Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (136)

Search Parameters:
Keywords = antifibrotic strategies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6032 KiB  
Article
Recombinant Human Annexin A5 Ameliorates Localized Scleroderma by Inhibiting the Activation of Fibroblasts and Macrophages
by Bijun Kang, Zhuoxuan Jia, Wei Li and Wenjie Zhang
Pharmaceutics 2025, 17(8), 986; https://doi.org/10.3390/pharmaceutics17080986 (registering DOI) - 30 Jul 2025
Viewed by 180
Abstract
Background: Localized scleroderma (LoS) is a chronic autoimmune condition marked by cutaneous fibrosis and persistent inflammation. Modulating the activation of inflammatory cells and fibroblasts remains a central strategy in LoS treatment. We investigate the anti-fibrotic effects of Annexin A5 (AnxA5), identified as [...] Read more.
Background: Localized scleroderma (LoS) is a chronic autoimmune condition marked by cutaneous fibrosis and persistent inflammation. Modulating the activation of inflammatory cells and fibroblasts remains a central strategy in LoS treatment. We investigate the anti-fibrotic effects of Annexin A5 (AnxA5), identified as a key inflammatory component in fat extract, and assess its therapeutic efficacy. Methods: In vitro experiments were performed using TGF-β-stimulated primary human dermal fibroblasts treated with recombinant AnxA5. The anti-fibrotic effects and underlying mechanisms were assessed using CCK-8 assays, quantitative real-time PCR, Western blotting, and immunocytochemistry. In vivo, AnxA5 was administered via both preventative and therapeutic protocols in bleomycin-induced LoS mouse models. Treatment outcomes were evaluated by histological staining, collagen quantification, immunostaining, and measurement of pro-inflammatory cytokines. Results: TGF-β stimulation induced myofibroblast differentiation and extracellular matrix (ECM) production in dermal fibroblasts, both of which were significantly attenuated by AnxA5 treatment through the inhibition of phosphorylation of Smad2. In vivo, both preventative and therapeutic administration of AnxA5 effectively reduced dermal thickness, collagen deposition, ECM accumulation, M1 macrophage infiltration, and levels of pro-inflammatory cytokines. Conclusions: Through both preventative and therapeutic administration, AnxA5 ameliorates LoS by exerting dual anti-fibrotic and anti-inflammatory effects, underscoring its potential for treating fibrotic diseases. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

41 pages, 3039 KiB  
Review
Repurposing Diabetes Therapies in CKD: Mechanistic Insights, Clinical Outcomes and Safety of SGLT2i and GLP-1 RAs
by Syed Arman Rabbani, Mohamed El-Tanani, Rakesh Kumar, Manita Saini, Yahia El-Tanani, Shrestha Sharma, Alaa A. A. Aljabali, Eman Hajeer and Manfredi Rizzo
Pharmaceuticals 2025, 18(8), 1130; https://doi.org/10.3390/ph18081130 - 28 Jul 2025
Viewed by 389
Abstract
Background: Chronic Kidney Disease (CKD) is a major global health issue, with diabetes being its primary cause and cardiovascular disease contributing significantly to patient mortality. Recently, two classes of medications—sodium–glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1 RAs)—have shown promise [...] Read more.
Background: Chronic Kidney Disease (CKD) is a major global health issue, with diabetes being its primary cause and cardiovascular disease contributing significantly to patient mortality. Recently, two classes of medications—sodium–glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1 RAs)—have shown promise in protecting both kidney and heart health beyond their effects on blood sugar control. Methods: We conducted a narrative review summarizing the findings of different clinical trials and mechanistic studies evaluating the effect of SGLT2i and GLP-1 RAs on kidney function, cardiovascular outcomes, and overall disease progression in patients with CKD and DKD. Results: SGLT2i significantly mitigate kidney injury by restoring tubuloglomerular feedback, reducing intraglomerular hypertension, and attenuating inflammation, fibrosis, and oxidative stress. GLP-1 RAs complement these effects by enhancing endothelial function, promoting weight and blood pressure control, and exerting direct anti-inflammatory and anti-fibrotic actions on renal tissues. Landmark trials—CREDENCE, DAPA-CKD, and EMPA-KIDNEY—demonstrate that SGLT2i reduce the risk of kidney failure and renal or cardiovascular death by 25–40% in both diabetic and non-diabetic CKD populations. Likewise, trials such as LEADER, SUSTAIN, and AWARD-7 confirm that GLP-1 RAs slow renal function decline and improve cardiovascular outcomes. Early evidence suggests that using both drugs together may offer even greater benefits through multiple mechanisms. Conclusions: SGLT2i and GLP-1 RAs have redefined the therapeutic landscape of CKD by offering organ-protective benefits that extend beyond glycemic control. Whether used individually or in combination, these agents represent a paradigm shift toward integrated cardiorenal-metabolic care. A deeper understanding of their mechanisms and clinical utility in both diabetic and non-diabetic populations can inform evidence-based strategies to slow disease progression, reduce cardiovascular risk, and improve long-term patient outcomes in CKD. Full article
(This article belongs to the Special Issue New Development in Pharmacotherapy of Kidney Diseases)
Show Figures

