Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,085)

Search Parameters:
Keywords = antimicrobial biofilm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 688 KiB  
Review
Mycoplasma Biofilms: Characteristics and Control Strategies
by Jingyi Liang, Baoyi Deng, Weihuo Li, Jingjing Qi, Yangshuo Li, Xueyan Wang, Ming Li, Hong Yang and Nan Zhang
Microorganisms 2025, 13(8), 1850; https://doi.org/10.3390/microorganisms13081850 (registering DOI) - 7 Aug 2025
Abstract
The Mycoplasmataceae are a family of bacteria that typically cause respiratory, arthritic, and genitourinary disease in humans. Mycoplasma spp. of animal origin are also the causative agents of porcine wheezing disease, chronic respiratory disease and arthritis in chickens and other conditions. These diseases [...] Read more.
The Mycoplasmataceae are a family of bacteria that typically cause respiratory, arthritic, and genitourinary disease in humans. Mycoplasma spp. of animal origin are also the causative agents of porcine wheezing disease, chronic respiratory disease and arthritis in chickens and other conditions. These diseases have a significant impact on public health and the economic development of livestock breeding. Clinical prevention and treatment of mycoplasma infections is primarily dependent on the use of antibiotics. However, inappropriate and excessive use of antimicrobials has enabled resistance development that has become a significant clinical concern. Mycoplasma are also robust biofilm producers, and this process is a major factor for the persistence of these infections, especially in conjunction with common antibiotic resistance mechanisms, including target gene mutations and the action of efflux pumps. A mycoplasma biofilm refers to a structured and stable microbial community formed by Mycoplasma spp. adhering to biological or non-biological surfaces under suitable conditions and secreting extracellular polymers (EPS) such as polysaccharides. This process allows the microorganisms to adapt to their surrounding environment and survive during the growth process. These biofilms render bacteria more resistant to antimicrobials than planktonic bacteria, resulting in biofilm-associated infections that are more challenging to eradicate and more likely to recur. The current study reviews progress from the fields of biofilm formation, structure and identification, correlations between biofilms and drug resistance and virulence as well as methods of biofilm prevention and control. Our aim was to provide a reference basis for the subsequent in-depth understanding of the research of mycoplasma biofilms. Full article
14 pages, 6774 KiB  
Article
Antimicrobial Activities of Propolis Nanoparticles in Combination with Ampicillin Sodium Against Methicillin-Resistant Staphylococcus aureus
by Kaiyue Feng, He Sang, Han Jin, Peng Song, Wei Xu, Hongzhuan Xuan and Fei Wang
Microorganisms 2025, 13(8), 1844; https://doi.org/10.3390/microorganisms13081844 - 7 Aug 2025
Abstract
Combining antibiotics with propolis is an effective method to combat bacterial drug resistance. Nanoparticles are of interest in the antimicrobial field because of their higher drug stability, solubility, penetration power, and treatment efficacy. In this study, propolis nanoparticles (PNPs) were synthesized, and their [...] Read more.
Combining antibiotics with propolis is an effective method to combat bacterial drug resistance. Nanoparticles are of interest in the antimicrobial field because of their higher drug stability, solubility, penetration power, and treatment efficacy. In this study, propolis nanoparticles (PNPs) were synthesized, and their antibacterial and anti-biofilm activities against methicillin-resistant Staphylococcus aureus (MRSA) in combination with ampicillin sodium (AS) were analyzed. The PNPs had an average particle diameter of 118.0 nm, a polydispersity index of 0.129, and a zeta potential of −28.2 mV. The fractional inhibitory concentration indices of PNPs and AS against tested MRSA strains highlighted this synergy, ranging between 0.375 and 0.5. Crystal violet staining showed that combined PNPs and AS significantly inhibited biofilm formation and reduced existing biofilm biomass. We then discovered that PNPs inhibited bacterial adhesion, extracellular polysaccharide synthesis, and mecR1, mecA, blaZ, and icaADBC gene expression. These results indicated that PNPs exerted a synergistic antibacterial effect with AS by inhibiting mecR1, mecA, and blaZ gene expressions to reduce the drug resistance of MRSA. Meanwhile, PNPs weakened bacterial adhesion and aggregation by suppressing icaADBC gene expression, allowing antibiotics to penetrate the biofilm, and exhibiting significant synergistic anti-biofilm activity. In summary, PNPs are promising candidates for combating MRSA-related diseases. Full article
(This article belongs to the Special Issue Bacterial Antibiotic Resistance, Second Edition)
Show Figures

