Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (315)

Search Parameters:
Keywords = apple (Malus domestica)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 659 KiB  
Article
Classification of Apples (Malus × domestica borkh.) According to Geographical Origin, Variety and Production Method Using Liquid Chromatography Mass Spectrometry and Random Forest
by Jule Hansen, Iris Fransson, Robbin Schrieck, Christof Kunert and Stephan Seifert
Foods 2025, 14(15), 2655; https://doi.org/10.3390/foods14152655 - 29 Jul 2025
Viewed by 291
Abstract
Apples are one of the most popular fruits in Germany, valued for their regional availability and health benefits. When deciding which apple to buy, several characteristics are important to consumers, including the taxonomic variety, organic cultivation and regional production. To verify that these [...] Read more.
Apples are one of the most popular fruits in Germany, valued for their regional availability and health benefits. When deciding which apple to buy, several characteristics are important to consumers, including the taxonomic variety, organic cultivation and regional production. To verify that these characteristics are correctly declared, powerful analytical methods are required. In this study, ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-ToF-MS) is applied in combination with random forest to 193 apple samples for the analysis of various authentication issues. Accuracies of 93.3, 85.5, 85.6 and 90% were achieved for distinguishing between German and non-German, North and South German, organic and conventional apples and for six different taxonomic varieties. Since the classification models largely use different parts of the data, which is shown by variable selection, this method is very well suited to answer different authentication issues with one analytical approach. Full article
Show Figures

Figure 1

21 pages, 2852 KiB  
Article
Effect of Apple, Chestnut, and Acorn Flours on the Technological and Sensory Properties of Wheat Bread
by Fryderyk Sikora, Ireneusz Ochmian, Magdalena Sobolewska and Robert Iwański
Appl. Sci. 2025, 15(14), 8067; https://doi.org/10.3390/app15148067 - 20 Jul 2025
Viewed by 480
Abstract
The increasing interest in fibre-enriched and functional bakery products has led to the exploration of novel plant-based ingredients with both technological functionality and consumer acceptance. This study evaluates the effects of incorporating flours derived from apple (Malus domestica cv. Oberländer Himbeerapfel), sweet [...] Read more.
The increasing interest in fibre-enriched and functional bakery products has led to the exploration of novel plant-based ingredients with both technological functionality and consumer acceptance. This study evaluates the effects of incorporating flours derived from apple (Malus domestica cv. Oberländer Himbeerapfel), sweet chestnut (Castanea sativa), horse chestnut (Aesculus hippocastanum), and red, sessile, and pedunculate oak (Quercus rubra, Q. petraea, and Q. robur) into wheat bread at 5%, 10%, and 15% substitution levels. The impact on crumb structure, crust colour, textural parameters (hardness, adhesiveness, springiness), and sensory attributes was assessed. The inclusion of apple and sweet chestnut flours resulted in a softer crumb, lower adhesiveness, and higher sensory scores related to flavour, aroma, and crust appearance. In contrast, higher levels of oak- and horse-chestnut-derived flours increased crumb hardness and reduced overall acceptability due to bitterness or excessive density. Apple flour preserved crumb brightness and contributed to warm tones, while oak flours caused more intense crust darkening. These findings suggest that selected non-traditional flours, especially apple and sweet chestnut, can enhance the sensory and physical properties of wheat bread, supporting the development of fibre-rich, clean-label formulations aligned with consumer trends in sustainable and functional baking. Full article
Show Figures

