.04 ± 0.01 b,c |
Other Flavanols | 0.42 | 0.20 | 0.42 | 0.16 | 0.06 | 0.06 |
Total Flavanols | 1.71 | 0.70 | 1.41 | 0.48 | 0.16 | 0.24 |
Cyanidin-3-glucoside | 0.24 ± 0.01 a,b | 0.17 ± 0.05 b,c | 0.27 ± 0.06 a | 0.15 ± 0.01 c | 0.03 ± 0.01 d | 0.22 ± 0.02 a,b,c |
Total Anthocyanidins | 0.24 | 0.17 | 0.27 | 0.15 | 0.03 | 0.22 |
Rutin | 0.45 ± 0.06 a | 0.10 ± 0.03 c | 0.17 ± 0.03 b,c | 0.25 ± 0.02 b | 0.22 ± 0.04 b | 0.17 ± 0.02 b,c |
Quercetin I | 0.13 ± 0.02 b | 0.05 ± 0.01 c | 0.07 ± 0.01 c | 0.09 ± 0.01 b,c | 0.18 ± 0.02 a | 0.21 ± 0.03 a |
Quercetin II | 0.07 ± 0.01 a | 0.06 ± 0.02 a | 0.07 ± 0.02 a | 0.07 ± 0.01 a | 0.07 ± 0.02 a | 0.07 ± 0.01 a |
Total Flavonols | 0.65 | 0.21 | 0.31 | 0.41 | 0.47 | 0.45 |
Phloridizin | 0.51 ± 0.02 b | 0.69 ± 0.06 a | 0.43 ± 0.03 b | 0.45 ± 0.03 b | 0.23 ± 0.03 c | 0.36 ± 0.03 b,c |
Phloretin | 0.34 ± 0.02 a,b | 0.42 ± 0.06 a | 0.22 ± 0.01 b | 0.27 ± 0.03 a,b | 0.31 ± 0.05 a,b | 0.23 ± 0.02 b |
Total Dihydrochalcones | 0.85 | 1.11 | 0.65 | 0.72 | 0.54 | 0.59 |
Total Polyphenols | 7.24 | 4.33 | 6.30 | 6.32 | 4.38 | 3.93 |
OTHER IDENTIFIED COMPOUND | ||||||
5-HMF | 0 a | 0 a | 0 a | 0.18 ± 0.03 a | 0.56 ± 0.07 a | 4.30 ± 0.58 b |
Sample | Acrylamide Content (µg/kg d.m.) |
---|---|
fresh | n.d. |
SD | n.d. |
OD65° | 25.4 ± 12.7 b |
OD85° | n.d. |
CC | 147.2 ± 57.3 a |
CF | 98.7 ± 39.4 a,b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, L.; Tavares, P.B.; Siopa, J.; Gonçalves, C.; Nunes, F.M. Comparative Analysis of the Physicochemical Properties of Fresh, Solar-Dried, Oven-Dried and Commercial Royal Gala Apple Snacks. Appl. Sci. 2025, 15, 6711. https://doi.org/10.3390/app15126711
Fernandes L, Tavares PB, Siopa J, Gonçalves C, Nunes FM. Comparative Analysis of the Physicochemical Properties of Fresh, Solar-Dried, Oven-Dried and Commercial Royal Gala Apple Snacks. Applied Sciences. 2025; 15(12):6711. https://doi.org/10.3390/app15126711
Chicago/Turabian StyleFernandes, Lisete, Pedro B. Tavares, João Siopa, Carla Gonçalves, and Fernando M. Nunes. 2025. "Comparative Analysis of the Physicochemical Properties of Fresh, Solar-Dried, Oven-Dried and Commercial Royal Gala Apple Snacks" Applied Sciences 15, no. 12: 6711. https://doi.org/10.3390/app15126711
APA StyleFernandes, L., Tavares, P. B., Siopa, J., Gonçalves, C., & Nunes, F. M. (2025). Comparative Analysis of the Physicochemical Properties of Fresh, Solar-Dried, Oven-Dried and Commercial Royal Gala Apple Snacks. Applied Sciences, 15(12), 6711. https://doi.org/10.3390/app15126711