Figure 1

17 pages, 704 KiB  
Review
Marine Antimicrobial Peptides: Emerging Strategies Against Multidrug-Resistant and Biofilm-Forming Bacteria
by Rita Magalhães, Dalila Mil-Homens, Sónia Cruz and Manuela Oliveira
Antibiotics 2025, 14(8), 808; https://doi.org/10.3390/antibiotics14080808 - 7 Aug 2025
Abstract
The global rise in antimicrobial resistance poses a major threat to public health, with multidrug-resistant bacterial infections expected to surpass cancer in mortality by 2050. As traditional antibiotic pipelines stagnate, novel therapeutic alternatives are critically needed. Antimicrobial peptides (AMPs), particularly those derived from [...] Read more.
The global rise in antimicrobial resistance poses a major threat to public health, with multidrug-resistant bacterial infections expected to surpass cancer in mortality by 2050. As traditional antibiotic pipelines stagnate, novel therapeutic alternatives are critically needed. Antimicrobial peptides (AMPs), particularly those derived from marine organisms, have emerged as promising antimicrobial candidates due to their broad-spectrum activity, structural diversity, and distinctive mechanisms of action. Unlike conventional antibiotics, AMPs can disrupt microbial membranes, inhibit biofilm formation, and even modulate immune responses, making them highly effective against resistant bacteria. This review highlights the potential of marine AMPs as next-generation therapeutics, emphasizing their efficacy against multidrug-resistant pathogens and biofilm-associated infections. Furthermore, marine AMPs show promise in combating persister cells and disrupting quorum sensing pathways, offering new strategies for tackling chronic infections. Despite their potential, challenges such as production scalability and limited clinical validation remain; nevertheless, the use of new technologies and bioinformatic tools is accelerating the discovery and optimization of these peptides, paving the way for bypassing these challenges. This review consolidates current findings on marine AMPs, advocating for their continued exploration as viable tools in the fight against antimicrobial resistance. Full article
(This article belongs to the Section Antimicrobial Peptides)
Show Figures

Figure 1

18 pages, 7277 KiB  
Article
Comprehensive Analysis of the Molecular Epidemiological Characteristics of Duck-Derived Salmonella in Certain Regions of China
by Jiawen Chen, Xiangdi Li, Yanling Liu, Wenjia Rong, Laiyu Fu, Shuhua Wang, Yan Li, Xiaoxiao Duan, Yongda Zhao and Lili Guo
Microbiol. Res. 2025, 16(8), 184; https://doi.org/10.3390/microbiolres16080184 - 7 Aug 2025
Abstract
Salmonella is a major foodborne pathogen, yet real-time data on duck-derived strains in China remain scarce. This study investigated the epidemiology, antimicrobial resistance (AMR), gene profiles, and PFGE patterns of 114 Salmonella isolates recovered from 397 deceased ducks (2021–2024) across nine provinces (isolation [...] Read more.
Salmonella is a major foodborne pathogen, yet real-time data on duck-derived strains in China remain scarce. This study investigated the epidemiology, antimicrobial resistance (AMR), gene profiles, and PFGE patterns of 114 Salmonella isolates recovered from 397 deceased ducks (2021–2024) across nine provinces (isolation rate: 28.72%). Fourteen serotypes were identified, with S. Typhimurium (23.68%), S. Indiana (21.93%), S. Kentucky (18.42%), and S. Enteritidis (12.28%) being predominant. Most isolates showed high resistance to β-lactams, tetracyclines, quinolones, and sulfonamides, with extensive multidrug resistance (MDR) observed—especially in S. Indiana, S. Typhimurium, and S. Kentucky. Among the 23 detected resistance genes, tet(B) had the highest prevalence (75.44%), particularly in S. Indiana. Biofilm formation was observed in 99.12% of isolates, with 84.21% demonstrating moderate to strong capacity. Eighteen virulence genes were detected; S. Enteritidis carried more spvB/C, sipB, and sodC1, while S. Indiana had higher cdtB carriage. PFGE revealed substantial genetic diversity among strains. This comprehensive analysis highlights the high AMR and biofilm potential of duck-derived Salmonella in China, emphasizing the urgent need for enhanced surveillance and control measures to mitigate public health risks. Full article
Show Figures