Figure 1

17 pages, 2042 KiB  
Article
Comprehensive Virome Profiling of Apple Mosaic Disease-Affected Trees in Iran Using RT-PCR and Next-Generation Sequencing
by Anahita Hamedi, Farshad Rakhshandehroo, Mohammad Reza Safarnejad, Gholamreza Salehi Jouzani, Amani Ben Slimen and Toufic Elbeaino
Viruses 2025, 17(7), 979; https://doi.org/10.3390/v17070979 - 13 Jul 2025
Viewed by 462
Abstract
Apples (Malus domestica), one of Iran’s oldest cultivated fruit crops, hold considerable economic importance. In this study, 170 apple leaf samples representing various commercial cultivars were collected across the country. RT-PCR screening targeted five common apple-infecting viruses and two viroids: apple [...] Read more.
Apples (Malus domestica), one of Iran’s oldest cultivated fruit crops, hold considerable economic importance. In this study, 170 apple leaf samples representing various commercial cultivars were collected across the country. RT-PCR screening targeted five common apple-infecting viruses and two viroids: apple chlorotic leaf spot virus (ACLSV), apple stem pitting virus (ASPV), apple stem grooving virus (ASGV), apple green crinkle-associated virus (AGCaV), apple mosaic virus (ApMV), apple scar skin viroid (ASSVd), and hop stunt viroid (HSVd). To identify additional or novel agents, 40 RT-PCR-negative samples were pooled into two composite groups and analyzed using next-generation sequencing (NGS). NGS was also performed on individual samples with mixed infections to retrieve full genomes. RT-PCR confirmed the presence of ACLSV, ASPV, ASGV, AGCaV, ApMV, and HSVd. NGS further revealed three additional pathogens: citrus concave gum-associated virus (CCGaV), apple hammerhead viroid (AHVd), and apricot vein clearing-associated virus (AVCaV), which were subsequently detected across the collection by RT-PCR. AGCaV was most prevalent (47.6%), followed by ACLSV (45.8%), HSVd (27.6%), AVCaV (20.5%), ASGV (17%), AHVd (15.2%), ASPV (14.1%), CCGaV (4.7%), and ApMV (3.5%). Mixed infections occurred in 67% of samples. Phylogenetic analysis based on CP genes (ACLSV, ASGV, AGCaV) and full genomes (AVCaV, AHVd) clustered Iranian isolates together, suggesting a common origin. This is the first report in Iran of AGCaV, CCGaV, ApMV, and AVCaV in apple, and notably, the first global report of AVCaV in a non-Prunus host. The findings provide the first comprehensive assessment of the sanitary status of apple trees in Iran. Full article
(This article belongs to the Special Issue Viral Diseases of Major Crops)
Show Figures

Figure 1

19 pages, 2229 KiB  
Article
Insights into Native Fermentation Process of Apples (Malus domestica) in Low Sodium Conditions
by Daniela Constandache (Lungeanu), Doina-Georgeta Andronoiu, Oana Viorela Nistor, Dana Iulia Moraru, Ira-Adeline Simionov, Elisabeta Botez and Gabriel-Dănuț Mocanu
Appl. Sci. 2025, 15(14), 7799; https://doi.org/10.3390/app15147799 - 11 Jul 2025
Viewed by 220
Abstract
Although it is one of the most important methods of fruit and vegetable preservation, pickling provides multiple interesting vistas for study, from the variety of the raw vegetal material and the composition of pickling media to the diversity of the microorganisms involved in [...] Read more.
Although it is one of the most important methods of fruit and vegetable preservation, pickling provides multiple interesting vistas for study, from the variety of the raw vegetal material and the composition of pickling media to the diversity of the microorganisms involved in the process or the quality of the final product. The purpose of this study is to investigate the effects of sodium chloride substitution with potassium or magnesium chloride on the pickling process of apples. Physical (mass, color, texture), chemical (dry matter, acidity, salinity, reducing sugars) and phytochemical parameters of the apples were analyzed during 35 days of fermentation, with a frequency of 7 days. The results show a decrease in dry matter from 14.94 ± 0.25% for all the samples and a continuous increase of lactic acid concentration to a maximum of 0.248 ± 0.032 g lactic acid/100 g product for the magnesium samples. At the same time, the phytochemical profile is enhanced, while the texture becomes softer (a decrease in firmness from 2.53 ± 0.08 N to 0.72 ± 0.02 N was registered for potassium samples). The main conclusion of the study is that sodium chloride could be successfully replaced by potassium or magnesium chloride in the fermentation process of apples. Full article
Show Figures