Graphical abstract

24 pages, 3224 KiB  
Review
Quercetin in Idiopathic Pulmonary Fibrosis and Its Comorbidities: Gene Regulatory Mechanisms and Therapeutic Implications
by Verónica Rocío Vásquez-Garzón, Juan Manuel Velázquez-Enríquez, Jovito Cesar Santos-Álvarez, Alma Aurora Ramírez-Hernández, Jaime Arellanes-Robledo, Cristian Jiménez-Martínez and Rafael Baltiérrez-Hoyos
Genes 2025, 16(8), 856; https://doi.org/10.3390/genes16080856 - 23 Jul 2025
Viewed by 791
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease associated with high morbidity and mortality. Both pulmonary and extrapulmonary comorbidities significantly influence disease progression and patient outcomes. Despite current therapeutic options, effective treatments remain limited. Quercetin, a naturally occurring flavonoid, [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease associated with high morbidity and mortality. Both pulmonary and extrapulmonary comorbidities significantly influence disease progression and patient outcomes. Despite current therapeutic options, effective treatments remain limited. Quercetin, a naturally occurring flavonoid, has emerged as a promising compound due to its antioxidant, anti-inflammatory, and antifibrotic properties. Preclinical and clinical studies have demonstrated its ability to modulate key molecular pathways involved in IPF, including Nrf2, SIRT1/AMPK, and the regulation of fibrosis-associated microRNAs (miRNAs). Furthermore, quercetin shows therapeutic potential across a range of IPF-related comorbidities, including chronic obstructive pulmonary disease, pulmonary hypertension, lung cancer, cardiovascular disease, diabetes, and psychiatric disorders. Under these conditions, quercetin acts via epigenetic modulation of miRNAs and regulation of oxidative stress and inflammatory signaling pathways. This review highlights the multifunctional role of quercetin in IPF and its comorbidities, emphasizing its gene regulatory mechanisms and potential as an adjunctive or alternative therapeutic strategy. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

28 pages, 944 KiB  
Review
Amphiregulin in Fibrotic Diseases and Cancer
by Tae Rim Kim, Beomseok Son, Chun Geun Lee and Han-Oh Park
Int. J. Mol. Sci. 2025, 26(14), 6945; https://doi.org/10.3390/ijms26146945 - 19 Jul 2025
Viewed by 407
Abstract
Fibrotic disorders pose a significant global health burden due to limited treatment options, creating an urgent need for novel therapeutic strategies. Amphiregulin (AREG), a low-affinity ligand for the epidermal growth factor receptor (EGFR), has emerged as a key mediator of fibrogenesis through dual [...] Read more.
Fibrotic disorders pose a significant global health burden due to limited treatment options, creating an urgent need for novel therapeutic strategies. Amphiregulin (AREG), a low-affinity ligand for the epidermal growth factor receptor (EGFR), has emerged as a key mediator of fibrogenesis through dual signaling pathways. Unlike high-affinity EGFR ligands, AREG induces sustained signaling that activates downstream effectors and promotes the integrin-mediated activation of transforming growth factor (TGF)-β. This enables both canonical and non-canonical EGFR signaling pathways that contribute to fibrosis. Elevated AREG expression correlates with disease severity across multiple organs, including the lungs, kidneys, liver, and heart. The therapeutic targeting of AREG has shown promising antifibrotic and anticancer effects, suggesting a dual-benefit strategy. The increasing recognition of the shared mechanisms between fibrosis and cancer further supports the development of unified treatment approaches. The inhibition of AREG has been shown to sensitize fibrotic tumor microenvironments to chemotherapy, enhancing combination therapy efficacy. Targeted therapies, such as Self-Assembled-Micelle inhibitory RNA (SAMiRNA)-AREG, have demonstrated enhanced specificity and favorable safety profiles in preclinical studies and early clinical trials. Personalized treatment based on AREG expression may improve clinical outcomes, establishing AREG as a promising precision medicine target for both fibrotic and malignant diseases. This review aims to provide a comprehensive understanding of AREG biology and evaluate its therapeutic potential in fibrosis and cancer. Full article
Show Figures