Figure 1

11 pages, 910 KiB  
Article
Antimicrobial Effect of Gentamicin/Heparin and Gentamicin/Citrate Lock Solutions on Staphylococcus aureus and Pseudomonas aeruginosa Clinical Strains
by Daniel Salas-Treviño, Arantxa N. Rodríguez-Rodríguez, María T. Ramírez-Elizondo, Magaly Padilla-Orozco, Edeer I. Montoya-Hinojosa, Paola Bocanegra-Ibarias, Samantha Flores-Treviño and Adrián Camacho-Ortiz
Infect. Dis. Rep. 2025, 17(4), 98; https://doi.org/10.3390/idr17040098 - 6 Aug 2025
Abstract
Background/Objectives: Hemodialysis catheter-related bloodstream infection (HD-CRBSIs) is a main cause of morbidity in hemodialysis. New preventive strategies have emerged, such as using lock solutions with antiseptic or antibiotic capacity. In this study, the antimicrobial effect was analyzed in vitro and with a catheter [...] Read more.
Background/Objectives: Hemodialysis catheter-related bloodstream infection (HD-CRBSIs) is a main cause of morbidity in hemodialysis. New preventive strategies have emerged, such as using lock solutions with antiseptic or antibiotic capacity. In this study, the antimicrobial effect was analyzed in vitro and with a catheter model of lock solutions of gentamicin (LSG), gentamicin/heparin (LSG/H), and gentamicin/citrate (LSG/C) in clinical and ATCC strains of Pseudomonas aeruginosa and Staphylococcus aureus. Methods: The formation, minimum inhibitory concentration, and minimum inhibitory concentration of the biofilm and minimum biofilm eradication concentration of the lock solutions were determined. Additionally, colony-forming unit assays were performed to evaluate the antimicrobial efficacy of the lock solutions in a hemodialysis catheter inoculation model. Results: The minimum inhibitory concentration (MIC) of planktonic cells of both P. aeruginosa and S. aureus for LSG/H and LSG/C was 4 µg/mL. In the minimum biofilm inhibitory concentration (MBIC) tests, the LSG/H was less effective than LSG/C, requiring higher concentrations for inhibition, contrary to the minimum biofilm eradication concentration (MBEC), where LSG/H was more effective. All lock solutions eradicated P. aeruginosa biofilms in the HD catheter model under standard conditions. Nevertheless, under modified conditions, the lock solutions were not as effective versus ATCC and clinical strains of S. aureus. Conclusions: Our analysis shows that the lock solutions studied managed to eradicate intraluminal mature P. aeruginosa in non-tunneled HD catheters under standard conditions. Biofilm inhibition and eradication were observed at low gentamicin concentrations, which could optimize the gentamicin concentration in lock solutions used in HD catheters. Full article
Show Figures

Figure 1

33 pages, 4268 KiB  
Review
Targeting Bacterial Biofilms on Medical Implants: Current and Emerging Approaches
by Alessandro Calogero Scalia and Ziba Najmi
Antibiotics 2025, 14(8), 802; https://doi.org/10.3390/antibiotics14080802 - 6 Aug 2025
Abstract
Biofilms are structured communities of microorganisms encased in a self-produced extracellular matrix, and they represent one of the most widespread forms of microbial life on Earth. Their presence poses serious challenges in both environmental and clinical settings. In natural and industrial systems, biofilms [...] Read more.
Biofilms are structured communities of microorganisms encased in a self-produced extracellular matrix, and they represent one of the most widespread forms of microbial life on Earth. Their presence poses serious challenges in both environmental and clinical settings. In natural and industrial systems, biofilms contribute to water contamination, pipeline corrosion, and biofouling. Clinically, biofilm-associated infections are responsible for approximately 80% of all microbial infections, including endocarditis, osteomyelitis, cystic fibrosis, and chronic sinusitis. A particularly critical concern is their colonization of medical devices, where biofilms can lead to chronic infections, implant failure, and increased mortality. Implantable devices, such as orthopedic implants, cardiac pacemakers, cochlear implants, urinary catheters, and hernia meshes, are highly susceptible to microbial attachment and biofilm development. These infections are often recalcitrant to conventional antibiotics and frequently necessitate surgical revision. In the United States, over 500,000 biofilm-related implant infections occur annually, with prosthetic joint infections alone projected to incur revision surgery costs exceeding USD 500 million per year—a figure expected to rise to USD 1.62 billion by 2030. To address these challenges, surface modification of medical devices has emerged as a promising strategy to prevent bacterial adhesion and biofilm formation. This review focuses on recent advances in chemical surface functionalization using non-antibiotic agents, such as enzymes, chelating agents, quorum sensing quenching factors, biosurfactants, oxidizing compounds and nanoparticles, designed to enhance antifouling and mature biofilm eradication properties. These approaches aim not only to prevent device-associated infections but also to reduce dependence on antibiotics and mitigate the development of antimicrobial resistance. Full article
(This article belongs to the Special Issue Antibacterial and Antibiofilm Properties of Biomaterial)
Show Figures

