The V5-Epitope Tag for Cell Engineering and Its Use in Immunohistochemistry and Quantitative Flow Cytometry
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Cell Fixation
2.3. Cell Detachment
2.4. Antibody Labeling with Fluorochrome
2.5. Quantitative Flow Cytometry
2.6. Radioligand Binding Assay
2.7. Animal Experiments
2.8. PET/MR Imaging
2.9. Preparation of Cell Pellets of JurkatDTPA-R and Jurkat Wildtype Cells as Positive and Negative Control
2.10. Immunohistochemistry
2.11. Data Analysis and Figure Preparation
3. Results
3.1. Quantification and Analysis of Fusion Protein Expression
3.2. Establishing Immunohistochemistry for the V5 Tag in Mice
3.3. Optimization of V5 Tag Immunohistochemistry
3.4. Human Tissue Staining
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Munro, S.; Pelham, H.R. Use of peptide tagging to detect proteins expressed from cloned genes: Deletion mapping functional domains of Drosophila hsp 70. EMBO J. 1984, 3, 3087–3093. [Google Scholar] [CrossRef] [PubMed]
- Jarvik, J.W.; Telmer, C.A. Epitope tagging. Annu. Rev. Genet. 1998, 32, 601–618. [Google Scholar] [CrossRef] [PubMed]
- Brizzard, B. Epitope tagging. BioTechniques 2008, 44, 693–695. [Google Scholar] [CrossRef] [PubMed]
- Bell, M.R.; Engleka, M.J.; Malik, A.; Strickler, J.E. To fuse or not to fuse: What is your purpose? Protein Sci. 2013, 22, 1466–1477. [Google Scholar] [CrossRef] [PubMed]
- Lichty, J.J.; Malecki, J.L.; Agnew, H.D.; Michelson-Horowitz, D.J.; Tan, S. Comparison of affinity tags for protein purification. Protein Expr. Purif. 2005, 41, 98–105. [Google Scholar] [CrossRef] [PubMed]
- June, C.H.; O’Connor, R.S.; Kawalekar, O.U.; Ghassemi, S.; Milone, M.C. CAR T cell immunotherapy for human cancer. Science 2018, 359, 1361–1365. [Google Scholar] [CrossRef] [PubMed]
- Southern, J.A.; Young, D.F.; Heaney, F.; Baumgartner, W.K.; Randall, R.E. Identification of an epitope on the P and V proteins of simian virus 5 that distinguishes between two isolates with different biological characteristics. J. Gen. Virol. 1991, 72 Pt 7, 1551–1557. [Google Scholar] [CrossRef] [PubMed]
- Hanke, T.; Szawlowski, P.; Randall, R.E. Construction of solid matrix-antibody-antigen complexes containing simian immunodeficiency virus p27 using tag-specific monoclonal antibody and tag-linked antigen. J. Gen. Virol. 1992, 73 Pt 3, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Dunn, C.; O’Dowd, A.; Randall, R.E. Fine mapping of the binding sites of monoclonal antibodies raised against the Pk tag. J. Immunol. Methods 1999, 224, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Zeghal, M.; Matte, K.; Venes, A.; Patel, S.; Laroche, G.; Sarvan, S.; Joshi, M.; Rain, J.C.; Couture, J.F.; Giguere, P.M. Development of a V5-tag-directed nanobody and its implementation as an intracellular biosensor of GPCR signaling. J. Biol. Chem. 2023, 299, 105107. [Google Scholar] [CrossRef] [PubMed]
- Randall, R.E.; Hanke, T.; Young, D.; Southern, J.A. Two-tag purification of recombinant proteins for the construction of solid matrix-antibody-antigen (SMAA) complexes as vaccines. Vaccine 1993, 11, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Hughey, R.P.; Mueller, G.M.; Bruns, J.B.; Kinlough, C.L.; Poland, P.A.; Harkleroad, K.L.; Carattino, M.D.; Kleyman, T.R. Maturation of the epithelial Na+ channel involves proteolytic processing of the alpha- and gamma-subunits. J. Biol. Chem. 2003, 278, 37073–37082. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Radtke, C.; Tews, B.A.; Meyers, G. Characterization of Membrane Topology and Retention Signal of Pestiviral Glycoprotein E1. J. Virol. 2021, 95, e0052121. [Google Scholar] [CrossRef] [PubMed]