Figure 1

15 pages, 10576 KiB  
Article
Mapping the Distribution of Viruses in Wild Apple Populations in the Southeast Region of Kazakhstan
by Nazym Kerimbek, Marina Khusnitdinova, Aisha Taskuzhina, Anastasiya Kapytina, Alexandr Pozharskiy, Abay Sagitov and Dilyara Gritsenko
Forests 2025, 16(7), 1119; https://doi.org/10.3390/f16071119 - 6 Jul 2025
Viewed by 366
Abstract
Kazakhstan is recognized as one of the primary centers of origin of the wild apple Malus sieversii, concentrated mainly in the mountains like Trans-Ile and Zhongar Alatau, as well as parts of the Tarbagatay, Talas Alatau, and Karatau ranges. As the wild [...] Read more.
Kazakhstan is recognized as one of the primary centers of origin of the wild apple Malus sieversii, concentrated mainly in the mountains like Trans-Ile and Zhongar Alatau, as well as parts of the Tarbagatay, Talas Alatau, and Karatau ranges. As the wild progenitor of Malus domestica, M. sieversii harbors a critical genetic diversity essential for apple breeding and conservation efforts. However, its natural populations are increasingly threatened by latent viral infection, which weakens trees, reduces reproduction, and hinders regeneration. In this study, the spread of apple chlorotic leaf spot virus (ACLSV) and apple stem pitting virus (ASPV) was documented in four wild apple populations, with detection rates of 50.2% and 42.2%, respectively. Mixed infections were observed in 28.8% of sampled trees. Apple stem grooving virus (ASGV) was detected exclusively in cultivated orchards, whereas apple mosaic virus (ApMV) and apple necrotic mosaic virus (ApNMV) were not found in either wild forests or cultivated orchards. Using Geographic Information System (GIS) technology, we developed the first spatial distribution maps of these viruses in wild apple forests in the Tian Shan region, revealing site-specific variation and infection rates. These results underscore the importance of monitoring viral infections in wild M. sieversii populations to preserve genetically valuable, virus-free germplasm critical for apple breeding, crop improvement, and sustainable orchard management. Full article
(This article belongs to the Special Issue Forest Pathogens: Detection, Diagnosis, and Control)
Show Figures

Figure 1

15 pages, 954 KiB  
Article
Assessing the Post-Brief-Storage Fruit Quality and Sensory Characteristics of Old, Local Apple Cultivars from the Carpathian Basin
by Gitta Ficzek, Sherif Mehmeti, Géza Bujdosó, Ágnes Magyar and Gergely Simon
Plants 2025, 14(13), 2005; https://doi.org/10.3390/plants14132005 - 30 Jun 2025
Viewed by 287
Abstract
Local apple (Malus x domestica Borkh.) cultivars with tolerance to environmental stress factors must be re-evaluated. While the cultivation of apple trees has a long-standing tradition in Hungary, only a handful of cultivars are produced on a large scale, reflecting a trend [...] Read more.
Local apple (Malus x domestica Borkh.) cultivars with tolerance to environmental stress factors must be re-evaluated. While the cultivation of apple trees has a long-standing tradition in Hungary, only a handful of cultivars are produced on a large scale, reflecting a trend in global apple production. The most commonly cultivated apple cultivars worldwide include ‘Golden Delicious’, ‘Red Delicious’, ‘Gala’, ‘Fuji’, and ‘Granny Smith’ (with ‘Jonagold’ and ‘Idared’ being significant in Europe). As a result, genetic diversity among apple cultivars has decreased significantly, which has increased the risk of epidemics if a new pathogen appears. Nonetheless, old and local apple cultivars of the Carpathian Basin have adapted well to Hungarian environmental stress factors and pathogens and seem tolerant to them. In this study, fruit analyses and consumer evaluations of eighteen old, local apple cultivars were conducted. Various physicochemical parameters, such as fruit mass, firmness, total soluble solid content, and total acid content, as well as the content of some biological active compounds, including polyphenol content, antioxidant capacity (FRAP), and pectin content, were determined. Additionally, a consumer evaluation was carried out. Based on the results, most of the old, local apple cultivars exhibit high fruit quality and offer considerable health benefits. The proportion of biologically active compounds in these cultivars is equal to or higher than that in the reference cultivar ‘Watson Jonathan’. Based on the excellent fruit quality and consumer preferences, the ‘Harang alma’ (an attractive fruit exhibiting high FRAP values) and ‘Marosszéki piros’ (with firm flesh and a high pectin content and being particularly tasty) cultivars are recommended for backyard gardens. Full article
Show Figures