Graphical abstract

24 pages, 957 KiB  
Review
Biofilm and Antimicrobial Resistance: Mechanisms, Implications, and Emerging Solutions
by Bharmjeet Singh, Manju Dahiya, Vikram Kumar, Archana Ayyagari, Deepti N. Chaudhari and Jayesh J. Ahire
Microbiol. Res. 2025, 16(8), 183; https://doi.org/10.3390/microbiolres16080183 - 6 Aug 2025
Abstract
Biofilms are a spontaneously formed slimy matrix of extracellular polymeric substances (EPS) enveloping miniature bacterial colonies, which aid in pathogen colonization, shielding the bacteria from antibiotics, as well as imparting them resistance towards the same. Biofilms employ a robust communication mechanism called quorum [...] Read more.
Biofilms are a spontaneously formed slimy matrix of extracellular polymeric substances (EPS) enveloping miniature bacterial colonies, which aid in pathogen colonization, shielding the bacteria from antibiotics, as well as imparting them resistance towards the same. Biofilms employ a robust communication mechanism called quorum sensing that serves to keep their population density constant. What is most significant about biofilms is that they contribute to the development of bacterial virulence by providing protection to pathogenic species, allowing them to colonize the host, and also inhibiting the activities of antimicrobials on them. They grow on animate surfaces (such as on teeth and intestinal mucosa, etc.) and inanimate objects (like catheters, contact lenses, pacemakers, endotracheal devices, intrauterine devices, and stents, etc.) alike. It has been reported that as much as 80% of human infections involve biofilms. Serious implications of biofilms include the necessity of greater concentrations of antibiotics to treat common human infections, even contributing to antimicrobial resistance (AMR), since bacteria embedded within biofilms are protected from the action of potential antibiotics. This review explores various contemporary strategies for controlling biofilms, focusing on their modes of action, mechanisms of drug resistance, and innovative approaches to find a solution in this regard. This review interestingly targets the extracellular polymeric matrix as a highly effective strategy to counteract the potential harm of biofilms since it plays a critical role in biofilm formation and significantly contributes to antimicrobial resistance. Full article
Show Figures

Figure 1

19 pages, 1579 KiB  
Article
Plasma-Treated Water Effect on Sporulating Bacillus cereus vs. Non-Sporulating Listeria monocytogenes Biofilm Cell Vitality
by Samantha Nestel, Robert Wagner, Mareike Meister, Thomas Weihe and Uta Schnabel
Appl. Microbiol. 2025, 5(3), 80; https://doi.org/10.3390/applmicrobiol5030080 - 5 Aug 2025
Abstract
Foodborne illness caused by bacterial pathogens is a global health concern and results in millions of infections annually. Therefore, food products typically undergo several processing stages, including sanitation steps, before being distributed in an attempt to remove pathogens. However, many sanitation methods have [...] Read more.
Foodborne illness caused by bacterial pathogens is a global health concern and results in millions of infections annually. Therefore, food products typically undergo several processing stages, including sanitation steps, before being distributed in an attempt to remove pathogens. However, many sanitation methods have compounding effects on the color, texture, flavor, and nutritional quality of the product or do not effectively reduce the pathogens that food can be exposed to. Some bacterial pathogens particularly possess traits and tactics that make them even more difficult to mitigate such as biofilm formation. Non-thermal plasma sanitation techniques, including plasma-treated water (PTW), have proven to be promising methods that significantly reduce pathogenic bacteria that food is exposed to. Published work reveals that PTW can effectively mitigate both gram-positive and gram-negative bacterial biofilms. This study presents a novel analysis of the differences in antimicrobial effects of PTW treatment between biofilm-forming gram-positive bacteria, commonly associated with foodborne illness, that are sporulating (Bacillus cereus) and non-sporulating (Listeria monocytogenes). After treatment with PTW, the results suggest the following hypotheses: (1) that the non-sporulating species experiences less membrane damage but a greater reduction in metabolic activity, leading to a possible viable but non-culturable (VBNC) state, and (2) that the sporulating species undergoes spore formation, which may subsequently convert into vegetative cells over time. PTW treatment on gram-positive bacterial biofilms that persist in food processing environments proves to be effective in reducing the proliferating abilities of the bacteria. However, the variance in PTW’s effects on metabolic activity and cell vitality between sporulating and non-sporulating species suggest that other survival tactics might be induced. This analysis further informs the application of PTW in food processing as an effective sanitation method. Full article
Show Figures