Figure 1

34 pages, 1051 KiB  
Review
Atrial Fibrillation in Diabetes: Pathogenesis and Targeted Rhythm Control Strategies
by Konstantinos Grigoriou, Paschalis Karakasis, Konstantinos Pamporis, Panagiotis Theofilis, Dimitrios Patoulias, Efstratios Karagiannidis, Barbara Fyntanidou, Antonios P. Antoniadis and Nikolaos Fragakis
Curr. Issues Mol. Biol. 2025, 47(7), 559; https://doi.org/10.3390/cimb47070559 - 17 Jul 2025
Viewed by 453
Abstract
Diabetes mellitus and atrial fibrillation (AF) frequently coexist, creating a complex bidirectional relationship that exacerbates cardiovascular risk and challenges clinical management. Diabetes fosters a profibrotic, pro-inflammatory, and proarrhythmic atrial substrate through a constellation of pathophysiologic mechanisms, including metabolic remodeling, oxidative stress, mitochondrial dysfunction, [...] Read more.
Diabetes mellitus and atrial fibrillation (AF) frequently coexist, creating a complex bidirectional relationship that exacerbates cardiovascular risk and challenges clinical management. Diabetes fosters a profibrotic, pro-inflammatory, and proarrhythmic atrial substrate through a constellation of pathophysiologic mechanisms, including metabolic remodeling, oxidative stress, mitochondrial dysfunction, ion channel dysregulation, and autonomic imbalance, thereby promoting AF initiation and progression. Conventional rhythm control strategies remain less effective in diabetic individuals, underscoring the need for innovative, substrate-targeted interventions. In this context, sodium–glucose cotransporter 2 (SGLT2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists have emerged as promising agents with pleiotropic antiarrhythmic properties, modulating fibrosis, inflammation, and mitochondrial integrity. Moreover, advances in anti-inflammatory, antifibrotic, and ion channel-modulating therapeutics, coupled with novel mitochondrial-targeted strategies, are reshaping the therapeutic landscape. Multi-omics approaches are further refining our understanding of diabetes-associated AF, facilitating precision medicine and biomarker-guided interventions. This review delineates the molecular nexus linking diabetes and AF, critically appraises emerging rhythm control strategies, and outlines translational avenues poised to advance individualized management in this high-risk population. Full article
(This article belongs to the Special Issue Advances in Molecular Therapies and Disease Associations in Diabetes)
Show Figures

Figure 1

15 pages, 719 KiB  
Review
Mesenchymal Stem-Cell-Derived Exosomes and MicroRNAs: Advancing Cell-Free Therapy in Systemic Sclerosis
by Cristiano Barbetta, Francesco Bonomi, Gemma Lepri, Daniel E. Furst, Silvia Bellando Randone and Serena Guiducci
Cells 2025, 14(13), 1018; https://doi.org/10.3390/cells14131018 - 3 Jul 2025
Viewed by 673
Abstract
Mesenchymal stem cell (MSC) transplantation has emerged as a potential therapeutic strategy for systemic sclerosis (SSc), a rare autoimmune disease characterized by inflammation, fibrosis, and vasculopathy. Recent evidence suggests that the therapeutic benefits of MSCs do not depend directly on their ability to [...] Read more.
Mesenchymal stem cell (MSC) transplantation has emerged as a potential therapeutic strategy for systemic sclerosis (SSc), a rare autoimmune disease characterized by inflammation, fibrosis, and vasculopathy. Recent evidence suggests that the therapeutic benefits of MSCs do not depend directly on their ability to proliferate but rather on their capacity to release extracellular nanovesicles known as exosomes (MSC-Exos). MSC-Exos are rich in bioactive molecules such as microRNAs, which can modulate gene expression and trigger significant biological responses, playing a central role in modulating immune responses, inhibiting fibrotic pathways and promoting tissue repair and angiogenesis. Preclinical studies have demonstrated that MSC-Exos can attenuate fibrosis, modulate macrophage polarization, suppress autoreactive lymphocyte activity, and even reverse pulmonary arterial hypertension in animal models of SSc. Compared to cell-based therapies, MSC-Exos offer several advantages, including lower immunogenicity and better safety profile. This review provides an overview of the immunomodulatory, antifibrotic, and angiogenic properties of MSC-Exos and explores their potential as novel cell-free therapy for SSc. Full article
Show Figures

Figure 1

31 pages, 2674 KiB  
Review
Clinical Insights and Therapeutic Strategies for the Treatment of Interstitial Lung Disease in Patients with Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis: Current Trends and Future Directions
by Justyna Fijolek and Anna Sniady
J. Clin. Med. 2025, 14(13), 4631; https://doi.org/10.3390/jcm14134631 - 30 Jun 2025
Viewed by 861
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) and interstitial lung disease (ILD) represent a complex interplay between autoimmune and fibrotic processes that poses significant diagnostic and therapeutic challenges. The distinction between isolated ANCA-ILD and AAV-ILD remains a subject of ongoing debate, with some researchers [...] Read more.
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) and interstitial lung disease (ILD) represent a complex interplay between autoimmune and fibrotic processes that poses significant diagnostic and therapeutic challenges. The distinction between isolated ANCA-ILD and AAV-ILD remains a subject of ongoing debate, with some researchers proposing that ANCA-ILD may be an early or restricted form of systemic vasculitis. Immunosuppressive therapy is the cornerstone of treatment for both diseases. However, there is increasing evidence that supports the potential role of antifibrotic agents in the management of progressive fibrosis. Management of these diseases requires a personalized approach that incorporates evaluation of biomarkers, imaging findings, and clinical risk factors to guide treatment decisions. Although current therapeutic strategies primarily target systemic inflammation, addressing the fibrotic components of these diseases is crucial for improving outcomes. Furthermore, emerging therapeutic options, such as B-cell depletion and antifibrotic therapies, offer promising outcomes. However, their roles in the treatment of AAV-ILD require further exploration. In this review, we discuss clinical insights and evolving therapeutic strategies for managing AAV and ANCA-positive ILD. In addition, we highlight the importance of early diagnosis and individualized treatment plans in improving the prognosis and quality of life of affected patients. Full article
(This article belongs to the Special Issue Interstitial Lung Diseases: New Treatments and Future Directions)
Show Figures

Figure 1

13 pages, 532 KiB  
Systematic Review
The Comparative Safety and Efficacy of Resmetirom and Semaglutide in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A Systematic Review
by Jahnavi Udaikumar, Rithish Nimmagadda, Vindhya Vasini Lella, Kesava Manikanta Achuta, Satwik Kuppili, Suraj Reddy Avula and Raiya Sarwar
Pharmacoepidemiology 2025, 4(3), 14; https://doi.org/10.3390/pharma4030014 - 27 Jun 2025
Viewed by 704
Abstract
Introduction: Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly encompassed under nonalcoholic fatty liver disease (NAFLD), is a growing global health burden associated with progression to cirrhosis and hepatocellular carcinoma. Resmetirom, a thyroid hormone receptor-β (THR-β) agonist, and semaglutide, a glucagon-like peptide-1 receptor [...] Read more.
Introduction: Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly encompassed under nonalcoholic fatty liver disease (NAFLD), is a growing global health burden associated with progression to cirrhosis and hepatocellular carcinoma. Resmetirom, a thyroid hormone receptor-β (THR-β) agonist, and semaglutide, a glucagon-like peptide-1 receptor agonist (GLP-1 RA), have emerged as promising agents targeting distinct metabolic and inflammatory pathways. This systematic review compares the safety and efficacy of resmetirom and semaglutide in MASLD. Methods: We conducted a comprehensive search of PubMed, Embase, and Google Scholar for randomized controlled trials and clinical studies published between January 2014 and April 2025, following PRISMA guidelines. Studies assessing the efficacy and safety of resmetirom and/or semaglutide in MASLD or NASH were included. Data extraction was performed by two independent reviewers, and a narrative synthesis was undertaken due to the heterogeneity in study design and outcome measures. Results: Fourteen studies encompassing over 4500 patients were analyzed. Resmetirom demonstrated consistent reductions in hepatic fat (≥30% in >50% of patients) and improvements in fibrosis (≥1 stage in up to 26.4% of patients), as evidenced in the MAESTRO-NASH trial. Semaglutide achieved higher rates of NASH resolution (up to 62.9%) without worsening fibrosis, especially among patients with type 2 diabetes or obesity, although fibrosis improvement was less consistently observed. Resmetirom was well tolerated with low discontinuation rates, while semaglutide was associated with more frequent, yet manageable, gastrointestinal adverse events. Conclusions: Both resmetirom and semaglutide show therapeutic potential for MASLD. Resmetirom offers more consistent antifibrotic effects, while semaglutide excels in NASH resolution and metabolic improvement. The absence of direct comparative trials underscores the need for future head-to-head studies to guide tailored treatment strategies in MASLD management. Full article
Show Figures

Figure 1

15 pages, 1745 KiB  
Brief Report
Establishment of U-87MG Cellular Fibrosis as a Novel in Vitro Model to Analyze Glioblastoma Cells’ Sensitivity to Temozolomide
by Valentina Lopardo, Roberta Maria Esposito, Antonio C. Pagano Zottola, Federica Santoro, Nicola Grasso, Alfonso Carotenuto, Annibale Alessandro Puca and Elena Ciaglia
Int. J. Mol. Sci. 2025, 26(13), 6121; https://doi.org/10.3390/ijms26136121 - 25 Jun 2025
Viewed by 399
Abstract
Glioblastoma (GBM), a highly malignant brain tumor, arises within a complex microenvironment that plays a critical role in facilitating tumor progression, ensuring survival, and enabling immune evasion, ultimately contributing to therapeutic resistance. Cancer-associated fibrosis is increasingly recognized as a key factor in the [...] Read more.
Glioblastoma (GBM), a highly malignant brain tumor, arises within a complex microenvironment that plays a critical role in facilitating tumor progression, ensuring survival, and enabling immune evasion, ultimately contributing to therapeutic resistance. Cancer-associated fibrosis is increasingly recognized as a key factor in the tumor pathophysiology, particularly in extracranial cancers, and reported therapeutic strategies in several cancers consist of the current use of the standard-of-care treatment combined with anti-fibrotic drugs. However, it remains unclear how the fibrotic changes associated with the GBM microenvironment contribute to the transformation of GBM from a chemosensitive state to a chemoresistant one. Here, we developed an in vitro model that mimics a fibrosis-like mechanism using the U-87MG GBM cell line. To achieve this, we identified the optimal experimental conditions (i.e., U-87MG cultured in serum-deprivation medium in the presence of recombinant TGF-B1 at 5 ng/mL for 72 h) that effectively induced fibrosis, as suggested by the counter-regulated expression of E- and N-cadherin and sustained levels of α-SMA and collagen I. As expected, U-87MG fibrotic cells were demonstrated to be more resistant to TMZ (predicted EC50 = 35 µM) as compared to the non-fibrotic counterpart (EC50 not achieved here; predicted EC50 = 351 µM). Accordingly, the anti-fibrotic uPAcyclin—a new derivative cyclic compound inspired as a A6 decapeptide drug—showed a significant cytotoxic effect, sensitizing resistant U-87MG fibrotic cells to TMZ. This highlights that targeting fibrosis may help to overcome TMZ resistance in GBM. Full article
(This article belongs to the Special Issue Cellular Plasticity and EMT in Cancer and Fibrotic Diseases)
Show Figures

Figure 1

32 pages, 948 KiB  
Review
Inflammasome Signaling in Cardiac Arrhythmias: Linking Inflammation, Fibrosis, and Electrical Remodeling
by Paschalis Karakasis, Konstantinos Pamporis, Panagiotis Theofilis, Nikias Milaras, Panayotis K. Vlachakis, Konstantinos Grigoriou, Dimitrios Patoulias, Theodoros Karamitsos, Antonios P. Antoniadis and Nikolaos Fragakis
Int. J. Mol. Sci. 2025, 26(13), 5954; https://doi.org/10.3390/ijms26135954 - 20 Jun 2025
Cited by 1 | Viewed by 606
Abstract
Cardiac arrhythmias, including atrial fibrillation and ventricular arrhythmias, remain leading causes of morbidity and mortality worldwide. While structural, electrical, and metabolic remodeling have long been recognized as drivers of arrhythmogenesis, emerging evidence identifies inflammation—particularly inflammasome signaling—as a central orchestrator of this pathological triad. [...] Read more.
Cardiac arrhythmias, including atrial fibrillation and ventricular arrhythmias, remain leading causes of morbidity and mortality worldwide. While structural, electrical, and metabolic remodeling have long been recognized as drivers of arrhythmogenesis, emerging evidence identifies inflammation—particularly inflammasome signaling—as a central orchestrator of this pathological triad. Among the various inflammasome complexes, the NLRP3 inflammasome has garnered particular attention due to its activation in cardiomyocytes, fibroblasts, and immune cells in diverse clinical contexts. NLRP3 activation precipitates a cascade of downstream events, including interleukin-1β and -18 maturation, oxidative stress amplification, calcium mishandling, and extracellular matrix remodeling, thereby fostering a proarrhythmic substrate. This review synthesizes mechanistic and translational data implicating inflammasome signaling in both atrial and ventricular arrhythmias, with a focus on cellular specificity and electrophysiological sequelae. We explore upstream triggers, such as metabolic stress, gut dysbiosis, and epicardial adipose inflammation, and delineate the downstream impact on cardiac conduction and structural integrity. Emerging therapeutic strategies—including NLRP3 inhibitors, IL-1 antagonists, colchicine, and SGLT2 inhibitors—are critically appraised for their anti-inflammatory and antifibrotic potential. By bridging molecular insights with clinical application, this review underscores the inflammasome as a unifying mechanistic hub in arrhythmia pathogenesis and a promising target for precision-guided therapy. Full article
Show Figures

Figure 1

14 pages, 816 KiB  
Review
The Role of Cardiac Fibroblast Heterogeneity in Myocardial Fibrosis and Its Novel Therapeutic Potential
by Isotta Chimenti, Francesca Pagano, Claudia Cozzolino, Francesca Icolaro, Erica Floris and Vittorio Picchio
Int. J. Mol. Sci. 2025, 26(12), 5882; https://doi.org/10.3390/ijms26125882 - 19 Jun 2025
Viewed by 693
Abstract
Cardiac fibrosis is a key physiopathological process underlying the progression of virtually all heart diseases and related conditions, including myocardial infarction, pressure overload, and heart failure. Once regarded as a homogeneous and passive population, cardiac fibroblasts are now recognized as highly heterogeneous and [...] Read more.
Cardiac fibrosis is a key physiopathological process underlying the progression of virtually all heart diseases and related conditions, including myocardial infarction, pressure overload, and heart failure. Once regarded as a homogeneous and passive population, cardiac fibroblasts are now recognized as highly heterogeneous and dynamic, comprising distinct subpopulations with specialized molecular and functional identities. These subpopulations include resident fibroblasts, activated myofibroblasts, matrifibrocytes, inflammatory fibroblasts, and senescent fibroblasts, each contributing uniquely to extracellular matrix (ECM) remodeling, cytokine secretion, and intercellular crosstalk. Recent advances in single-cell transcriptomics, lineage tracing, and epigenetic profiling have revealed the plasticity and phenotypic transitions of cardiac fibroblasts in both physiological and pathological contexts. This review synthesizes current knowledge on fibroblast diversity in the adult heart, including their embryological origins and anatomical distribution, and explores how these insights could guide the development of precision anti-fibrotic therapies. We discuss a selection of emerging therapeutic strategies, including subtype-specific targeting (e.g., anti-POSTN, anti-IL1β), modulation of key signaling pathways (e.g., TGF-β, Wnt, Notch), with a brief mention also of novel approaches based on non-coding RNAs and epigenetic regulators. A better understanding of cardiac fibroblast heterogeneity holds significant potential for the design of more specific cell-type and context-tailored interventions, moving toward more effective and personalized treatments for cardiac fibrosis and its sequelae. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Cardiovascular Repair)
Show Figures

Figure 1

24 pages, 993 KiB  
Review
Astaxanthin: A Compound in the Prevention of Chronic Diseases and as a Potential Adjuvant Treatment Agent
by Xiao Zhu, Xi Chen, Matthew Wang and Honghua Hu
Antioxidants 2025, 14(6), 715; https://doi.org/10.3390/antiox14060715 - 12 Jun 2025
Cited by 1 | Viewed by 1045
Abstract
Astaxanthin (AST) is a fat-soluble carotenoid antioxidant. AST exhibits multiple protective mechanisms, including its antioxidant, anti-inflammatory, immunomodulatory, anti-apoptotic, nervous system-protective, anti-tumor, and anti-fibrotic effects. These effects make it a promising compound for the prevention of chronic diseases. AST can protect the nervous system [...] Read more.
Astaxanthin (AST) is a fat-soluble carotenoid antioxidant. AST exhibits multiple protective mechanisms, including its antioxidant, anti-inflammatory, immunomodulatory, anti-apoptotic, nervous system-protective, anti-tumor, and anti-fibrotic effects. These effects make it a promising compound for the prevention of chronic diseases. AST can protect the nervous system against neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. It also protects the liver and helps reduce the risk of chronic kidney disease. Additionally, it improves cardiovascular health and has anti-diabetic properties. This review aims to provide an updated overview covering the protective effects of AST against various chronic diseases, including its antioxidant, anti-inflammatory, and anti-apoptotic effects. We also discuss the strategies used for improving astaxanthin bioavailability and its potential as an adjuvant therapeutic agent. Full article
(This article belongs to the Special Issue Carotenoids in Health and Disease)
Show Figures

Figure 1

51 pages, 10069 KiB  
Review
Biomaterials in Postoperative Adhesion Barriers and Uterine Tissue Engineering
by Abbas Fazel Anvari-Yazdi, Ildiko Badea and Xiongbiao Chen
Gels 2025, 11(6), 441; https://doi.org/10.3390/gels11060441 - 9 Jun 2025
Cited by 1 | Viewed by 3403
Abstract
Postoperative adhesions (POAs) are a common and often serious complication following abdominal and gynecologic surgeries, leading to infertility, chronic pain, and bowel obstruction. To address these outcomes, the development of anti-adhesion barriers using biocompatible materials has emerged as a key area of biomedical [...] Read more.
Postoperative adhesions (POAs) are a common and often serious complication following abdominal and gynecologic surgeries, leading to infertility, chronic pain, and bowel obstruction. To address these outcomes, the development of anti-adhesion barriers using biocompatible materials has emerged as a key area of biomedical research. This article presents a comprehensive overview of clinically relevant natural and synthetic biomaterials explored for POA prevention, emphasizing their degradation behavior, barrier integrity, and translational progress. Natural biopolymers—such as collagen, gelatin, fibrin, silk fibroin, and decellularized extracellular matrices—are discussed alongside polysaccharides, including alginate, chitosan, and carboxymethyl cellulose, focusing on their structural features and biological functionality. Synthetic polymers, including polycaprolactone (PCL), polyethylene glycol (PEG), and poly(lactic-co-glycolic acid) (PLGA), are also examined for their tunable degradation profiles (spanning days to months), mechanical robustness, and capacity for drug incorporation. Recent innovations, such as bioprinted and electrospun dual-layer membranes, are highlighted for their enhanced anti-fibrotic performance in preclinical studies. By consolidating current material strategies and fabrication techniques, this work aims to support informed material selection while also identifying key knowledge gaps—particularly the limited comparative data on degradation kinetics, inconsistent definitions of ideal mechanical properties, and the need for more research into cell-responsive barrier systems. Full article
(This article belongs to the Special Issue Novel Polymer Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

20 pages, 487 KiB  
Review
Intestinal Fibrosis in Crohn’s Disease: Pathophysiology, Diagnosis, and New Therapeutic Targets
by Fotios S. Fousekis, Konstantinos Mpakogiannis, Ioanna Nefeli Mastorogianni, Georgios D. Lianos, Dimitrios K. Christodoulou and Konstantinos H. Katsanos
J. Clin. Med. 2025, 14(12), 4060; https://doi.org/10.3390/jcm14124060 - 8 Jun 2025
Viewed by 913
Abstract
Crohn’s disease (CD) is a chronic inflammatory disorder of the gastrointestinal tract that often leads to intestinal fibrosis, an irreversible complication associated with strictures and the need for surgical intervention. Fibrosis occurs due to prolonged inflammation and abnormal wound healing, involving complex interactions [...] Read more.
Crohn’s disease (CD) is a chronic inflammatory disorder of the gastrointestinal tract that often leads to intestinal fibrosis, an irreversible complication associated with strictures and the need for surgical intervention. Fibrosis occurs due to prolonged inflammation and abnormal wound healing, involving complex interactions between immune cells, mesenchymal cells, cytokines, and the gut microbiota. Key fibrogenic mechanisms include the activation of fibroblasts and myofibroblasts, cytokine signaling, and disrupted turnover of the extracellular matrix. Advancements in imaging techniques, such as MRI and CT enterography, have improved the detection and monitoring of fibrosis. Additionally, molecular techniques targeting fibroblast activation proteins show promise as a new imaging method. However, there are currently no approved anti-fibrotic therapies for CD. Emerging strategies focus on key pathways and novel therapeutic targets, including growth factor modulators, intracellular enzyme and kinases modulators, and interventions targeting the modulation of inflammation and extracellular matrix, which are being evaluated in preclinical and clinical settings. This review discusses the pathophysiology, diagnostic advancements, and therapeutic perspectives related to intestinal fibrosis in CD, emphasizing the urgent need for targeted anti-fibrotic therapies to prevent long-term complications and improve the life quality of patients. Full article
(This article belongs to the Special Issue Novel Therapeutic Targets with Inflammatory Bowel Diseases)
Show Figures

Figure 1

24 pages, 1321 KiB  
Review
Therapeutic Potential and Mechanisms of Mesenchymal Stem Cells in Coronary Artery Disease: Narrative Review
by Tejas Patel, Jana Mešić, Shai Meretzki, Tomer Bronshtein, Petar Brlek, Vered Kivity, Samir B. Pancholy, Matko Petrović and Dragan Primorac
Int. J. Mol. Sci. 2025, 26(11), 5414; https://doi.org/10.3390/ijms26115414 - 5 Jun 2025
Viewed by 1038
Abstract
Coronary artery disease (CAD) remains a leading cause of global morbidity and mortality despite advances in medical and interventional therapies. Mesenchymal stem cell (MSC) therapy has emerged as a promising regenerative approach for patients with refractory or non-revascularizable CAD. MSCs exhibit unique immunomodulatory, [...] Read more.
Coronary artery disease (CAD) remains a leading cause of global morbidity and mortality despite advances in medical and interventional therapies. Mesenchymal stem cell (MSC) therapy has emerged as a promising regenerative approach for patients with refractory or non-revascularizable CAD. MSCs exhibit unique immunomodulatory, pro-angiogenic, and anti-fibrotic properties, primarily through paracrine mechanisms involving the secretion of cytokines, growth factors, and exosomal microRNAs. Clinical and preclinical studies have demonstrated improvements in myocardial perfusion, left ventricular ejection fraction (LVEF), and functional capacity following MSC-based interventions, particularly in patients with low baseline LVEF and heightened inflammation. Various MSC sources—including bone marrow, adipose tissue, and umbilical cord—offer distinct advantages, while delivery strategies such as intracoronary, intramyocardial, intravenous, and subcutaneous administration impact cell retention and efficacy. Advances in genetic modification, hypoxic preconditioning, and exosome-based therapies aim to enhance MSC survival and therapeutic potency. However, challenges persist regarding cell engraftment, cryopreservation effects, and inter-patient variability. Moving toward precision cell therapy, future approaches may involve stratifying patients by inflammatory status, ischemic burden, and comorbidities to optimize treatment outcomes. MSCs may not yet replace conventional therapies but are increasingly positioned to complement them within a personalized, regenerative framework for CAD management. Full article
Show Figures

Figure 1

Back to TopTop