Figure 1

19 pages, 1144 KiB  
Article
Antifungal Efficacy of Ethanolic Extracts from Four Medicinal Plants Against Major Postharvest Fungal Pathogens of Apple Fruit
by Khadija Benamar, Rachid Lahlali, Rachid Ezzouggari, Mohammed El Ouassete, Ilham Dehbi, Mohammed Khadiri, Mohammed Radi, Lhoussain Ait Haddou, Saad Ibnsouda Koraichi, Saad Benamar, Abdellatif Boukir, Essaid Ait Barka and Kawtar Fikri-Benbrahim
Agronomy 2025, 15(7), 1577; https://doi.org/10.3390/agronomy15071577 - 27 Jun 2025
Viewed by 381
Abstract
The apple tree (Malus domestica), a member of the Rosaceae family, holds significant economic value but faces postharvest challenges, like blue mold caused by Penicillium expansum and gray mold caused by Botrytis cinerea. While synthetic fungicides are widely used, their [...] Read more.
The apple tree (Malus domestica), a member of the Rosaceae family, holds significant economic value but faces postharvest challenges, like blue mold caused by Penicillium expansum and gray mold caused by Botrytis cinerea. While synthetic fungicides are widely used, their limitations highlight the need for sustainable alternatives. This study explores the antifungal properties of extracts from Celtis australis, Olea europea var. sylvestris, Chamaerops humilis, and Asparagus albus against these pathogens. In vitro tests assessed mycelial growth inhibition, whereas in vivo trials consisted of measurement of weight loss, firmness, total soluble solids, titratable acidity, and maturity index. Moreover, the phytochemical traits of the extracts were determined using the Folin–Ciocalteu method and HPLC. The results revealed notable antifungal activity, particularly for Celtis australis extract at a concentration of 300 g L−1, which led to significant mycelial growth inhibition (61% for P. expansum and 41% for B. cinerea), a reduction in diseases’ severity (39% and 50%), and a notable decrease in diseases’ incidence (43% and 48%), respectively. Phytochemical analysis reflected the presence of phenols and flavonoids in the tested extracts. Importantly, the natural treatments helped preserve the apples’ quality during storage. Molecular docking studies further revealed that major compounds in Celtis australis extract inhibit the 14α-demethylase enzyme, a key target in fungal sterols biosynthesis. Full article
Show Figures

