Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,831)

Search Parameters:
Keywords = antigen presenting cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2547 KiB  
Article
A Host Cell Vector Model for Analyzing Viral Protective Antigens and Host Immunity
by Sun-Min Ahn, Jin-Ha Song, Seung-Eun Son, Ho-Won Kim, Gun Kim, Seung-Min Hong, Kang-Seuk Choi and Hyuk-Joon Kwon
Int. J. Mol. Sci. 2025, 26(15), 7492; https://doi.org/10.3390/ijms26157492 (registering DOI) - 2 Aug 2025
Abstract
Avian influenza A viruses (IAVs) pose a persistent threat to the poultry industry, causing substantial economic losses. Although traditional vaccines have helped reduce the disease burden, they typically rely on multivalent antigens, emphasize humoral immunity, and require intensive production. This study aimed to [...] Read more.
Avian influenza A viruses (IAVs) pose a persistent threat to the poultry industry, causing substantial economic losses. Although traditional vaccines have helped reduce the disease burden, they typically rely on multivalent antigens, emphasize humoral immunity, and require intensive production. This study aimed to establish a genetically matched host–cell system to evaluate antigen-specific immune responses and identify conserved CD8+ T cell epitopes in avian influenza viruses. To this end, we developed an MHC class I genotype (B21)-matched host (Lohmann VALO SPF chicken) and cell vector (DF-1 cell line) model. DF-1 cells were engineered to express the hemagglutinin (HA) gene of clade 2.3.4.4b H5N1 either transiently or stably, and to stably express the matrix 1 (M1) and nucleoprotein (NP) genes of A/chicken/South Korea/SL20/2020 (H9N2, Y280-lineage). Following prime-boost immunization with HA-expressing DF-1 cells, only live cells induced strong hemagglutination inhibition (HI) and virus-neutralizing (VN) antibody titers in haplotype-matched chickens. Importantly, immunization with DF-1 cells transiently expressing NP induced stronger IFN-γ production than those expressing M1, demonstrating the platform’s potential for differentiating antigen-specific cellular responses. CD8+ T cell epitope mapping by mass spectrometry identified one distinct MHC class I-bound peptide from each of the HA-, M1-, and NP-expressing DF-1 cell lines. Notably, the identified HA epitope was conserved in 97.6% of H5-subtype IAVs, and the NP epitope in 98.5% of pan-subtype IAVs. These findings highlight the platform’s utility for antigen dissection and rational vaccine design. While limited by MHC compatibility, this approach enables identification of naturally presented epitopes and provides insight into conserved, functionally constrained viral targets. Full article
(This article belongs to the Special Issue Molecular Research on Immune Response to Virus Infection and Vaccines)
Show Figures

Graphical abstract

14 pages, 1813 KiB  
Article
Elevated Antigen-Presenting-Cell Signature Genes Predict Stemness and Metabolic Reprogramming States in Glioblastoma
by Ji-Yong Sung and Kihwan Hwang
Int. J. Mol. Sci. 2025, 26(15), 7411; https://doi.org/10.3390/ijms26157411 (registering DOI) - 1 Aug 2025
Abstract
Glioblastoma (GBM) is a highly aggressive and heterogeneous brain tumor. Glioma stem-like cells (GSCs) play a central role in tumor progression, therapeutic resistance, and recurrence. Although immune cells are known to shape the GBM microenvironment, the impact of antigen-presenting-cell (APC) signature genes on [...] Read more.
Glioblastoma (GBM) is a highly aggressive and heterogeneous brain tumor. Glioma stem-like cells (GSCs) play a central role in tumor progression, therapeutic resistance, and recurrence. Although immune cells are known to shape the GBM microenvironment, the impact of antigen-presenting-cell (APC) signature genes on tumor-intrinsic phenotypes remains underexplored. We analyzed both bulk- and single-cell RNA sequencing datasets of GBM to investigate the association between APC gene expression and tumor-cell states, including stemness and metabolic reprogramming. Signature scores were computed using curated gene sets related to APC activity, KEGG metabolic pathways, and cancer hallmark pathways. Protein–protein interaction (PPI) networks were constructed to examine the links between immune regulators and metabolic programs. The high expression of APC-related genes, such as HLA-DRA, CD74, CD80, CD86, and CIITA, was associated with lower stemness signatures and enhanced inflammatory signaling. These APC-high states (mean difference = –0.43, adjusted p < 0.001) also showed a shift in metabolic activity, with decreased oxidative phosphorylation and increased lipid and steroid metabolism. This pattern suggests coordinated changes in immune activity and metabolic status. Furthermore, TNF-α and other inflammatory markers were more highly expressed in the less stem-like tumor cells, indicating a possible role of inflammation in promoting differentiation. Our findings revealed that elevated APC gene signatures are associated with more differentiated and metabolically specialized GBM cell states. These transcriptional features may also reflect greater immunogenicity and inflammation sensitivity. The APC metabolic signature may serve as a useful biomarker to identify GBM subpopulations with reduced stemness and increased immune engagement, offering potential therapeutic implications. Full article
(This article belongs to the Special Issue Advanced Research on Cancer Stem Cells)
Show Figures