- Marusyk, A.; Tabassum, D.P.; Altrock, P.M.; Almendro, V.; Michor, F.; Polyak, K. Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature 2014, 514, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Lobbestael, E.; Reumers, V.; Ibrahimi, A.; Paesen, K.; Thiry, I.; Gijsbers, R.; Van den Haute, C.; Debyser, Z.; Baekelandt, V.; Taymans, J.M. Immunohistochemical detection of transgene expression in the brain using small epitope tags. BMC Biotechnol. 2010, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Falcone, D.; Do, H.; Johnson, A.E.; Andrews, D.W. Negatively charged residues in the IgM stop-transfer effector sequence regulate transmembrane polypeptide integration. J. Biol. Chem. 1999, 274, 33661–33670. [Google Scholar] [CrossRef] [PubMed]
- Fujita, H.; Kida, Y.; Hagiwara, M.; Morimoto, F.; Sakaguchi, M. Positive charges of translocating polypeptide chain retrieve an upstream marginal hydrophobic segment from the endoplasmic reticulum lumen to the translocon. Mol. Biol. Cell 2010, 21, 2045–2056. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Hegde, R.S. Membrane protein insertion at the endoplasmic reticulum. Annu. Rev. Cell Dev. Biol. 2011, 27, 25–56. [Google Scholar] [CrossRef] [PubMed]
- Morath, V.; Fritschle, K.; Warmuth, L.; Anneser, M.; Dotsch, S.; Zivanic, M.; Krumwiede, L.; Bosl, P.; Bozoglu, T.; Robu, S.; et al. PET-based tracking of CAR T cells and viral gene transfer using a cell surface reporter that binds to lanthanide complexes. Nat. Biomed. Eng. 2025. [Google Scholar] [CrossRef] [PubMed]
- Meier, A.B.; Zawada, D.; De Angelis, M.T.; Martens, L.D.; Santamaria, G.; Zengerle, S.; Nowak-Imialek, M.; Kornherr, J.; Zhang, F.; Tian, Q.; et al. Epicardioid single-cell genomics uncovers principles of human epicardium biology in heart development and disease. Nat. Biotechnol. 2023, 41, 1787–1800. [Google Scholar] [CrossRef] [PubMed]
- Bankhead, P.; Loughrey, M.B.; Fernandez, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef] [PubMed]
- Cieplak, P.; Strongin, A.Y. Matrix metalloproteinases—From the cleavage data to the prediction tools and beyond. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 1952–1963. [Google Scholar] [CrossRef] [PubMed]
- Aimes, R.T.; Quigley, J.P. Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. J. Biol. Chem. 1995, 270, 5872–5876. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, K.; Ojima, M.; Otabe, K.; Horie, M.; Koga, H.; Sekiya, I.; Muneta, T. Effects of Different Cell-Detaching Methods on the Viability and Cell Surface Antigen Expression of Synovial Mesenchymal Stem Cells. Cell Transplant. 2017, 26, 1089–1102. [Google Scholar] [CrossRef] [PubMed]
- Shultz, L.D.; Lyons, B.L.; Burzenski, L.M.; Gott, B.; Chen, X.; Chaleff, S.; Kotb, M.; Gillies, S.D.; King, M.; Mangada, J.; et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J. Immunol. 2005, 174, 6477–6489. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, F.; Yasukawa, M.; Lyons, B.; Yoshida, S.; Miyamoto, T.; Yoshimoto, G.; Watanabe, T.; Akashi, K.; Shultz, L.D.; Harada, M. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor gamma chain(null) mice. Blood 2005, 106, 1565–1573. [Google Scholar] [CrossRef] [PubMed]
- Leica Biosytems. BOND Polymer Refine Detection (DS9800). In Instruction for Use; Leica Biosystems: Nussloch, Germany, 2024. [Google Scholar]
- Randall, R.E.; Young, D.; Pisliakova, M.; Andrejeva, J.; West, L.; Rossler, L.; Morath, V.; Hughes, D.; Goodbourn, S. Single-cycle parainfluenza virus type 5 vectors for producing recombinant proteins, including a humanized anti-V5 tag antibody. J. Gen. Virol. 2025, 106, 002061. [Google Scholar] [CrossRef] [PubMed]
- Rubin, J.D.; Nguyen, T.V.; Allen, K.L.; Ayasoufi, K.; Barry, M.A. Comparison of Gene Delivery to the Kidney by Adenovirus, Adeno-Associated Virus, and Lentiviral Vectors After Intravenous and Direct Kidney Injections. Hum. Gene Ther. 2019, 30, 1559–1571. [Google Scholar] [CrossRef] [PubMed]
- Fritze, C.E.; Anderson, T.R. Epitope tagging: General method for tracking recombinant proteins. Methods Enzymol. 2000, 327, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Bracamontes, J.R.; Akk, G.; Steinbach, J.H. Introduced Amino Terminal Epitopes Can Reduce Surface Expression of Neuronal Nicotinic Receptors. PLoS ONE 2016, 11, e0151071. [Google Scholar] [CrossRef] [PubMed]
- Chong, S.H.; Ham, S. Site-directed analysis on protein hydrophobicity. J. Comput. Chem. 2014, 35, 1364–1370. [Google Scholar] [CrossRef] [PubMed]
- Pina, A.S.; Lowe, C.R.; Roque, A.C. Challenges and opportunities in the purification of recombinant tagged proteins. Biotechnol. Adv. 2014, 32, 366–381. [Google Scholar] [CrossRef] [PubMed]
- Anikeeva, N.; Panteleev, S.; Mazzanti, N.W.; Terai, M.; Sato, T.; Sykulev, Y. Efficient killing of tumor cells by CAR-T cells requires greater number of engaged CARs than TCRs. J. Biol. Chem. 2021, 297, 101033. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, A.; Thalheimer, F.B.; Hartmann, S.; Frank, A.M.; Bender, R.R.; Danisch, S.; Costa, C.; Wels, W.S.; Modlich, U.; Stripecke, R.; et al. In vivo generation of human CD19-CAR T cells results in B-cell depletion and signs of cytokine release syndrome. EMBO Mol. Med. 2018, 10, e9158. [Google Scholar] [CrossRef] [PubMed]
- Zuccolotto, G.; Fracasso, G.; Merlo, A.; Montagner, I.M.; Rondina, M.; Bobisse, S.; Figini, M.; Cingarlini, S.; Colombatti, M.; Zanovello, P.; et al. PSMA-specific CAR-engineered T cells eradicate disseminated prostate cancer in preclinical models. PLoS ONE 2014, 9, e109427. [Google Scholar] [CrossRef] [PubMed]
- Rad, S.M.A.; Poudel, A.; Tan, G.M.Y.; McLellan, A.D. Promoter choice: Who should drive the CAR in T cells? PLoS ONE 2020, 15, e0232915. [Google Scholar] [CrossRef]
- Berahovich, R.; Xu, S.; Zhou, H.; Harto, H.; Xu, Q.; Garcia, A.; Liu, F.; Golubovskaya, V.M.; Wu, L. FLAG-tagged CD19-specific CAR-T cells eliminate CD19-bearing solid tumor cells in vitro and in vivo. Front. Biosci. 2017, 22, 1644–1654. [Google Scholar] [CrossRef]
- Guo, X.; Kazanova, A.; Thurmond, S.; Saragovi, H.U.; Rudd, C.E. Effective chimeric antigen receptor T cells against SARS-CoV-2. iScience 2021, 24, 103295. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Sommermeyer, D.; Cabanov, A.; Kosasih, P.; Hill, T.; Riddell, S.R. Inclusion of Strep-tag II in design of antigen receptors for T-cell immunotherapy. Nat. Biotechnol. 2016, 34, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.G.; Skerra, A. The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat. Protoc. 2007, 2, 1528–1535. [Google Scholar] [CrossRef] [PubMed]
- Van Ewijk, W.; Van Soest, P.L.; Verkerk, A.; Jongkind, J.F. Loss of antibody binding to prefixed cells: Fixation parameters for immunocytochemistry. Histochem. J. 1984, 16, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Smit, J.W.; Meijer, C.J.; Decary, F.; Feltkamp-Vroom, T.M. Paraformaldehyde fixation in immunofluorescence and immunoelectron microscopy. Preservation of tissue and cell surface membrane antigens. J. Immunol. Methods 1974, 6, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Hopwood, D. Theoretical and practical aspects of glutaraldehyde fixation. Histochem. J. 1972, 4, 267–303. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Vara, J.A. Technical aspects of immunohistochemistry. Vet. Pathol. 2005, 42, 405–426. [Google Scholar] [CrossRef] [PubMed]
- Hofman, F.M.; Taylor, C.R. Immunohistochemistry. Curr. Protoc. Immunol. 2013, 103, 21.4.1–21.4.26. [Google Scholar] [CrossRef] [PubMed]
- Temming, A.R.; Bentlage, A.E.H.; de Taeye, S.W.; Bosman, G.P.; Lissenberg-Thunnissen, S.N.; Derksen, N.I.L.; Brasser, G.; Mok, J.Y.; van Esch, W.J.E.; Howie, H.L.; et al. Cross-reactivity of mouse IgG subclasses to human Fc gamma receptors: Antibody deglycosylation only eliminates IgG2b binding. Mol. Immunol. 2020, 127, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Norris, P.A.A.; Segel, G.B.; Burack, W.R.; Sachs, U.J.; Lissenberg-Thunnissen, S.N.; Vidarsson, G.; Bayat, B.; Cserti-Gazdewich, C.M.; Callum, J.; Lin, Y.; et al. FcgammaRI and FcgammaRIII on splenic macrophages mediate phagocytosis of anti-glycoprotein IIb/IIIa autoantibody-opsonized platelets in immune thrombocytopenia. Haematologica 2021, 106, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Tuijnman, W.B.; Van Wichen, D.F.; Schuurman, H.J. Tissue distribution of human IgG Fc receptors CD16, CD32 and CD64: An immunohistochemical study. APMIS 1993, 101, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Dekkers, G.; Bentlage, A.E.H.; Stegmann, T.C.; Howie, H.L.; Lissenberg-Thunnissen, S.; Zimring, J.; Rispens, T.; Vidarsson, G. Affinity of human IgG subclasses to mouse Fc gamma receptors. mAbs 2017, 9, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Groll, T.; Aupperle-Lellbach, H.; Mogler, C.; Steiger, K. Vergleichende Pathologie in der onkologischen Forschung [Comparative pathology in oncology-Best practice]. Pathologie 2024, 45, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Bates, R.; Huang, W.; Cao, L. Adipose Tissue: An Emerging Target for Adeno-associated Viral Vectors. Mol. Ther. Methods Clin. Dev. 2020, 19, 236–249. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, V.; Munoz, S.; Casana, E.; Mallol, C.; Elias, I.; Jambrina, C.; Ribera, A.; Ferre, T.; Franckhauser, S.; Bosch, F. In vivo adeno-associated viral vector-mediated genetic engineering of white and brown adipose tissue in adult mice. Diabetes 2013, 62, 4012–4022. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yue, Y.; Patel, A.; Wasala, L.; Karp, J.F.; Zhang, K.; Duan, D.; Lai, Y. High-Resolution Histological Landscape of AAV DNA Distribution in Cellular Compartments and Tissues following Local and Systemic Injection. Mol. Ther. Methods Clin. Dev. 2020, 18, 856–868. [Google Scholar] [CrossRef] [PubMed]
- Issa, S.S.; Shaimardanova, A.A.; Solovyeva, V.V.; Rizvanov, A.A. Various AAV Serotypes and Their Applications in Gene Therapy: An Overview. Cells 2023, 12, 785. [Google Scholar] [CrossRef] [PubMed]
- Daci, R.; Flotte, T.R. Delivery of Adeno-Associated Virus Vectors to the Central Nervous System for Correction of Single Gene Disorders. Int. J. Mol. Sci. 2024, 25, 1050. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zheng, L.; Zhao, Q.; Yao, Y.; Zhou, F.; Wei, F.; Cai, Q. Parainfluenza virus 5 is a next-generation vaccine vector for human infectious pathogens. J. Med. Virol. 2023, 95, e28622. [Google Scholar] [CrossRef] [PubMed]
- Goswami, K.K.; Lange, L.S.; Mitchell, D.N.; Cameron, K.R.; Russell, W.C. Does simian virus 5 infect humans? J. Gen. Virol. 1984, 65 Pt 8, 1295–1303. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xu, P.; Salyards, G.W.; Harvey, S.B.; Rada, B.; Fu, Z.F.; He, B. Evaluating a parainfluenza virus 5-based vaccine in a host with pre-existing immunity against parainfluenza virus 5. PLoS ONE 2012, 7, e50144. [Google Scholar] [CrossRef] [PubMed]
- Goswami, K.K.; Randall, R.E.; Lange, L.S.; Russell, W.C. Antibodies against the paramyxovirus SV5 in the cerebrospinal fluids of some multiple sclerosis patients. Nature 1987, 327, 244–247. [Google Scholar] [CrossRef] [PubMed]
- Dhanda, S.K.; Grifoni, A.; Pham, J.; Vaughan, K.; Sidney, J.; Peters, B.; Sette, A. Development of a strategy and computational application to select candidate protein analogues with reduced HLA binding and immunogenicity. Immunology 2018, 153, 118–132. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.J.; Wei, J.; Rosser, J.M.; Kunkele, A.; Chang, C.A.; Reid, A.N.; Jensen, M.C. Rationally Designed Transgene-Encoded Cell-Surface Polypeptide Tag for Multiplexed Programming of CAR T-cell Synthetic Outputs. Cancer Immunol. Res. 2021, 9, 1047–1060. [Google Scholar] [CrossRef] [PubMed]
- Turicek, D.P.; Giordani, V.M.; Moraly, J.; Taylor, N.; Shah, N.N. CAR T-cell detection scoping review: An essential biomarker in critical need of standardization. J. Immunother. Cancer 2023, 11, e006596. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fritschle, K.; Mielke, M.; Seelbach, O.J.; Mühlthaler, U.; Živanić, M.; Bozoglu, T.; Dötsch, S.; Warmuth, L.; Busch, D.H.; Skerra, A.; et al. The V5-Epitope Tag for Cell Engineering and Its Use in Immunohistochemistry and Quantitative Flow Cytometry. Biology 2025, 14, 890. https://doi.org/10.3390/biology14070890
Fritschle K, Mielke M, Seelbach OJ, Mühlthaler U, Živanić M, Bozoglu T, Dötsch S, Warmuth L, Busch DH, Skerra A, et al. The V5-Epitope Tag for Cell Engineering and Its Use in Immunohistochemistry and Quantitative Flow Cytometry. Biology. 2025; 14(7):890. https://doi.org/10.3390/biology14070890
Chicago/Turabian StyleFritschle, Katja, Marion Mielke, Olga J. Seelbach, Ulrike Mühlthaler, Milica Živanić, Tarik Bozoglu, Sarah Dötsch, Linda Warmuth, Dirk H. Busch, Arne Skerra, and et al. 2025. "The V5-Epitope Tag for Cell Engineering and Its Use in Immunohistochemistry and Quantitative Flow Cytometry" Biology 14, no. 7: 890. https://doi.org/10.3390/biology14070890
APA StyleFritschle, K., Mielke, M., Seelbach, O. J., Mühlthaler, U., Živanić, M., Bozoglu, T., Dötsch, S., Warmuth, L., Busch, D. H., Skerra, A., Kupatt, C., Weber, W. A., Randall, R. E., Steiger, K., & Morath, V. (2025). The V5-Epitope Tag for Cell Engineering and Its Use in Immunohistochemistry and Quantitative Flow Cytometry. Biology, 14(7), 890. https://doi.org/10.3390/biology14070890