Figure 1

22 pages, 1239 KiB  
Article
Upcycling of By-Products from Autochthonous Red Grapes and Commercial Apples as Ingredients in Baked Goods: A Comprehensive Study from Processing to Consumer Consumption
by Gaetano Cardone, Martina Magni, Veronica Marin, Andrea Pichler, Daniele Zatelli, Peter Robatscher, Ombretta Polenghi, Virna Lucia Cerne, Michael Oberhuber and Silvano Ciani
Antioxidants 2025, 14(7), 798; https://doi.org/10.3390/antiox14070798 - 27 Jun 2025
Viewed by 451
Abstract
Lagrein grape (Vitis vinifera L.) pomace and Scilate apple (Malus domestica Borkh.) skin are polyphenol- and antioxidant-rich by-products with promising applications in the food industry. This study investigated the impact of drying and grinding on their antioxidant properties for use in [...] Read more.
Lagrein grape (Vitis vinifera L.) pomace and Scilate apple (Malus domestica Borkh.) skin are polyphenol- and antioxidant-rich by-products with promising applications in the food industry. This study investigated the impact of drying and grinding on their antioxidant properties for use in gluten-free baked goods. Regardless of the by-product analysis, the results showed that processing conditions effectively preserved most of the polyphenols. Furthermore, the grape pomace and apple skin flours produced retained approximately 86% and 66% of anthocyanins, respectively. Incorporating these flours into breadsticks, focaccia, and cookies significantly enhanced their polyphenol content (300–727%), anthocyanin content (600–1718%), and antioxidant capacity (280–1200%). The addition of these by-products to baked goods led to a slight decrease in texture and sensory properties. However, adding both grape pomace and apple skin flours significantly improved consumer acceptance compared to products containing only grape pomace flour. This study highlights the potential of upcycling by-products from grapes and apples to enhance the nutritional profile of gluten-free products while supporting a circular economy approach. Full article
Show Figures

Figure 1

19 pages, 7673 KiB  
Article
Overexpression of MdNRT2.4 Improved Low-Nitrogen Tolerance in Transgenic Tobacco Lines
by Junrong Li, Ke Liu, Chunqiong Shang, Qiandong Hou, Xiangmei Nie, Qinglong Dong, Dong Huang and Qian Wang
Horticulturae 2025, 11(6), 662; https://doi.org/10.3390/horticulturae11060662 - 10 Jun 2025
Viewed by 464
Abstract
Apple (Malus domestica Borkh.) is an economically important fruit. The use of nitrate by plants plays a crucial role in their growth and development, and its absorption and dispersal are controlled by nitrate transport proteins (NRTs). In this study, we investigated the [...] Read more.
Apple (Malus domestica Borkh.) is an economically important fruit. The use of nitrate by plants plays a crucial role in their growth and development, and its absorption and dispersal are controlled by nitrate transport proteins (NRTs). In this study, we investigated the potential function of MdNRT2.4 under low-nitrogen (N) stress by overexpressing it in tobacco. Compared with plants treated with a normal nitrogen level (5 mM), the MdNRT2.4 overexpression lines under low-N stress (0.25 mM) exhibited significantly greater plant height and width, as well as larger leaves and a higher leaf density, than wild-type plants, suggesting that the overexpression of MdNRT2.4 enhances the low-N tolerance of tobacco. Enhanced antioxidant enzyme activities in the MdNRT2.4 overexpression plant lines promoted the scavenging of reactive oxygen species, which reduced damage to their cell membranes. GUS staining of pMdNRT2.4::GUS-transformed Arabidopsis thaliana lines showed that MdNRT2.4 was expressed in the roots, vascular bundles, seeds in fruit pods, and young anther sites, suggesting that MdNRT2.4 mediates the transport of nitrate to these tissues, indicating that MdNRT2.4 might promote nitrate utilization in apple and improve its tolerance to low-N stress. Experiments using yeast one-hybrid and dual-luciferase assays revealed that MdbHLH3 binds to the MdNRT2.4 promoter and activates its expression. MdbHLH3 belongs to the basic helix–loop–helix (bHLH) transcription factor (TF). It is speculated that MdbHLH3 may interact with the promoter of MdNRT2.4 to regulate N metabolism in plants and enhance their low-N tolerance. This study establishes a theoretical framework for investigating the regulatory mechanisms of low-N responsive molecules in apple, while simultaneously providing valuable genetic resources for molecular breeding programs targeting low-N tolerance. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