Figure 1

18 pages, 2125 KiB  
Article
A Replication-Defective Myxoma Virus Inducing Pro-Inflammatory Responses as Monotherapy and an Adjuvant to Chemo- and DC Immuno-Therapy for Ovarian Cancer
by Martin J. Cannon and Jia Liu
Viruses 2025, 17(8), 1058; https://doi.org/10.3390/v17081058 - 29 Jul 2025
Viewed by 246
Abstract
Myxoma virus (MYXV), a rabbit-specific poxvirus and non-pathogenic in humans and mice, is an excellent candidate oncolytic virus for cancer therapy. MYXV also has immunotherapeutic benefits. In ovarian cancer (OC), immunosuppressive tumor-associated macrophages (TAMs) are key to inhibiting antitumor immunity while hindering therapeutic [...] Read more.
Myxoma virus (MYXV), a rabbit-specific poxvirus and non-pathogenic in humans and mice, is an excellent candidate oncolytic virus for cancer therapy. MYXV also has immunotherapeutic benefits. In ovarian cancer (OC), immunosuppressive tumor-associated macrophages (TAMs) are key to inhibiting antitumor immunity while hindering therapeutic benefit by chemotherapy and dendritic cell (DC) vaccine. Because MYXV favors binding/entry of macrophages/monocytes, we examined the therapeutic potential of MYXV against TAMs. We found previously that a replication-defective MYXV with targeted deletion of an essential gene, M062R, designated ΔM062R MYXV, activated both the host DNA sensing pathway and the SAMD9 pathway. Treatment with ΔM062R confers therapeutic benefit comparable to that of wild-type replicating MYXV in preclinical models. Here we found that ΔM062R MYXV, when integrated with cisplatin and DC immunotherapy, further improved treatment benefit, likely through promoting tumor antigen-specific T cell function. Moreover, we also tested ΔM062R MYXV in targeting human immunosuppressive TAMs from OC patient ascites in a co-culture system. We found that ΔM062R treatment subverted the immunosuppressive properties of TAMs and elevated the avidity of cytokine production in tumor antigen-specific CD4+ T cells. Overall, ΔM062R presents a promising immunotherapeutic platform as a beneficial adjuvant to chemotherapy and DC vaccine. Full article
(This article belongs to the Special Issue Women in Virology 2025)
Show Figures

Figure 1

13 pages, 1778 KiB  
Article
Preparation and Characterization of Monoclonal Antibodies Against the Porcine Rotavirus VP6 Protein
by Botao Sun, Dingyi Mao, Jing Chen, Xiaoqing Bi, Linke Zou, Jishan Bai, Rongchao Liu, Ping Hao, Qi Wang, Linhan Zhong, Panchi Zhang and Bin Zhou
Vet. Sci. 2025, 12(8), 710; https://doi.org/10.3390/vetsci12080710 - 29 Jul 2025
Viewed by 178
Abstract
Porcine Rotavirus (PoRV), a predominant causative agent of neonatal diarrhea in piglets, shares substantial genetic homology with human rotavirus and represents a considerable threat to both public health and the global swine industry in the absence of specific antiviral interventions. The VP6 protein, [...] Read more.
Porcine Rotavirus (PoRV), a predominant causative agent of neonatal diarrhea in piglets, shares substantial genetic homology with human rotavirus and represents a considerable threat to both public health and the global swine industry in the absence of specific antiviral interventions. The VP6 protein, an internal capsid component, is characterized by exceptional sequence conservation and robust immunogenicity, rendering it an ideal candidate for viral genotyping and vaccine development. In the present study, the recombinant plasmid pET28a(+)-VP6 was engineered to facilitate the high-yield expression and purification of the VP6 antigen. BALB/c mice were immunized to generate monoclonal antibodies (mAbs) through hybridoma technology, and the antigenic specificity of the resulting mAbs was stringently validated. Subsequently, a panel of truncated protein constructs was designed to precisely map linear B-cell epitopes, followed by comparative conservation analysis across diverse PoRV strains. Functional validation demonstrated that all three mAbs exhibited high-affinity binding to VP6, with a peak detection titer of 1:3,000,000 and exclusive specificity toward PoRVA. These antibodies effectively recognized representative genotypes such as G3 and X1, while exhibiting no cross-reactivity with unrelated viral pathogens; however, their reactivity against other PoRV serogroups (e.g., types B and C) remains to be further elucidated. Epitope mapping identified two novel linear B-cell epitopes, 128YIKNWNLQNR137 and 138RQRTGFVFHK147, both displaying strong sequence conservation among circulating PoRV strains. Collectively, these findings provide a rigorous experimental framework for the functional dissection of VP6 and reinforce its potential as a valuable diagnostic and immunoprophylactic target in PoRV control strategies. Full article
Show Figures