Graphical abstract

12 pages, 806 KiB  
Proceeding Paper
Enterococcus faecalis Biofilm: A Clinical and Environmental Hazard
by Bindu Sadanandan and Kavyasree Marabanahalli Yogendraiah
Med. Sci. Forum 2025, 35(1), 5; https://doi.org/10.3390/msf2025035005 - 5 Aug 2025
Abstract
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange [...] Read more.
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange and waste removal. Exopolysaccharides, proteins, lipids, and extracellular DNA create a protective matrix. Persister cells within the biofilm contribute to antibiotic resistance and survival. The heterogeneous architecture of the E. faecalis biofilm contains both dense clusters and loosely packed regions that vary in thickness, ranging from 10 to 100 µm, depending on the environmental conditions. The pathogenicity of the E. faecalis biofilm is mediated through complex interactions between genes and virulence factors such as DNA release, cytolysin, pili, secreted antigen A, and microbial surface components that recognize adhesive matrix molecules, often involving a key protein called enterococcal surface protein (Esp). Clinically, it is implicated in a range of nosocomial infections, including urinary tract infections, endocarditis, and surgical wound infections. The biofilm serves as a nidus for bacterial dissemination and as a reservoir for antimicrobial resistance. The effectiveness of first-line antibiotics (ampicillin, vancomycin, and aminoglycosides) is diminished due to reduced penetration, altered metabolism, increased tolerance, and intrinsic and acquired resistance. Alternative strategies for biofilm disruption, such as combination therapy (ampicillin with aminoglycosides), as well as newer approaches, including antimicrobial peptides, quorum-sensing inhibitors, and biofilm-disrupting agents (DNase or dispersin B), are also being explored to improve treatment outcomes. Environmentally, E. faecalis biofilms contribute to contamination in water systems, food production facilities, and healthcare environments. They persist in harsh conditions, facilitating the spread of multidrug-resistant strains and increasing the risk of transmission to humans and animals. Therefore, understanding the biofilm architecture and drug resistance is essential for developing effective strategies to mitigate their clinical and environmental impact. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Antibiotics)
Show Figures

Figure 1

15 pages, 1228 KiB  
Review
Antimicrobial Effect of Graphene in Dentistry: A Scoping Review
by Ricardo Martuci, Susana João Oliveira, Mateus Martuci, José Reis-Campos and Maria Helena Figueiral
Dent. J. 2025, 13(8), 355; https://doi.org/10.3390/dj13080355 - 5 Aug 2025
Abstract
Background/Objectives: The functionalization of various forms of graphene, such as graphene nanoplatelets, graphene oxide, and reduced graphene oxide, in biomaterials is a promising strategy in dentistry, particularly regarding their antimicrobial potential. However, conclusive studies on the toxicity and biocompatibility of graphene-based materials [...] Read more.
Background/Objectives: The functionalization of various forms of graphene, such as graphene nanoplatelets, graphene oxide, and reduced graphene oxide, in biomaterials is a promising strategy in dentistry, particularly regarding their antimicrobial potential. However, conclusive studies on the toxicity and biocompatibility of graphene-based materials remain limited, and standardized guidelines for their production, handling, and dental applications are still lacking. This scoping review aims to map the available studies on various types of graphene, synthesize evidence on their antimicrobial effectiveness, and describe the main biological responses when functionalized in dental biomaterials. Methods: An electronic search was conducted in the Clarivate, PubMed, and Scopus databases using the descriptors as follows: ‘graphene’ AND ‘antimicrobial effect’ AND ‘bactericidal effect’ AND (‘graphene oxide’ OR ‘dental biofilm’ OR ‘antibacterial properties’ OR ‘dental materials’). Article screening and eligibility assessment were performed based on predefined inclusion and exclusion criteria, following the PRISMA-ScR guidelines. Results: The search identified 793 articles. After removing duplicates, applying the eligibility criteria, and performing a full-text analysis of 64 articles, 21 studies were included in the review. Graphene oxide, particularly at low concentrations, was the most commonly studied graphene variant, demonstrating significant antimicrobial efficacy against S. mutans, S. faecalis, E. coli, P. aeruginosa, and C. albicans. Both mechanical and chemical mechanisms have been linked to the biological responses of graphene-doped biomaterials. The biocompatibility and cytotoxicity of these compounds remain controversial, with some studies reporting favorable outcomes, while others raise significant concerns. Conclusions: Graphene shows great promise as an antimicrobial agent in dental biomaterials. Despite encouraging results, more in vitro and in vivo studies are needed to better understand its biocompatibility and cytotoxicity in dental applications. Additionally, standardized production protocols, clearly defined clinical applications in dentistry, and regulatory guidelines from the World Health Organization concerning handling procedures and occupational risks remain necessary. Full article
(This article belongs to the Special Issue Feature Review Papers in Dentistry)
Show Figures

Figure 1

18 pages, 4470 KiB  
Article
Cloning, Heterologous Expression, and Antifungal Activity Evaluation of a Novel Truncated TasA Protein from Bacillus amyloliquefaciens BS-3
by Li-Ming Dai, Li-Li He, Lan-Lan Li, Yi-Xian Liu, Yu-Ping Shi, Hai-Peng Su and Zhi-Ying Cai
Int. J. Mol. Sci. 2025, 26(15), 7529; https://doi.org/10.3390/ijms26157529 - 4 Aug 2025
Viewed by 166
Abstract
TasA gene, encoding a functional amyloid protein critical for biofilm formation and antimicrobial activity, was cloned from the endophytic strain Bacillus amyloliquefaciens BS-3, isolated from rubber tree roots. This study identified the shortest functional TasA variant (483 bp, 160 aa) reported to date, [...] Read more.
TasA gene, encoding a functional amyloid protein critical for biofilm formation and antimicrobial activity, was cloned from the endophytic strain Bacillus amyloliquefaciens BS-3, isolated from rubber tree roots. This study identified the shortest functional TasA variant (483 bp, 160 aa) reported to date, featuring unique amino acid substitutions in conserved domains. Bioinformatics analysis predicted a signal peptide (1–27 aa) and transmembrane domain (7–29 aa), which were truncated to optimize heterologous expression. Two prokaryotic vectors (pET28a and pCZN1) were constructed, with pCZN1-TasA expressed solubly in Escherichia coli Arctic Express at 15 °C, while pET28a-TasA formed inclusion bodies at 37 °C. Purified recombinant TasA exhibited potent antifungal activity, achieving 98.6% ± 1.09 inhibition against Colletotrichum acutatum, 64.77% ± 1.34 against Alternaria heveae. Notably, TasA completely suppressed spore germination in C. acutatum and Oidium heveae Steinmannat 60 μg/mL. Structural analysis via AlphaFold3 revealed that truncation enhanced protein stability. These findings highlight BS-3-derived TasA as a promising biocontrol agent, providing molecular insights for developing protein-based biopesticides against rubber tree pathogens. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

35 pages, 698 KiB  
Review
Mechanistic Role of Heavy Metals in Driving Antimicrobial Resistance: From Rhizosphere to Phyllosphere
by Rahul Kumar, Tanja P. Vasić, Sanja P. Živković, Periyasamy Panneerselvam, Gustavo Santoyo, Sergio de los Santos Villalobos, Adeyemi Nurudeen Olatunbosun, Aditi Pandit, Leonard Koolman, Debasis Mitra and Pankaj Gautam
Appl. Microbiol. 2025, 5(3), 79; https://doi.org/10.3390/applmicrobiol5030079 - 4 Aug 2025
Viewed by 71
Abstract
Heavy metal pollution represents a pervasive environmental challenge that significantly exacerbates the ever-increasing crisis of antimicrobial resistance and the capacity of microorganisms to endure and proliferate despite antibiotic interventions. This review examines the intricate relationship between heavy metals and AMR, with an emphasis [...] Read more.
Heavy metal pollution represents a pervasive environmental challenge that significantly exacerbates the ever-increasing crisis of antimicrobial resistance and the capacity of microorganisms to endure and proliferate despite antibiotic interventions. This review examines the intricate relationship between heavy metals and AMR, with an emphasis on the underlying molecular mechanisms and ecological ramifications. Common environmental metals, including arsenic, mercury, cadmium, and lead, exert substantial selective pressures on microbial communities. These induce oxidative stress and DNA damage, potentially leading to mutations that enhance antibiotic resistance. Key microbial responses include the overexpression of efflux pumps that expel both metals and antibiotics, production of detoxifying enzymes, and formation of protective biofilms, all of which contribute to the emergence of multidrug-resistant strains. In the soil environment, particularly the rhizosphere, heavy metals disrupt plant–microbe interactions by inhibiting beneficial organisms, such as rhizobacteria, mycorrhizal fungi, and actinomycetes, thereby impairing nutrient cycling and plant health. Nonetheless, certain microbial consortia can tolerate and detoxify heavy metals through sequestration and biotransformation, rendering them valuable for bioremediation. Advances in biotechnology, including gene editing and the development of engineered metal-resistant microbes, offer promising solutions for mitigating the spread of metal-driven AMR and restoring ecological balance. By understanding the interplay between metal pollution and microbial resistance, we can more effectively devise strategies for environmental protection and public health. Full article
Show Figures

Graphical abstract

13 pages, 2630 KiB  
Article
Photodynamic Therapy in the Management of MDR Candida spp. Infection Associated with Palatal Expander: In Vitro Evaluation
by Cinzia Casu, Andrea Butera, Alessandra Scano, Andrea Scribante, Sara Fais, Luisa Ladu, Alessandra Siotto-Pintor and Germano Orrù
Photonics 2025, 12(8), 786; https://doi.org/10.3390/photonics12080786 - 4 Aug 2025
Viewed by 143
Abstract
The aim of this work is to evaluate the effectiveness of antimicrobial photodynamic therapy (aPDT) against oral MDR (multi-drug-resistant) Candida spp. infections related to orthodontic treatment with palatal expanders through in vitro study. Methods: PDT protocol: Curcumin + H2O2 was [...] Read more.
The aim of this work is to evaluate the effectiveness of antimicrobial photodynamic therapy (aPDT) against oral MDR (multi-drug-resistant) Candida spp. infections related to orthodontic treatment with palatal expanders through in vitro study. Methods: PDT protocol: Curcumin + H2O2 was used as a photosensitizer activated by a 460 nm diode LED lamp, with an 8 mm blunt tip for 2 min in each spot of interest. In vitro simulation: A palatal expander sterile device was inserted into a custom-designed orthodontic bioreactor, realized with 10 mL of Sabouraud dextrose broth plus 10% human saliva and infected with an MDR C. albicans clinical isolate CA95 strain to reproduce an oral palatal expander infection. After 48 h of incubation at 37 °C, the device was treated with the PDT protocol. Two samples before and 5 min after the PDT process were taken and used to contaminate a Petri dish with a Sabouraud field to evaluate Candida spp. CFUs (colony-forming units). Results: A nearly 99% reduction in C. albicans colonies in the palatal expander biofilm was found after PDT. Conclusion: The data showed the effectiveness of using aPDT to treat palatal infection; however, specific patient oral micro-environment reproduction (Ph values, salivary flow, mucosal adhesion of photosensitizer) must be further analyzed. Full article
(This article belongs to the Section Biophotonics and Biomedical Optics)
Show Figures

Figure 1

14 pages, 589 KiB  
Review
Biofilm Formation and the Role of Efflux Pumps in ESKAPE Pathogens
by Trent R. Sorenson, Kira M. Zack and Suresh G. Joshi
Microorganisms 2025, 13(8), 1816; https://doi.org/10.3390/microorganisms13081816 - 4 Aug 2025
Viewed by 162
Abstract
Nosocomial infections caused by ESKAPE pathogens represent a significant burden to global health. These pathogens may exhibit multidrug resistance (MDR) mechanisms, of which mechanisms such as efflux pumps and biofilm formation are gaining significant importance. Multidrug resistance mechanisms in ESKAPE pathogens have led [...] Read more.
Nosocomial infections caused by ESKAPE pathogens represent a significant burden to global health. These pathogens may exhibit multidrug resistance (MDR) mechanisms, of which mechanisms such as efflux pumps and biofilm formation are gaining significant importance. Multidrug resistance mechanisms in ESKAPE pathogens have led to an increase in the effective costs in health care and a higher risk of mortality in hospitalized patients. These pathogens utilize antimicrobial efflux pump mechanisms and bacterial biofilm-forming capabilities to escape the bactericidal action of antimicrobials. ESKAPE bacteria forming colonies demonstrate increased expression of efflux pump-encoding genes. Efflux pumps not only expel antimicrobial agents but also contribute to biofilm formation by bacteria through (1) transport of molecules and transcription factors involved in biofilm quorum sensing, (2) bacterial fimbriae structure transport for biofilm adhesion to surfaces, and (3) regulation of a transmembrane gradient to survive the difficult conditions of biofilm microenvironments. The synergistic role of these mechanisms complicates treatment outcomes. Given the mechanistic link between biofilms and efflux pumps, therapeutic strategies should focus on targeting anti-biofilm mechanisms alongside efflux pump inactivation with efflux pump inhibitors. This review explores the molecular interplay between efflux pumps and biofilm formation, emphasizing potential therapeutic strategies such as efflux pump inhibitors (EPIs) and biofilm-targeting agents. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

12 pages, 2639 KiB  
Article
Interspecies Interactions of Single- and Mixed-Species Biofilms of Candida albicans and Aggregatibacter actinomycetemcomitans
by Adèle Huc, Andreia S. Azevedo, José Carlos Andrade and Célia Fortuna Rodrigues
Biomedicines 2025, 13(8), 1890; https://doi.org/10.3390/biomedicines13081890 - 3 Aug 2025
Viewed by 328
Abstract
Polymicrobial biofilms involving fungal and bacterial species are increasingly recognized as contributors to persistent infections, particularly in the oral cavity. Candida albicans and Aggregatibacter actinomycetemcomitans are two commensals that can turn into opportunistic pathogens and are able to form robust biofilms. Objectives: [...] Read more.
Polymicrobial biofilms involving fungal and bacterial species are increasingly recognized as contributors to persistent infections, particularly in the oral cavity. Candida albicans and Aggregatibacter actinomycetemcomitans are two commensals that can turn into opportunistic pathogens and are able to form robust biofilms. Objectives: This study aimed to assess the interaction dynamics between these two microorganisms and to evaluate their susceptibility to fluconazole and azithromycin in single- and mixed-species forms. Methods: Biofilm biomass was quantified using crystal violet assays, while biofilm cell viability was assessed through CFU enumeration (biofilm viability assay). To assess the resistance properties of single versus mixed-species coincubations, we applied the antimicrobial susceptibility test (AST) to each drug, and analysed spatial organization with confocal laser scanning microscopy, using PNA-FISH. Results: The results indicated that both species can coexist without significant mutual inhibition. However, a non-reciprocal synergism was also observed, whereby mixed-species biofilm conditions promoted the growth of A. actinomycetemcomitans, while C. albicans growth remained stable. As expected, antimicrobial tolerance was elevated in mixed cultures, likely due to enhanced extracellular matrix production and potential quorum-sensing interactions, contributing to increased resistance against azithromycin and fluconazole. Conclusions: This study provides novel insights into previously rarely explored interactions between C. albicans and A. actinomycetemcomitans. These findings underscore the importance of investigating interspecies interactions within polymicrobial biofilms, as understanding their mechanisms, such as quorum-sensing molecules and metabolic cooperation, can contribute to improved diagnostics and more effective targeted therapeutic strategies against polymicrobial infections. Full article
Show Figures

Graphical abstract

Back to TopTop