19 pages, 17007 KiB  
Article
Genome-Wide Characterization and Expression Analysis of the Cysteine-Rich Polycomb-like Protein Gene Family in Response to Hormone Signaling in Apple (Malus domestica)
by Le Jiang, Min Zhu, Ying Huang and Quanyan Zhang
Int. J. Mol. Sci. 2025, 26(12), 5528; https://doi.org/10.3390/ijms26125528 - 10 Jun 2025
Viewed by 544
Abstract
Cysteine-rich polycomb-like protein (CPP) transcription factors play critical roles in plant growth, development, and responses to stresses and hormone signaling. However, the research on the CPP gene family remains unexplored in apple. In this study, a total of 10 CPP genes (MdCPP1 [...] Read more.
Cysteine-rich polycomb-like protein (CPP) transcription factors play critical roles in plant growth, development, and responses to stresses and hormone signaling. However, the research on the CPP gene family remains unexplored in apple. In this study, a total of 10 CPP genes (MdCPP1MdCPP10) were identified and unevenly distributed across seven scaffolds. Phylogenetic and conserved motif analyses revealed that these 10 CXC domain-containing MdCPPs could be classified into three subfamilies. Evolutionary tree and synteny analyses demonstrated that apple shared the highest number of orthologous gene pairs with white pear compared to Arabidopsis. By analyzing the MdCPP gene promoter, a large number of cis-acting elements related to hormone and stress response were discovered. In addition, transcriptomic data demonstrated tissue-specific expression patterns of MdCPP genes, with MdCPP5 and MdCPP8 showing the highest expression in buds and leaves. The qRT-PCR results indicated that MdCPP genes have different expression responses to SA, GA, JA, and IAA treatments. Notably, MdCPP4, MdCPP6, MdCPP8, and MdCPP9 were significantly upregulated under different hormone treatments. Among them, the upregulation of MdCPP6 was the most significant. These findings establish a foundation for further functional characterization of MdCPPs and provide theoretical support for their potential applications in apple genetic improvement and agricultural production. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Graphical abstract

19 pages, 916 KiB  
Article
Quality and Content of Bioactive Compounds in Muffins with Residue After Isolation of Starch from Unripe Apples (Malus domestica Borkh)
by Dorota Gumul, Stanisław Kowalski and Anna Mikulec
Molecules 2025, 30(10), 2189; https://doi.org/10.3390/molecules30102189 - 16 May 2025
Viewed by 456
Abstract
Growing consumer awareness encourages food producers to look for new fortifying additives for muffins. One such additive may be the polysaccharide fraction residue after starch isolation from unripe apples, as they are a source of many bioactive compounds. The aim of the study [...] Read more.
Growing consumer awareness encourages food producers to look for new fortifying additives for muffins. One such additive may be the polysaccharide fraction residue after starch isolation from unripe apples, as they are a source of many bioactive compounds. The aim of the study was to examine the effect of the addition of the polysaccharide fraction residue from unripe apples on the quality and physical properties as well as health-promoting properties of muffins. It was observed that the polysaccharide fraction residue from unripe apples did not deteriorate the texture or volume of muffins and contributed to an increase in the content of polyphenols, and the antioxidant potential of muffins, especially the polysaccharide residue from unripe apples of the Oliwka variety, had a more beneficial effect on the above-mentioned features of muffin than Pyros. Moreover, it was observed that the content of phytosterols (campesterol and cleosterol) in muffins increases but the content of tocopherols decreases due to their thermolability during the baking process. Full article
Show Figures