Figure 1

14 pages, 2266 KiB  
Article
Advancing Extrapulmonary Tuberculosis Diagnosis: Potential of MPT64 Immunochemistry-Based Antigen Detection Test in a High-TB, Low-HIV Endemic Setting
by Ahmad Wali, Nauman Safdar, Atiqa Ambreen, Asif Loya and Tehmina Mustafa
Pathogens 2025, 14(8), 741; https://doi.org/10.3390/pathogens14080741 (registering DOI) - 28 Jul 2025
Viewed by 302
Abstract
Extrapulmonary tuberculosis (EPTB) remains diagnostically challenging due to its paucibacillary nature and variable presentation. Xpert and culture are limited in EPTB diagnosis due to sampling challenges, low sensitivity, and long turnaround times. This study evaluated the performance of the MPT64 antigen detection test [...] Read more.
Extrapulmonary tuberculosis (EPTB) remains diagnostically challenging due to its paucibacillary nature and variable presentation. Xpert and culture are limited in EPTB diagnosis due to sampling challenges, low sensitivity, and long turnaround times. This study evaluated the performance of the MPT64 antigen detection test for diagnosing EPTB, particularly tuberculous lymphadenitis (TBLN) and tuberculous pleuritis (TBP), in a high-TB, low-HIV setting. Conducted at Gulab-Devi Hospital, Lahore, Pakistan, this study evaluated the MPT64 test’s performance against conventional diagnostic methods, including culture, histopathology, and the Xpert MTB/RIF assay. Lymph node biopsies were collected, and cell blocks were made from aspirated pleural fluid from patients clinically presumed to have EPTB. Of 338 patients, 318 (94%) were diagnosed with EPTB. For TBLN, MPT64 demonstrated higher sensitivity (84%) than Xpert (48%); for TBP, the sensitivity was 51% versus 7%, respectively. Among histopathology-confirmed TBLN cases, MPT64 outperformed both culture and Xpert (85% vs. 58% and 47%). Due to the low number of non-TB cases, specificity could not be reliably assessed. The MPT64 test shows promise as a rapid, sensitive diagnostic tool for EPTB, particularly TBLN, in routine settings. While sensitivity is notably superior to Xpert, further studies are needed to evaluate its specificity and broader diagnostic utility. Full article
(This article belongs to the Section Epidemiology of Infectious Diseases)
Show Figures

Figure 1

11 pages, 2805 KiB  
Article
A Novel CTC-Binding Probe: Enzymatic vs. Shear Stress-Based Detachment Approaches
by Sophia Krakowski, Sara Campos, Henri Wolff, Gabi Bondzio, Felix Hehnen, Michael Lommel, Ulrich Kertzscher and Paul Friedrich Geus
Diagnostics 2025, 15(15), 1876; https://doi.org/10.3390/diagnostics15151876 - 26 Jul 2025
Viewed by 266
Abstract
Background/Objectives: Liquid biopsy is a minimally invasive alternative to tissue biopsy and is used to obtain information about a disease from a blood sample or other body fluids. In the context of cancer, circulating tumor cells (CTC) can be used as biomarkers [...] Read more.
Background/Objectives: Liquid biopsy is a minimally invasive alternative to tissue biopsy and is used to obtain information about a disease from a blood sample or other body fluids. In the context of cancer, circulating tumor cells (CTC) can be used as biomarkers to determine the nature of the tumor, its stage of progression, and the efficiency of the administered therapy through monitoring. However, the low concentration of CTCs in blood (1–10 cells/mL) is a challenge for their isolation. Therefore, a minimally invasive medical device (BMProbe™) was developed that isolates CTCs via antigen–antibody binding directly from the bloodstream. Current investigations focus on the process of detaching bound cells from the BMProbe™ surface for cell cultivation and subsequent drug testing to enable personalized therapy planning. Methods: This article presents two approaches for detaching LNCaP cells from anti-EpCAM coated BMProbes™: enzymatic detachment using TrypLE™ and detachment through enzymatic pretreatment with supplementary flow-induced shear stress. The additional shear stress is intended to increase the detachment efficiency. To determine the flow rate required to gently detach the cells, a computational fluid dynamics (CFD) simulation was carried out. Results: The experimental test results demonstrate that 91% of the bound cells can be detached enzymatically within 10 min. Based on the simulation, a maximum flow rate of 47.76 mL/min was defined in the flow detachment system, causing an average shear stress of 8.4 Pa at the probe edges. The additional flow treatment did not increase the CTC detachment efficiency. Conclusions: It is feasible that the detachment efficiency can be further increased by a longer enzymatic incubation time or higher shear stress. The influence on the integrity and viability of cells must, however, be considered. Full article
Show Figures

Figure 1

30 pages, 782 KiB  
Review
Immune Responses of Dendritic Cells to Zoonotic DNA and RNA Viruses
by Xinyu Miao, Yixuan Han, Yinyan Yin, Yang Yang, Sujuan Chen, Xinan Jiao, Tao Qin and Daxin Peng
Vet. Sci. 2025, 12(8), 692; https://doi.org/10.3390/vetsci12080692 - 24 Jul 2025
Viewed by 399
Abstract
Viral infections persistently challenge global health through immune evasion and zoonotic transmission. Dendritic cells (DCs) play a central role in antiviral immunity by detecting viral nucleic acids via conserved pattern recognition receptors, triggering interferon-driven innate responses and cross-presentation-mediated activation of cytotoxic CD8+ [...] Read more.
Viral infections persistently challenge global health through immune evasion and zoonotic transmission. Dendritic cells (DCs) play a central role in antiviral immunity by detecting viral nucleic acids via conserved pattern recognition receptors, triggering interferon-driven innate responses and cross-presentation-mediated activation of cytotoxic CD8+ T cells. This study synthesizes DC-centric defense mechanisms against viral subversion, encompassing divergent nucleic acid sensing pathways for zoonotic DNA and RNA viruses, viral counterstrategies targeting DC maturation and interferon signaling, and functional specialization of DC subsets in immune coordination. Despite advances in DC-based vaccine platforms, clinical translation is hindered by cellular heterogeneity, immunosuppressive microenvironments, and limitations in antigen delivery. Future research should aim to enhance the efficiency of DC-mediated immunity, thereby establishing a robust scientific foundation for the development of next-generation vaccines and antiviral therapies. A more in-depth exploration of DC functions and regulatory mechanisms may unlock novel strategies for antiviral intervention, ultimately paving the way for improved prevention and treatment of viral infections. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

15 pages, 1078 KiB  
Review
Immunological Insights into Photodynamic Therapy of Glioblastoma Multiforme
by Paweł Woźnicki, Dorota Bartusik-Aebisher, Agnieszka Przygórzewska and David Aebisher
Molecules 2025, 30(15), 3091; https://doi.org/10.3390/molecules30153091 - 24 Jul 2025
Viewed by 261
Abstract
The Gliomas account for 81% of all malignant central nervous system tumors and are classified by WHO into four grades of malignancy. Glioblastoma multiforme (GBM), the most common grade IV glioma, exhibits an extremely aggressive phenotype and a dismal five-year survival rate of [...] Read more.
The Gliomas account for 81% of all malignant central nervous system tumors and are classified by WHO into four grades of malignancy. Glioblastoma multiforme (GBM), the most common grade IV glioma, exhibits an extremely aggressive phenotype and a dismal five-year survival rate of only 6%, underscoring the urgent need for novel therapeutic approaches. Immunotherapy has emerged as a promising strategy, and photodynamic therapy (PDT) in particular has attracted attention for its dual cytotoxic and immunostimulatory effects. In GBM models, PDT induces immunogenic cell death characterized by the release of damage-associated molecular patterns (DAMPs), which promote antigen presentation and activate T cell responses. Additionally, PDT transiently increases blood–brain barrier permeability, facilitating immune cell infiltration into the tumor microenvironment, and enhances clearance of waste products via stimulation of meningeal lymphatic vessels. Importantly, PDT can reprogram or inactivate immunosuppressive tumor-associated macrophages, thereby counteracting the pro-tumoral microenvironment. Despite these encouraging findings, further preclinical and clinical studies are required to elucidate PDT’s underlying immunological mechanisms fully and to optimize treatment regimens that maximize its efficacy as part of integrated immunotherapeutic strategies against GBM. Full article
(This article belongs to the Special Issue Innovative Anticancer Compounds and Therapeutic Strategies)
Show Figures

Figure 1

12 pages, 782 KiB  
Review
Primary Sequence-Intrinsic Immune Evasion by Viral Proteins Guides CTL-Based Vaccine Strategies
by Li Wan, Masahiro Shuda, Yuan Chang and Patrick S. Moore
Viruses 2025, 17(8), 1035; https://doi.org/10.3390/v17081035 - 24 Jul 2025
Viewed by 414
Abstract
Viruses use a range of sophisticated strategies to evade detection by cytotoxic T-lymphocytes (CTLs) within host cells. Beyond elaborating dedicated viral proteins that disrupt the MHC class I antigen-presentation machinery, some viruses possess intrinsic, cis-acting genome-encoded elements that interfere with antigen processing and [...] Read more.
Viruses use a range of sophisticated strategies to evade detection by cytotoxic T-lymphocytes (CTLs) within host cells. Beyond elaborating dedicated viral proteins that disrupt the MHC class I antigen-presentation machinery, some viruses possess intrinsic, cis-acting genome-encoded elements that interfere with antigen processing and display. These protein features, including G-quadruplex motifs, repetitive peptide sequences, and rare-codon usage, counterintuitively limit production of proteins critical to virus survival, particularly during latency. By slowing viral protein synthesis, these features reduce antigen production and proteosomal degradation, ultimately limiting the generation of peptides for MHC I presentation. These built-in evasion tactics enable viruses to remain “invisible” to CTLs during latency. While these primary sequence intrinsic immune evasion (PSI) mechanisms are well-described in select herpesviruses, emerging evidence suggests that they may also play a critical role in RNA viruses. How these proteins are made, rather than what they functionally target, determines their immune evasion properties. Understanding PSI mechanisms could rationally inform the design of engineered viral antigens with altered or removed evasion elements to restore antigen CTL priming and activation. Such vaccine strategies have the potential to enhance immune recognition, improve clearance of chronically infected cells, and contribute to the treatment of persistent viral infections and virus-associated cancers. Full article
(This article belongs to the Special Issue 15-Year Anniversary of Viruses)
Show Figures

Figure 1

22 pages, 5945 KiB  
Article
Immunogenicity Risk Assessment of Biotherapeutics Using an Ex Vivo B Cell Assay
by Kevin M. Budge, Ross Blankenship, Patricia Brown-Augsburger and Lukasz K. Chlewicki
Antibodies 2025, 14(3), 62; https://doi.org/10.3390/antib14030062 - 22 Jul 2025
Viewed by 324
Abstract
Background/Objectives: Anti-drug antibody (ADA) formation can impact the safety, pharmacokinetics, and/or efficacy of biotherapeutics, including monoclonal antibodies (mAbs). Current strategies for ADA/immunogenicity risk prediction of mAbs include in silico algorithms, T cell proliferation assays, MHC-associated peptide proteomics assays (MAPPs), and dendritic cell internalization [...] Read more.
Background/Objectives: Anti-drug antibody (ADA) formation can impact the safety, pharmacokinetics, and/or efficacy of biotherapeutics, including monoclonal antibodies (mAbs). Current strategies for ADA/immunogenicity risk prediction of mAbs include in silico algorithms, T cell proliferation assays, MHC-associated peptide proteomics assays (MAPPs), and dendritic cell internalization assays. However, B cell-mediated responses are not assessed in these assays. B cells are professional antigen-presenting cells (APCs) and secrete antibodies toward immunogenic mAbs. Therefore, methods to determine B cell responses would be beneficial for immunogenicity risk prediction and may provide a more comprehensive assessment of risk. Methods: We used a PBMC culture method with the addition of IL-4, IL-21, B cell activating factor (BAFF), and an anti-CD40 agonist mAb to support B cell survival and activation. Results: B cells in this assay format become activated, proliferate, and secrete IgG. A panel of 51 antibodies with varying clinical immunogenicity rates were screened in this assay with IgG secretion used as a readout for immunogenicity risk. IgG secretion differed among test articles but did not correlate with the clinical immunogenicity rating. Conclusions: This dataset highlights the challenges of developing a B cell assay for immunogenicity risk prediction and provides a framework for further refinement of a B cell-based assay for immunogenicity risk prediction of mAbs. Full article
Show Figures

Graphical abstract

19 pages, 3009 KiB  
Article
PD-1-Positive CD8+ T Cells and PD-1-Positive FoxP3+ Cells in Tumor Microenvironment Predict Response to Neoadjuvant Chemoimmunotherapy in Gastric Cancer Patients
by Liubov A. Tashireva, Anna Yu. Kalinchuk, Elena O. Shmakova, Elisaveta A. Tsarenkova, Dmitriy M. Loos, Pavel Iamschikov, Ivan A. Patskan, Alexandra V. Avgustinovich, Sergey V. Vtorushin, Irina V. Larionova and Evgeniya S. Grigorieva
Cancers 2025, 17(14), 2407; https://doi.org/10.3390/cancers17142407 - 21 Jul 2025
Viewed by 301
Abstract
Background/Objectives: In gastric cancer, only a subset of patients benefit clinically from neoadjuvant chemoimmunotherapy, underscoring the need for robust biomarkers that can predict treatment responses and guide personalized immunotherapy. This study aimed to characterize the immune microenvironment of gastric tumors and identify predictive [...] Read more.
Background/Objectives: In gastric cancer, only a subset of patients benefit clinically from neoadjuvant chemoimmunotherapy, underscoring the need for robust biomarkers that can predict treatment responses and guide personalized immunotherapy. This study aimed to characterize the immune microenvironment of gastric tumors and identify predictive markers associated with therapeutic efficacy. Methods: We prospectively enrolled 16 patients with histologically confirmed, PD-L1–positive (CPS ≥ 1) gastric adenocarcinoma (T2–4N0–1M0). All patients received eight cycles of FLOT chemotherapy combined with pembrolizumab. Treatment response was assessed by Mandard tumor regression grading. Spatial transcriptomic profiling (10x Genomics Visium) and multiplex immunofluorescence were used to evaluate tumor-infiltrating immune cell subsets and PD-1 expression at baseline and after treatment. Results: Transcriptomic analysis differentiated the immune landscapes of responders from non-responders. Responders exhibited elevated expression of IL1B, CXCL5, HMGB1, and IFNGR2, indicative of an inflamed tumor microenvironment and type I/II interferon signaling. In contrast, non-responders demonstrated upregulation of immunosuppressive genes such as LGALS3, IDO1, and CD55, along with enrichment in oxidative phosphorylation and antigen presentation pathways. Multiplex immunofluorescence confirmed a higher density of FoxP3+ regulatory T cells in non-responders (median 5.36% vs. 2.41%; p = 0.0032). Notably, PD-1+ CD8+ T cell and PD-1+ FoxP3+ Treg frequencies were significantly elevated in non-responders, suggesting that PD-1 expression within cytotoxic and regulatory compartments may contribute to immune evasion. No substantial differences were observed in PD-L1 CPS or PD-1+ B cells and PD-1+ macrophages. Conclusions: Our findings identify PD-1+ CD8+ T cells and PD-1+ FoxP3+ Tregs as potential biomarkers of resistance to neoadjuvant chemoimmunotherapy in gastric cancer. Transcriptional programs centered on IL1B/CXCL5 and LGALS3/IDO1 define distinct immune phenotypes that may guide future combination strategies targeting both effector and suppressive arms of the tumor immune response. Full article
Show Figures

Figure 1

19 pages, 1204 KiB  
Review
Immunomodulatory Effects of RAAS Inhibitors: Beyond Hypertension and Heart Failure
by Raluca Ecaterina Haliga, Elena Cojocaru, Oana Sîrbu, Ilinca Hrițcu, Raluca Elena Alexa, Ioana Bianca Haliga, Victorița Șorodoc and Adorata Elena Coman
Biomedicines 2025, 13(7), 1779; https://doi.org/10.3390/biomedicines13071779 - 21 Jul 2025
Viewed by 416
Abstract
The renin–angiotensin–aldosterone system (RAAS) plays a central role in cardiovascular and renal homeostasis and is increasingly recognized for its broad immunomodulatory effects. Pharmacological RAAS inhibition, primarily via angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), has demonstrated therapeutic value beyond its use [...] Read more.
The renin–angiotensin–aldosterone system (RAAS) plays a central role in cardiovascular and renal homeostasis and is increasingly recognized for its broad immunomodulatory effects. Pharmacological RAAS inhibition, primarily via angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), has demonstrated therapeutic value beyond its use in hypertension and heart failure, extending to autoimmune, infectious, oncologic, and neurodegenerative conditions. ACEIs and ARBs modulate both innate and adaptive immune responses through Ang II-dependent and -independent mechanisms, influencing macrophage polarization, T-cell differentiation, cytokine expression, and antigen presentation. Notably, ACEIs exhibit Ang II-independent effects by enhancing antigen processing and regulating amyloid-β metabolism, offering potential neuroprotective benefits in Alzheimer’s disease. ARBs, particularly telmisartan and candesartan, provide additional anti-inflammatory effects via PPARγ activation. In cancer, RAAS inhibition affects tumor growth, angiogenesis, and immune surveillance, with ACEIs and ARBs showing distinct yet complementary impacts on tumor microenvironment modulation and chemotherapy cardioprotection. Moreover, ACEIs have shown promise in autoimmune myocarditis, colitis, and diabetic nephropathy by attenuating inflammatory cytokines. While clinical evidence supports the use of centrally acting ACEIs to treat early cognitive decline, further investigation is warranted to determine the long-term outcomes across disease contexts. These findings highlight the evolving role of RAAS inhibitors as immunomodulatory agents with promising implications across multiple systemic pathologies. Full article
(This article belongs to the Special Issue Renin-Angiotensin System in Cardiovascular Biology, 2nd Edition)
Show Figures

Figure 1

20 pages, 6280 KiB  
Article
The V5-Epitope Tag for Cell Engineering and Its Use in Immunohistochemistry and Quantitative Flow Cytometry
by Katja Fritschle, Marion Mielke, Olga J. Seelbach, Ulrike Mühlthaler, Milica Živanić, Tarik Bozoglu, Sarah Dötsch, Linda Warmuth, Dirk H. Busch, Arne Skerra, Christian Kupatt, Wolfgang A. Weber, Richard E. Randall, Katja Steiger and Volker Morath
Biology 2025, 14(7), 890; https://doi.org/10.3390/biology14070890 - 20 Jul 2025
Viewed by 366
Abstract
Synthetic biology has fundamentally advanced cell engineering and helped to develop effective therapeutics such as chimeric antigen receptor (CAR)-T cells. For these applications, the detection, localization, and quantification of heterologous fusion proteins assembled from interchangeable building blocks is of high importance. The V5 [...] Read more.
Synthetic biology has fundamentally advanced cell engineering and helped to develop effective therapeutics such as chimeric antigen receptor (CAR)-T cells. For these applications, the detection, localization, and quantification of heterologous fusion proteins assembled from interchangeable building blocks is of high importance. The V5 tag, a 14-residue epitope tag, offers promising characteristics for these applications but has only rarely been used in this context. Thus, we have systematically evaluated the murine anti-V5 tag antibody mu_SV5-Pk1 as well as its humanized version, hu_SV5-Pk1, to analyze cells expressing V5-tagged receptors in samples from various in vitro and in vivo experiments. We found that the V5 tag signal on cells is affected by certain fixation and detachment reagents. Immunohistochemistry (IHC) on formalin-fixed paraffin-embedded (FFPE) mouse tissue samples was performed to sensitively detect cells in tissue. We improved IHC by applying the hu_SV5-Pk1 monoclonal antibody (mAb) to avoid cross-reactivity within and unspecific background signals arising on fixed mouse tissue. Conversely, the absence of unspecific binding by the mu_SV5-Pk1 mAb was evaluated on 46 human normal or cancer tissues. Our findings present a robust toolbox for utilizing the V5 tag and cognate antibodies in synthetic biology applications. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

18 pages, 1756 KiB  
Article
ROR1 as an Immunotherapeutic Target for Inducing Antitumor Helper T Cell Responses Against Head and Neck Squamous Cell Carcinoma
by Ryosuke Sato, Hidekiyo Yamaki, Takahiro Inoue, Shota Sakaue, Hisataka Ominato, Risa Wakisaka, Hiroki Komatsuda, Michihisa Kono, Kenzo Ohara, Akemi Kosaka, Takayuki Ohkuri, Toshihiro Nagato, Takumi Kumai, Kan Kishibe, Hiroya Kobayashi and Miki Takahara
Cancers 2025, 17(14), 2326; https://doi.org/10.3390/cancers17142326 - 12 Jul 2025
Viewed by 404
Abstract
Background/Objectives: Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer, with limited responsiveness to immune checkpoint inhibitors (ICIs). Cancer vaccine therapy is a promising novel immunotherapeutic approach that stimulates tumor-specific T cells. Receptor tyrosine kinase-like orphan receptor 1 [...] Read more.
Background/Objectives: Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer, with limited responsiveness to immune checkpoint inhibitors (ICIs). Cancer vaccine therapy is a promising novel immunotherapeutic approach that stimulates tumor-specific T cells. Receptor tyrosine kinase-like orphan receptor 1 (ROR1), which is overexpressed in malignant tumors but minimally expressed in normal tissues, presents a promising target for immunotherapy. This study aimed to evaluate ROR1 as a target for helper T lymphocyte (HTL)-based peptide vaccine immunotherapy in HNSCC. Methods: ROR1 expression in HNSCC tissues was assessed by immunohistochemistry. A novel ROR1-derived epitope (ROR1403–417) was identified and used to generate ROR1-reactive HTLs. Functional assays measuring IFN-γ and granzyme B secretion, as well as direct cytotoxicity, were performed. The effects of ICIs on HTL activity were also examined. The presence of ROR1-reactive T cells in the peripheral blood of patients with HNSCC was evaluated. Results: ROR1 positivity rates in HNSCC tissues were significantly higher (80.0%) than those in healthy controls (16.7%), and high ROR1 expression correlated with advanced clinical stages. HTL lines recognized the ROR1403–417 peptide in a human leukocyte antigen (HLA)-DR-restricted manner, secreted effector cytokines, and exhibited direct cytotoxicity against ROR1+ tumor cells. Dual PD-L1/PD-L2 blockade further enhanced HTL responses. ROR1-reactive T cells were detected in the peripheral blood of patients with HNSCC. Conclusions: ROR1 represents a promising target for immunotherapy in HNSCC. The ROR1403–417 peptide can elicit ROR1-reactive HTLs that exhibit antitumor responses against HNSCC cell lines, which can be enhanced by ICIs. These findings support the potential of ROR1-targeted peptide vaccine therapy for HNSCC. Full article
(This article belongs to the Section Clinical Research of Cancer)
Show Figures

Figure 1

18 pages, 2138 KiB  
Article
Ferritin-Based HA DNA Vaccine Outperforms Conventional Designs in Inducing Protective Immunity Against Seasonal Influenza
by Hongzhe Lin, Yuxuan Jiang, Yan Li, Yiwei Zhong, Mingyue Chen, Weiyu Jiang, Rong Xiang, Najing Cao, Lei Sun, Xuanyi Wang, Lu Lu, Qiao Wang, Guangyue Han, Duan Ma and Bin Wang
Vaccines 2025, 13(7), 745; https://doi.org/10.3390/vaccines13070745 - 10 Jul 2025
Viewed by 512
Abstract
Background: Influenza remains a persistent public health challenge due to antigenic drift and shift, necessitating vaccines capable of eliciting broad and durable immunity. Hemagglutinin (HA) antigen serves as the critical target for eliciting protective immune responses against influenza. DNA vaccines offer distinct [...] Read more.
Background: Influenza remains a persistent public health challenge due to antigenic drift and shift, necessitating vaccines capable of eliciting broad and durable immunity. Hemagglutinin (HA) antigen serves as the critical target for eliciting protective immune responses against influenza. DNA vaccines offer distinct advantages over conventional platforms, including accelerated development and induction of both humoral and cellular immune responses. Methods: To optimize HA antigen presentation, we designed and systematically compared the immunogenicity and protective efficacy of HA antigen display strategies—bacteriophage T4 fibritin (HA-Foldon) and ferritin-based virus-like particles (HA-Ferritin)—versus monomeric HA DNA vaccines against seasonal influenza viruses. Results: HA-Ferritin showed superior structural stability. All vaccines induced similar HA-specific antibody levels, but HA-Ferritin elicited higher neutralizing antibodies and stronger T cell responses. Upon challenge, HA-Ferritin and HA-Foldon protected mice from weight loss and reduced lung virus loads by 3.27 and 0.76 times, respectively. Monomeric HA provided limited protection, with only 40% survival and minimal viral or pathological reduction. Conclusions: The HA-Ferritin DNA vaccine demonstrated enhanced immunogenicity and protection, supporting structured antigen display as a promising strategy for influenza DNA vaccine development. Full article
(This article belongs to the Special Issue Advances in DNA Vaccine Research)
Show Figures

Figure 1

Back to TopTop