Graphical abstract

16 pages, 1319 KiB  
Article
Relationships Between Chemical Properties, Color Parameters, and Image Features of New Clones of Apples (Malus domestica L.) from Ecological Cultivation
by Ewa Ropelewska, Niall J. Dickinson, Paweł Bielicki, Marcin Pąśko and Mariusz Lewandowski
Sustainability 2025, 17(10), 4317; https://doi.org/10.3390/su17104317 - 9 May 2025
Viewed by 385
Abstract
This study aimed at determining the relationships between the selected quality properties of four new apple clones: ‘Free Redstar’ × ‘Melfree’, ‘Free Redstar’ × ‘Ariwa’, ‘Free Redstar’ × ‘Rajka’, and ‘Free Redstar’ × ‘Rubinola’. Significant differences between the selected clones in terms of [...] Read more.
This study aimed at determining the relationships between the selected quality properties of four new apple clones: ‘Free Redstar’ × ‘Melfree’, ‘Free Redstar’ × ‘Ariwa’, ‘Free Redstar’ × ‘Rajka’, and ‘Free Redstar’ × ‘Rubinola’. Significant differences between the selected clones in terms of quality properties were revealed. For example, the ‘Free Redstar’ × ‘Ariwa’ clone had the highest total sugar content (132.7 g kg−1) and total polyphenol content (TPC) (260.7 mg 100 g−1 GAE), while ‘Free Redstar’ × ‘Rajka’ was characterized by the highest total acid level of 739.0 mg 100 g−1 and the lowest a* value of −0.62, which were significantly different from all other clones. Correlations between image textures and chemical and color characteristics were observed. Among the sugars, sucrose showed the strongest positive correlation with the selected texture parameters of images in color channel Y, obtaining a Pearson correlation coefficient (R) of 0.946, while sorbitol had the strongest negative correlation (R = −0.946) with the selected texture of images in color channel b. In terms of acids, the Pearson correlation coefficient was up to 0.953 for the relationship between the content of citric acid and the selected texture of images in color channel G, and for TPC, the value of Pearson’s correlation coefficient reached 0.921 for the selected texture feature of images in color channel X. Regarding color parameters, the correlations were also strong, reaching 0.945 between parameter a* and the selected texture of the images in color channel a. These findings provide insights into the potential use of image texture analysis in combination with chemical profiling for evaluating apple quality and clone differentiation. Full article
(This article belongs to the Special Issue Ecology and Environmental Science in Sustainable Agriculture)
Show Figures

Figure 1

15 pages, 495 KiB  
Article
Evaluating Maturity Index IAD for Storability Potential in Mid-Season and Late-Season Apple Cultivars in the Light of Climate Change
by Joakim Sjöstrand, Ibrahim Tahir, Henrik Stridh and Marie E. Olsson
Agriculture 2025, 15(8), 889; https://doi.org/10.3390/agriculture15080889 - 19 Apr 2025
Viewed by 468
Abstract
Reducing food losses in apple production is becoming increasingly important, as the effects of climate change constitute a challenge to food production. Improving methods for determining fruit maturity at harvest leading to the longest storability is crucial, thereby facing more unpredictable seasonal weather [...] Read more.
Reducing food losses in apple production is becoming increasingly important, as the effects of climate change constitute a challenge to food production. Improving methods for determining fruit maturity at harvest leading to the longest storability is crucial, thereby facing more unpredictable seasonal weather conditions. In addition, the increasing temperature is affecting common maturity indices differently; thus, present practice may not be valid. In this study, a non-destructive, time-efficient method was used, tentatively indicating maturity. This study was performed during three climate-diverse years, reflecting more irregular climate conditions. Mid- to late-season cultivars ‘Frida’, ‘Ingrid Marie’, ‘Rubinstar’, and ‘Elise’ were harvested at different pre-determined IAD (index of absorbance difference) intervals and stored for five months. Correlations between IAD values at harvest and total losses after storage were found for all cultivars and years, while only a few correlations related to firmness after storage were found. Although a strong effect of year was related to correlations between IAD and different quality parameters, no noticeably general differences could be found between the exceptionally warm year in comparison to the other investigated years. IAD, as a maturity index, thus, seems to be resilient to changing temperatures and can be used as a complementary maturity index. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

14 pages, 2783 KiB  
Article
Non-Destructive Prediction of Apple Moisture Content Using Thermal Diffusivity Phenomics for Quality Assessment
by Jung-Kyu Lee, Moon-Kyung Kang and Dong-Hoon Lee
Agriculture 2025, 15(8), 869; https://doi.org/10.3390/agriculture15080869 - 16 Apr 2025
Viewed by 457
Abstract
With the surge in digital farming, real-time quality management of fresh produce has become essential. For apples (Malus domestica Borkh.), consumer demand extends beyond sweetness, texture, and appearance to internal quality factors such as moisture content. Existing non-destructive methods, however, involve costly [...] Read more.
With the surge in digital farming, real-time quality management of fresh produce has become essential. For apples (Malus domestica Borkh.), consumer demand extends beyond sweetness, texture, and appearance to internal quality factors such as moisture content. Existing non-destructive methods, however, involve costly equipment, complex calibration, and sensitivity to environmental conditions. This study hypothesizes that thermal diffusivity indices derived from surface heating and cooling patterns can accurately predict apple moisture content non-destructively. A total of 823 apples from seven varieties were analyzed using a thermal imaging sensor in a 120-s process comprising 40 s of heating and 80 s of cooling. Key thermal diffusivity indices—minimum, maximum, mean, and max–min values—were extracted and correlated with actual moisture content measured via the drying method. Multiple linear regression and leave-one-out cross-validation confirmed that mean temperature-based models provided the most stable predictions (RCV2 ≥ 0.90 for some varieties). Frame optimization and artificial neural networks further improved prediction accuracy for varieties exhibiting higher variability. The proposed method is cost-effective, requires minimal calibration, and is less affected by surface reflectance, outperforming conventional optical methods (e.g., NIR spectroscopy, hyperspectral imaging), especially regarding robustness against surface reflectance variability and calibration complexity. This offers a practical solution for monitoring apple freshness and quality during sorting and distribution processes, with expanded research on sugar content and acidity expected to accelerate commercialization. Full article
Show Figures

Figure 1

18 pages, 8485 KiB  
Article
A Lightweight YOLO-Based Architecture for Apple Detection on Embedded Systems
by Juan Carlos Olguín-Rojas, Juan Irving Vasquez, Gilberto de Jesús López-Canteñs, Juan Carlos Herrera-Lozada and Canek Mota-Delfin
Agriculture 2025, 15(8), 838; https://doi.org/10.3390/agriculture15080838 - 13 Apr 2025
Viewed by 797
Abstract
Apples are among the most important agricultural products worldwide. Ensuring apple quality with minimal effort is crucial for both large-scale and local producers. In Mexico, the manual detection of damaged apples has led to inconsistencies in product quality, a problem that can be [...] Read more.
Apples are among the most important agricultural products worldwide. Ensuring apple quality with minimal effort is crucial for both large-scale and local producers. In Mexico, the manual detection of damaged apples has led to inconsistencies in product quality, a problem that can be addressed by integrating vision systems with machine learning algorithms. The YOLO (You Only Look Once) neural network has significantly improved fruit detection through image processing and has automated several related tasks. However, training and deploying YOLO models typically requires substantial computational resources, making it essential to develop lightweight and cost-effective detection systems, especially for edge computing systems. This paper presents a mechatronic system designed to detect apple varieties and potential damage in apples (Malus domestica) within the visible spectrum. The cultivated apple varieties considered were Gala, Golden, Granny Smith, and Red Delicious. Our contribution lies in developing a lightweight neural network architecture optimized specifically for embedded systems. The proposed architecture was compared against YOLOv3-Tiny, YOLOv4-Tiny, and YOLOv5-s. Our optimized model achieved a high accuracy and sensitivity (94–99%) and was successfully implemented on a Jetson Xavier NX board, where it reached a processing speed of 37 FPS. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop