Repurposing Diabetes Therapies in CKD: Mechanistic Insights, Clinical Outcomes and Safety of SGLT2i and GLP-1 RAs
Abstract
1. Introduction
1.1. Epidemiology of CKD and DKD
1.2. Conventional Therapeutic Methods and Their Challenges
2. Methodology
3. Pathophysiology of Kidney Disease: Targets for SGLT2i and GLP-1 RA
3.1. Key Pathways in Kidney Disease Progression
3.1.1. Hemodynamic Factors in DKD and CKD: The Role of Glomerular Hyperfiltration
- Class I represents typical diabetic glomerulopathy.
- Class II presents with relatively preserved glomerular structure but prominent vascular and interstitial changes, often showing early GFR decline without albuminuria.
- Class III includes subclasses IIIa (19% of cases) and IIIb (18%), both lacking significant glomerular basement membrane (GBM) thickening and mesangial expansion. Patients in this group may also experience silent episodes of acute kidney injury (AKI), contributing to gradual functional decline [20].
3.1.2. Changes in Endothelial Cells
3.1.3. Dyslipidemia
3.1.4. Abnormal Angiogenesis
3.1.5. Podocytes Dysfunction in DKD
3.1.6. Specific Cytokines/Growth Factors and Progression of CKD
3.2. Mechanistic Rationale for SGLT2 Inhibition
3.2.1. Proximal Tubule Cell Pathology Correlates with SGLT2
3.2.2. Anti-Inflammatory and Anti-Fibrotic Responses via SGLT2
3.2.3. Metabolic Benefits (Glycemic Control)
3.3. Mechanistic Rationale for GLP-1 Receptor Activation
3.3.1. Anti-Inflammatory, Anti-Fibrotic, and Renoprotective Signaling
3.3.2. Indirect Effects via Glycemic/Weight Control and Direct Renal Actions
4. SGLT2i in Kidney Disease
4.1. Pharmacological Overview
Mechanism of Action
- Inhibition of Renal Glucose Reabsorption
- Effects on Sodium Reabsorption and Hemodynamics
4.2. Pharmacodynamics Outcomes
- Glycemic Control
- Weight Loss and Blood Pressure Reduction
- Cardiovascular and Renal Benefits
4.2.1. Empagliflozin
4.2.2. Dapagliflozin
4.2.3. Canagliflozin
4.3. Clinical Trials and Outcomes
4.3.1. CREDENCE Trial (Canagliflozin)
4.3.2. DAPA-CKD Trial (Dapagliflozin)
4.3.3. EMPA-KIDNEY Trial (Empagliflozin)
4.3.4. Real-World Evidence
4.4. Meta-Analyses of SGLT2i
Pooled Effects on Renal Endpoints (Reduction in Composite Renal Endpoints)
- Consistency across Agents and Subgroups
- Mechanistic Contributions
4.5. Safety and Risk
4.5.1. Euglycemic Diabetic Ketoacidosis (DKA)
4.5.2. Genital Infections
4.5.3. Pooled Effects
4.6. Clinical Implications
5. GLP-1 RAs in Kidney Disease
5.1. Pharmacological Properties of GLP-1RAs
5.2. Human GLP-1 Analogs
- Lower Immunogenicity—Reduced risk of immune system reactions due to structural similarity to native GLP-1.
- Extended Half-Life—Enhanced stability leads to prolonged activity and less frequent dosing.
- Improved Glycemic Control—More sustained glucose-lowering effects with reduced fluctuations.
- Greater Cardiovascular Benefits—Proven to lower cardiovascular risk in high-risk patients.
- Enhanced Renal Protection—Potential to reduce kidney inflammation and slow CKD progression.
- Better Tolerability—Lower likelihood of antibody formation compared to non-human GLP-1 RAs.
5.3. Clinical Outcomes
5.3.1. LEADER Trial
5.3.2. SCALE Study
5.3.3. SUSTAIN
5.3.4. ELIXA Research
5.3.5. EXSCEL Trial
5.3.6. AWARD-7
5.3.7. REWIND Trial
5.3.8. FLOW Trial
5.4. Meta-Analyses of GLP-1 RA
5.5. GLP-1/GIP Agonist
5.5.1. Tirzepatide
5.5.2. Preclinical Studies
5.5.3. Clinical Evidence
- Reduced albuminuria levels, which may indicate a slowing of diabetic kidney damage.
- Trends toward a slower decline in eGFR in patients with pre-existing kidney impairment.
- Continuous analyses are assessing whether the enhancements in metabolic regulation result in long-term renoprotection, even though strong, specialized kidney outcome trials for tirzepatide are still being developed.
5.5.4. Post-Clinical Evidence
6. Comparative Analysis: SGLT2i vs. GLP-1 RA
6.1. Combination Therapy Witnessing Emerging Evidence
6.2. Patient Stratification and Comorbidity-Driven Selection
6.3. Comorbidity Matrix
- Type 2 Diabetes
- Type 1 Diabetes
7. Guideline Integration and Real-World Evidence
7.1. KDIGO 2024 Update
7.2. Pragmatic Trial Insights
7.2.1. EMPA-KIDNEY Trial; EMPA-KIDNEY vs. FLOW Trial Contrasts
7.2.2. FLOW Trial (GLP-1 RA)
7.3. Veterans Affairs Cohort Data: 32% Lower Mortality with SGLT2i vs. 28% with GLP-1 RA
7.4. Comparative Insights from Different Studies
7.4.1. EMPRISE Analyses
7.4.2. GRADE Trial
7.4.3. Meta-Analysis
7.4.4. Real-World Comparative Studies
8. Unanswered Questions and Future Directions
8.1. Combination Therapy Trials
8.1.1. Consideration for the Trials
8.1.2. Designing and Targeting of the Clinical Trial
8.1.3. Implications
8.2. Biomarker-Driven Personalization via Urinary EGFR Ligand Profiling for SGLT2i
Biomarker-Driven Personalization via Genomic Variations
8.3. Health Equity Considerations
8.3.1. Enhanced Clinical Outcomes
8.3.2. Cost-Effectiveness Considerations
8.3.3. Tiered Pricing and Negotiation
8.3.4. Inclusion in National Essential Medicines Lists
8.3.5. Integrated Care Models
8.3.6. Implementation Challenges
High Initial Costs
Long-Term Safety Data
- SGLT2i: risks of genitourinary infections, ketoacidosis, and rare cases of Fournier’s gangrene.
- GLP-1 RAs: concerns about gastrointestinal intolerance, pancreatitis, and potential thyroid C-cell tumors (mainly in rodent studies) [119].
Infrastructure and Monitoring
Need for Local Data
8.3.7. Telemedicine Protocols for Rural CKD Monitoring
Remote Patient Monitoring
Structured Virtual Consultations or Teleconsultations
Integration with Local Healthcare Infrastructure
Standardized Protocols and Clinical Decision Support
Cost-Effectiveness and Health Equity
Incorporation of Patient Feedback
9. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hesnaye, N.C.; Carrero, J.J.; Hecking, M.; Jager, K.J. Differences in the epidemiology, management and outcomes of kidney disease in men and women. Nat. Rev. Nephrol. 2024, 20, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Jamali, M.C.; Habib, A.; Hussain, M.S.; Akhtar, M.; Najmi, A.K. DKD: An overview of prevalence, risk factors, and biomarkers. Clin. Epidemiol. Glob. Health 2021, 9, 2–6. [Google Scholar] [CrossRef]
- Li, J.; Guo, K.; Qiu, J.; Xue, S.; Pi, L.; Li, X.; Huang, G.; Xie, Z.; Zhou, Z. Epidemiological status, development trends, and risk factors of disability-adjusted life years due to DKD: A systematic analysis of Global Burden of Disease Study. Chin. Med. J. 2025, 138, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Filipska, A.; Bohdan, B.; Wieczorek, P.P.; Hudz, N. CKD and dialysis therapy: Incidence and prevalence in the world. Pharmacia 2021, 68, 463–470. [Google Scholar] [CrossRef]
- Li, H.; Lu, W.; Wang, A.; Jiang, H.; Lyu, J. Changing epidemiology of CKD as a result of type 2 diabetes mellitus from 1990 to 2017: Estimates from Global Burden of Disease 2017. J. Diabetes Investig. 2021, 12, 346–356. [Google Scholar] [CrossRef]
- Tye, S.C.; Denig, P.; Heerspink, H.J. Precision medicine approaches for DKD: Opportunities and challenges. Nephrol. Dial. Transplant. 2021, 36 (Suppl. S2), ii3–ii9. [Google Scholar] [CrossRef]
- Puglisi, S.; Rossini, A.; Poli, R.; Dughera, F.; Pia, A.; Terzolo, M.; Reimondo, G. Effects of SGLT2i and GLP-1 RAs on renin-angiotensin-aldosterone system. Front. Endocrinol. 2021, 12, 738848. [Google Scholar] [CrossRef]
- Evans, M.; Lewis, R.D.; Morgan, A.R.; Whyte, M.B.; Hanif, W.; Bain, S.C.; Davies, S.; Dashora, U.; Yousef, Z.; Patel, D.C.; et al. A narrative review of CKD in clinical practice: Current challenges and future perspectives. Adv. Ther. 2022, 39, 33–43. [Google Scholar] [CrossRef]
- Mende, C.W. CKD and SGLT2i: A review of the evolving treatment landscape. Adv. Ther. 2022, 39, 148–164. [Google Scholar] [CrossRef]
- Huang, W.; Chen, Y.Y.; Li, Z.Q.; He, F.F.; Zhang, C. Recent advances in the emerging therapeutic strategies for DKDs. Int. J. Mol. Sci. 2022, 23, 10882. [Google Scholar] [CrossRef]
- Duan, S.; Lu, F.; Song, D.; Zhang, C.; Zhang, B.; Xing, C.; Yuan, Y. Current challenges and future perspectives of renal tubular dysfunction in DKD. Front. Endocrinol. 2021, 12, 661185. [Google Scholar] [CrossRef] [PubMed]
- Shaffner, J.; Chen, B.; Malhotra, D.K.; Dworkin, L.D.; Gong, R. Therapeutic targeting of SGLT2: A new era in the treatment of diabetes and DKD. Front. Endocrinol. 2021, 12, 749010. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.C.; Chen, J.X.; Zou, R.; Liang, X.B.; Tang, J.X.; Yao, C.W. Role and mechanisms of SGLT-2 inhibitors in the treatment of DKD. Front. Immunol. 2023, 14, 1213473. [Google Scholar] [CrossRef] [PubMed]
- Rojano Toimil, A.; Ciudin, A. GLP-1 RAs in DKD: From physiology to clinical outcomes. J. Clin. Med. 2021, 10, 3955. [Google Scholar] [CrossRef]
- Liabeuf, S.; Minutolo, R.; Floege, J.; Zoccali, C. The use of SGLT2i and GLP-1 RAs in older patients: A debate on approaches in CKD and non-CKD populations. Clin. Kidney J. 2025, 18, sfae380. [Google Scholar] [CrossRef]
- Michos, E.D.; Bakris, G.L.; Rodbard, H.W.; Tuttle, K.R. Glucagon-like peptide-1 receptor agonists in DKD: A review of their kidney and heart protection. Am. J. Prev. Cardiol. 2023, 14, 100502. [Google Scholar] [CrossRef]
- Chen, S.; Chen, L.; Jiang, H. Prognosis and risk factors of CKD progression in patients with DKD and non-DKD: A prospective cohort CKD-ROUTE study. Ren. Fail. 2022, 44, 1310–1319. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, J.; Hao, C.; Li, X.; Zhu, D.; Zheng, H.; Xu, X.; Mo, Z.; Lu, W.; Lu, Y.; et al. Finerenone in patients with CKD and type 2 diabetes: The FIDELIO-DKD subgroup from China. Kidney Dis. 2023, 9, 498–506. [Google Scholar] [CrossRef]
- Oe, Y.; Vallon, V. The pathophysiological basis of diabetic kidney protection by inhibition of SGLT2 and SGLT1. Kidney Dial. 2022, 2, 349–368. [Google Scholar] [CrossRef]
- Kim, N.H.; Kim, N.H. Renoprotective mechanism of sodium-glucose cotransporter 2 inhibitors: Focusing on renal hemodynamics. Diabetes Metab. J. 2022, 46, 543–551. [Google Scholar] [CrossRef]
- Winiarska, A.; Knysak, M.; Nabrdalik, K.; Gumprecht, J.; Stompór, T. Inflammation and oxidative stress in DKD: The targets for SGLT2i and GLP-1 RAs. Int. J. Mol. Sci. 2021, 22, 10822. [Google Scholar] [CrossRef]
- Lee, B.; Holstein-Rathlou, N.H.; Sosnovtseva, O.; Sørensen, C.M. Renoprotective effects of GLP-1 RAs and SGLT-2 inhibitors—Is hemodynamics the key point? Am. J. Physiol. Cell Physiol. 2023, 325, C243–C256. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.J.; Lv, L.L.; Liu, B.C.; Tang, R.N. Crosstalk between tubular epithelial cells and glomerular endothelial cells in DKD. Cell Prolif. 2020, 53, e12763. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, P.; van de Sluis, B.; Dullaart, R.P.; van den Born, J. Novel aspects of PCSK9 and lipoprotein receptors in renal disease-related dyslipidemia. Cell. Signal. 2019, 55, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Düsing, P.; Zietzer, A.; Goody, P.R.; Hosen, M.R.; Kurts, C.; Nickenig, G.; Jansen, F. Vascular pathologies in CKD: Pathophysiological mechanisms and novel therapeutic approaches. J. Mol. Med. 2021, 99, 335–348. [Google Scholar] [CrossRef]
- Boima, V.; Agyekum, A.B.; Ganatra, K.; Agyekum, F.; Kwakyi, E.; Inusah, J.; Ametefe, E.N.; Adu, D. Advances in kidney disease: Pathogenesis and therapeutic targets. Front. Med. 2025, 12, 1526090. [Google Scholar] [CrossRef]
- Tanabe, K.; Wada, J.; Sato, Y. Targeting angiogenesis and lymphangiogenesis in kidney disease. Nat. Rev. Nephrol. 2020, 16, 289–303. [Google Scholar] [CrossRef]
- Bansal, A.; Chonchol, M. Metabolic Dysfunction Associated Kidney Disease: Pathogenesis and Clinical Manifestations. Kidney Int. 2025, 108, 194–200. [Google Scholar] [CrossRef]
- Theofilis, P.; Vordoni, A.; Koukoulaki, M.; Vlachopanos, G.; Kalaitzidis, R.G. Dyslipidemia in CKD: Contemporary concepts and future therapeutic perspectives. Am. J. Nephrol. 2021, 52, 693–701. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, G. Update on pathogenesis of glomerular hyperfiltration in early DKD. Front. Endocrinol. 2022, 13, 872918. [Google Scholar]
- Rroji, M.; Spasovski, G. Transforming diabetes care: The molecular pathways through which GLP1-RAs impact the kidneys in DKD. Biomedicines 2024, 12, 657. [Google Scholar] [CrossRef]
- Liu, S.; Yuan, Y.; Xue, Y.; Xing, C.; Zhang, B. Podocyte injury in DKD: A focus on mitochondrial dysfunction. Front. Cell Dev. Biol. 2022, 10, 832887. [Google Scholar]
- Sugahara, M.; Pak, W.L.W.; Tanaka, T.; Tang, S.C.; Nangaku, M. Update on diagnosis, pathophysiology, and management of DKD. Nephrology 2021, 26, 491–500. [Google Scholar] [CrossRef]
- Deng, B.; Song, A.; Zhang, C. Cell-cycle dysregulation in the pathogenesis of DKD: An update. Int. J. Mol. Sci. 2023, 24, 2133. [Google Scholar] [CrossRef]
- Jha, R.; Lopez-Trevino, S.; Kankanamalage, H.R.; Jha, J.C. Diabetes and renal complications: An overview on pathophysiology, biomarkers and therapeutic interventions. Biomedicines 2024, 12, 1098. [Google Scholar] [CrossRef] [PubMed]
- Shabaka, A.; Cases-Corona, C.; Fernandez-Juarez, G. Therapeutic insights in CKD progression. Front. Med. 2021, 8, 645187. [Google Scholar] [CrossRef] [PubMed]
- DeFronzo, R.A.; Reeves, W.B.; Awad, A.S. Pathophysiology of DKD: Impact of SGLT2i. Nat. Rev. Nephrol. 2021, 17, 319–334. [Google Scholar] [CrossRef] [PubMed]
- Barrera-Chimal, J.; Jaisser, F. Pathophysiologic mechanisms in DKD: A focus on current and future therapeutic targets. Diabetes Obes. Metab. 2020, 22, 16–31. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Zhang, Y.; Yan, B. Mechanisms of protective effects of SGLT2i in cardiovascular disease and renal dysfunction. Curr. Top. Med. Chem. 2019, 19, 1818–1849. [Google Scholar] [CrossRef]
- Miyata, K.N.; Zhang, S.L.; Chan, J.S. The rationale and evidence for SGLT2i as a treatment for nondiabetic glomerular disease. Glomerular Dis. 2021, 1, 21–33. [Google Scholar] [CrossRef]
- Shirakawa, K.; Sano, M. Sodium-glucose co-transporter 2 inhibitors correct metabolic maladaptation of proximal tubular epithelial cells in high-glucose conditions. Int. J. Mol. Sci. 2020, 21, 7676. [Google Scholar] [CrossRef]
- Chang, J.; Yan, J.; Li, X.; Liu, N.; Zheng, R.; Zhong, Y. Update on the mechanisms of tubular cell injury in DKD. Front. Med. 2021, 8, 661076. [Google Scholar] [CrossRef] [PubMed]
- Kanbay, M.; Copur, S.; Guldan, M.; Ozbek, L.; Hatipoglu, A.; Covic, A.; Mallamaci, F.; Zoccali, C. Proximal tubule hypertrophy and hyperfunction: A novel pathophysiological feature in disease states. Clin. Kidney J. 2024, 17, sfae195. [Google Scholar] [CrossRef] [PubMed]
- Pirklbauer, M.; Schupart, R.; Fuchs, L.C.; Staudinger, P.; Corazza, U.; Sallaberger, S.; Leierer, J.; Mayer, G.; Schramek, H. Unraveling reno-protective effects of SGLT2 inhibition in human proximal tubular cells. Am. J. Physiol. Ren. Physiol. 2019, 316, F449–F462. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ricardo, S.D.; Samuel, C.S. Enhancing the therapeutic potential of mesenchymal stromal cell-based therapies with an anti-fibrotic agent for the treatment of CKD. Int. J. Mol. Sci. 2022, 23, 6035. [Google Scholar] [CrossRef]
- Skrabic, R.; Kumric, M.; Vrdoljak, J.; Rusic, D.; Skrabic, I.; Vilovic, M.; Martinovic, D.; Duplancic, V.; Ticinovic Kurir, T.; Bozic, J. SGLT2i in CKD: From mechanisms to clinical practice. Biomedicines 2022, 10, 2458. [Google Scholar] [CrossRef]
- Reiss, A.B.; Jacob, B.; Zubair, A.; Srivastava, A.; Johnson, M.; De Leon, J. Fibrosis in CKD: Pathophysiology and therapeutic targets. J. Clin. Med. 2024, 13, 1881. [Google Scholar] [CrossRef]
- Li, N.; Lv, D.; Zhu, X.; Wei, P.; Gui, Y.; Liu, S.; Zhou, E.; Zheng, M.; Zhou, D.; Zhang, L. Effects of SGLT2i on renal outcomes in patients with CKD: A meta-analysis. Front. Med. 2021, 8, 728089. [Google Scholar]
- Di Costanzo, A.; Esposito, G.; Indolfi, C.; Spaccarotella, C.A.M. SGLT2i: A new therapeutical strategy to improve clinical outcomes in patients with CKDs. Int. J. Mol. Sci. 2023, 24, 8732. [Google Scholar] [CrossRef]
- Perkovic, V.; Agarwal, R.; Fioretto, P.; Hemmelgarn, B.R.; Levin, A.; Thomas, M.C.; Wanner, C.; Kasiske, B.L.; Wheeler, D.C.; Groop, P.-H.; et al. Management of patients with diabetes and CKD: Conclusions from a ‘Kidney Disease: Improving Global Outcomes’ (KDIGO) Controversies Conference. Kidney Int. 2016, 90, 1175–1183. [Google Scholar] [CrossRef]
- Lu, Y.P.; Zhang, Z.Y.; Wu, H.W.; Fang, L.J.; Hu, B.; Tang, C.; Zhang, Y.-Q.; Yin, L.; Tang, D.-E.; Zheng, Z.-H.; et al. SGLT2i improve kidney function and morphology by regulating renal metabolic reprogramming in mice with DKD. J. Transl. Med. 2022, 20, 420. [Google Scholar] [CrossRef]
- Neuen, B.L.; Young, T.; Heerspink, H.J.L.; Neal, B.; Perkovic, V.; Billot, L.; Mahaffey, K.W.; Charytan, D.M.; Wheeler, D.C.; Arnott, C.; et al. SGLT2i for the prevention of kidney failure in patients with type 2 diabetes: A systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2019, 7, 845–854. [Google Scholar] [CrossRef]
- Vallon, V.; Verma, S. Effects of SGLT2i on kidney and cardiovascular function. Annu. Rev. Physiol. 2021, 83, 503–528. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.J.; Day, C.; Bellary, S. Renal protection with SGLT2i: Effects in acute and CKD. Curr. Diabetes Rep. 2022, 22, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Kanduri, S.R.; Kovvuru, K. SGLT2i and kidney outcomes in patients with CKD. J. Clin. Med. 2020, 9, 2723. [Google Scholar] [CrossRef] [PubMed]
- Yau, K.; Dharia, A.; Alrowiyti, I.; Cherney, D.Z. Prescribing SGLT2i in patients with CKD: Expanding indications and practical considerations. Kidney Int. Rep. 2022, 7, 1463–1476. [Google Scholar] [CrossRef]
- Cherney, D.Z.; Kanbay, M.; Lovshin, J.A. Renal physiology of glucose handling and therapeutic implications. Nephrol. Dial. Transplant. 2020, 35 (Suppl. S1), i3–i12. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Karasik, A.; Thuresson, M.; Melzer-Cohen, C.; Chodick, G.; Khunti, K.; Wilding, J.P.H.; Rodriguez, L.A.G.; Cea-Soriano, L.; Kohsaka, S.; et al. Kidney outcomes associated with use of SGLT2i in real-world clinical practice (CVD-REAL 3): A multinational observational cohort study. Lancet Diabetes Endocrinol. 2020, 8, 27–35. [Google Scholar] [CrossRef]
- Minze, M.G.; Will, K.J.; Terrell, B.T.; Black, R.L.; Irons, B.K. Benefits of SGLT2i beyond glycemic control–a focus on metabolic, cardiovascular and renal outcomes. Curr. Diabetes Rev. 2018, 14, 509–517. [Google Scholar] [CrossRef]
- Wheeler, D.C.; James, J.; Patel, D.; Viljoen, A.; Ali, A.; Evans, M.; Fernando, K.; Hicks, D.; Milne, N.; Newland-Jones, P.; et al. SGLT2i: Slowing of CKD progression in type 2 diabetes. Diabetes Ther. 2020, 11, 2757–2774. [Google Scholar] [CrossRef]
- Jardine, M.J.; Mahaffey, K.W.; Neal, B.; Agarwal, R.; Bakris, G.L.; Brenner, B.M.; Bull, S.; Cannon, C.P.; Charytan, D.M.; de Zeeuw, D.; et al. The Canagliflozin and Renal Endpoints in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) study rationale, design, and baseline characteristics. Am. J. Nephrol. 2017, 46, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Kaze, A.D.; Zhuo, M.; Kim, S.C.; Patorno, E.; Paik, J.M. Association of SGLT2i with cardiovascular, kidney, and safety outcomes among patients with DKD: A meta-analysis. Cardiovasc. Diabetol. 2022, 21, 47. [Google Scholar] [CrossRef] [PubMed]
- Kelly, M.S.; Lewis, J.; Huntsberry, A.M.; Dea, L.; Portillo, I. Efficacy and renal outcomes of SGLT2i in patients with type 2 diabetes and CKD. Postgrad. Med. 2019, 131, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Bazoukis, G.; Papadatos, S.S.; Thomopoulos, C.; Tse, G.; Cheilidis, S.; Tsioufis, K.; Farmakis, D. Impact of SGLT2i on major clinical events and safety outcomes in heart failure patients: A meta-analysis of randomized clinical trials. J. Geriatr. Cardiol. JGC 2021, 18, 783. [Google Scholar]
- Butler, J.; Usman, M.S.; Khan, M.S.; Greene, S.J.; Friede, T.; Vaduganathan, M.; Filippatos, G.; Coats, A.J.S.; Anker, S.D. Efficacy and safety of SGLT2i in heart failure: Systematic review and meta-analysis. ESC Heart Fail. 2020, 7, 3298–3309. [Google Scholar] [CrossRef]
- Zelniker, T.A.; Wiviott, S.D.; Raz, I.; Im, K.; Goodrich, E.; Bonaca, M.P.; Mosenzon, O.; Kato, E.; Cahn, A.; Furtado, R.H.M.; et al. SGLT2i for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019, 393, 31–39. [Google Scholar] [CrossRef]
- Jamil, S.; Zainab, A.; Arora, A.K.M.S.; Shaik, T.A.; Khemani, V.; Mekowulu, F.C.; Aschalew, Y.N.; Khan, S. Efficacy and safety of sodium glucose cotransporter-2 (SGLT2) inhibitors in patients with diabetes and CKD (CKD): A meta-analysis of randomized control trials. Cureus 2022, 14, e31898. [Google Scholar] [CrossRef]
- Li, W.J.; Chen, X.Q.; Xu, L.L.; Li, Y.Q.; Luo, B.H. SGLT2i and atrial fibrillation in type 2 diabetes: A systematic review with meta-analysis of 16 randomized controlled trials. Cardiovasc. Diabetol. 2020, 19, 1–14. [Google Scholar] [CrossRef]
- Li, C.; Zhou, Z.; Neuen, B.L.; Yu, J.; Huang, Y.; Young, T.; Li, J.; Li, L.; Perkovic, V.; Jardine, M.J. Sodium-glucose co-transporter-2 inhibition and ocular outcomes in patients with type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes. Metab. 2021, 23, 252–257. [Google Scholar] [CrossRef]
- Scheen, A.J.; Bonnet, F. Efficacy and safety profile of SGLT2i in the elderly: How is the benefit/risk balance? Diabetes Metab. 2023, 49, 101419. [Google Scholar] [CrossRef]
- Qiu, M.; Ding, L.L.; Zhang, M.; Zhou, H.R. Safety of four SGLT2i in three chronic diseases: A meta-analysis of large randomized trials of SGLT2i. Diabetes Vasc. Dis. Res. 2021, 18, 14791641211011016. [Google Scholar] [CrossRef]
- Donnan, J.R.; Grandy, C.A.; Chibrikov, E.; Marra, C.A.; Aubrey-Bassler, K.; Johnston, K.; Swab, M.; Hache, J.; Curnew, D.; Nguyen, H.; et al. Comparative safety of the sodium glucose co-transporter 2 (SGLT2) inhibitors: A systematic review and meta-analysis. BMJ Open 2019, 9, e022577. [Google Scholar] [CrossRef]
- Taylor, S.I.; Blau, J.E.; Rother, K.I.; Beitelshees, A.L. SGLT2i as adjunctive therapy for type 1 diabetes: Balancing benefits and risks. Lancet Diabetes Endocrinol. 2019, 7, 949–958. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, S.; Pan, H.; Zou, Y.; Wang, B.; Wang, G.; Zhu, H. Safety and efficiency of SGLT2 inhibitor combining with insulin in subjects with diabetes: Systematic review and meta-analysis of randomized controlled trials. Medicine 2017, 96, e6944. [Google Scholar] [CrossRef]
- Yu, J.H.; Park, S.Y.; Kim, N.H.; Seo, J.A. GLP-1 RAs in DKD: Current evidence and future directions. Kidney Res. Clin. Pract. 2022, 41, 136. [Google Scholar] [CrossRef] [PubMed]
- Kawanami, D.; Takashi, Y. GLP-1 RAs in DKD: From clinical outcomes to mechanisms. Front. Pharmacol. 2020, 11, 967. [Google Scholar] [CrossRef] [PubMed]
- Badve, S.V.; Bilal, A.; Lee, M.M.Y.; Sattar, N.; Gerstein, H.C.; Ruff, C.T.; McMurray, J.J.V.; Rossing, P.; Bakris, G.; Mahaffey, K.W.; et al. Effects of GLP-1 RAs on kidney and cardiovascular disease outcomes: A meta-analysis of randomised controlled trials. Lancet Diabetes Endocrinol. 2025, 13, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Kelly, M.; Lewis, J.; Rao, H.; Carter, J.; Portillo, I.; Beuttler, R. Effects of GLP-1 receptor agonists on cardiovascular outcomes in patients with type 2 diabetes and CKD: A systematic review and meta-analysis. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2022, 42, 921–928. [Google Scholar] [CrossRef]
- Michos, E.D.; Tuttle, K.R. GLP-1 RAs in DKD. Clin. J. Am. Soc. Nephrol. 2021, 16, 1578–1580. [Google Scholar] [CrossRef]
- Prattichizzo, F.; de Candia, P.; Ceriello, A. Diabetes and kidney disease: Emphasis on treatment with SGLT-2 inhibitors and GLP-1 RAs. Metabolism 2021, 120, 154799. [Google Scholar] [CrossRef]
- Abasheva, D.; Ortiz, A.; Fernandez-Fernandez, B. GLP-1 RAs in patients with CKD and either overweight or obesity. Clin. Kidney J. 2024, 17 (Suppl. S2), 19–35. [Google Scholar] [CrossRef]
- Baar, M.J.; van Raalte, D.H.; Muskiet, M.H. GLP-1 RAs, CKD, and eGFR trajectory. Lancet Diabetes Endocrinol. 2018, 6, 764–765. [Google Scholar] [CrossRef]
- Kim Scholten, B.J.; Hansen, T.W.; Goetze, J.P.; Persson, F.; Rossing, P. Glucagon-like peptide 1 receptor agonist (GLP-1 RA): Long-term effect on kidney function in patients with type 2 diabetes. J. Diabetes Complicat. 2015, 29, 670–674. [Google Scholar] [CrossRef]
- Li, J.; Albajrami, O.; Zhuo, M.; Hawley, C.E.; Paik, J.M. Decision algorithm for prescribing SGLT2i and GLP-1 RAs for DKD. Clin. J. Am. Soc. Nephrol. 2020, 15, 1678–1688. [Google Scholar] [CrossRef]
- Chen, J.Y.; Hsu, T.W.; Liu, J.H.; Pan, H.C.; Lai, C.F.; Yang, S.Y.; Wu, V.C. Kidney and Cardiovascular Outcomes Among Patients With CKD Receiving GLP-1 RAs: A Systematic Review and Meta-Analysis of Randomized Trials. Am. J. Kidney Diseases 2025, 85, 555–569.e1. [Google Scholar] [CrossRef] [PubMed]
- Tommerdahl, K.L.; Kendrick, J.; Bjornstad, P. The role of glucagon-like peptide 2025, 1, (GLP-1) receptor agonists in the prevention and treatment of DKD: Insights from the AMPLITUDE-O trial. Clin. J. Am. Soc. Nephrol. 2022, 17, 905–907. [Google Scholar] [CrossRef] [PubMed]
- Shaman, A.M.; Bain, S.C.; Bakris, G.L.; Buse, J.B.; Idorn, T.; Mahaffey, K.W.; Mann, J.F.; Nauck, M.A.; Rasmussen, S.; Rossing, P.; et al. Effect of the glucagon-like peptide-1 receptor agonists semaglutide and liraglutide on kidney outcomes in patients with type 2 diabetes: Pooled analysis of SUSTAIN 6 and LEADER. Circulation 2022, 145, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Neumiller, J.J.; Alicic, R.Z.; Tuttle, K.R. GLP-1 RAs in the treatment of patients with type 2 diabetes and CKD. Kidney Dial. 2022, 2, 386–398. [Google Scholar] [CrossRef]
- Muskiet, M.H.A.; Tonneijck, L.; Smits, M.M.; Van Baar, M.J.B.; Kramer, M.H.H.; Hoorn, E.J.; Joles, J.A.; Van Raalte, D.H. GLP-1 and the kidney: From physiology to pharmacology and outcomes in diabetes. Nat. Rev. Nephrol. 2017, 13, 605–628. [Google Scholar] [CrossRef]
- Mann, J.F.; Muskiet, M.H. Incretin-based drugs and the kidney in type 2 diabetes: Choosing between DPP-4 inhibitors and GLP-1 RAs. Kidney Int. 2021, 99, 314–318. [Google Scholar] [CrossRef]
- Sattar, N.; Lee, M.M.Y.; Kristensen, S.L.; Branch, K.R.H.; Del Prato, S.; Khurmi, N.S.; Lam, C.S.P.; Lopes, R.D.; McMurray, J.J.V.; Pratley, R.E.; et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 RAs in patients with type 2 diabetes: A systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 2021, 9, 653–662. [Google Scholar] [CrossRef]
- Giugliano, D.; Maiorino, M.I.; Bellastella, G.; Longo, M.; Chiodini, P.; Esposito, K. GLP-1 receptor agonists for prevention of cardiorenal outcomes in type 2 diabetes: An updated meta-analysis including the REWIND and PIONEER 6 trials. Diabetes Obes. Metab. 2019, 21, 2576–2580. [Google Scholar] [CrossRef]
- Botros, F.T.; Gerstein, H.C.; Malik, R.; Nicolay, C.; Hoover, A.; Turfanda, I.; Colhoun, H.M.; Shaw, J.E. Dulaglutide and kidney function–related outcomes in type 2 diabetes: A REWIND post hoc analysis. Diabetes Care 2023, 46, 1524–1530. [Google Scholar] [CrossRef]
- Pladevall-Vila, M.; Ziemiecki, R.; Johannes, C.B.; Khan, A.M.; Mines, D.; Ebert, N.; Kovesdy, C.P.; Thomsen, R.W.; Baak, B.N.; García-Sempere, A.; et al. Clinical Profile and Treatment Patterns in Individuals with Type 2 Diabetes and CKD Who Initiate a GLP-1 Receptor Agonist: A Multinational Cohort Study. Diabetes Therapy 2025, 16, 931–954. [Google Scholar] [CrossRef] [PubMed]
- Krisanapan, P.; Suppadungsuk, S.; Sanpawithayakul, K.; Thongprayoon, C.; Pattharanitima, P.; Tangpanithandee, S.; Mao, M.A.; Miao, J.; Cheungpasitporn, W. Safety and efficacy of glucagon-like peptide-1 receptor agonists among kidney transplant recipients: A systematic review and meta-analysis. Clin. Kidney J. 2024, 17, sfae018. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.J.; AlSaffar, A.H.; Mohamed, A.A.; Khamis, M.H.; Khalaf, A.A.; AlAradi, H.J.; Abuhamaid, A.I.; Sanad, A.H.; Abbas, H.L.; Abdulla, A.M.; et al. Effect of GLP-1 RAs on Renal Functions and Diabetic Nephropathy in Type 2 Diabetes Mellitus (T2DM) Patients: A Systematic Review and Meta-Analysis. Cureus 2024, 16, e71739. [Google Scholar] [PubMed]
- Allegretti, A.S.; Zhang, W.; Zhou, W.; Thurber, T.K.; Rigby, S.P.; Bowman-Stroud, C.; Trescoli, C.; Serusclat, P.; Freeman, M.W.; Halvorsen, Y.-D.C. Safety and effectiveness of bexagliflozin in patients with type 2 diabetes mellitus and stage 3a/3b CKD. Am. J. Kidney Dis. 2019, 74, 328–337. [Google Scholar] [CrossRef]
- Mendonça, L.; Moura, H.; Chaves, P.C.; Neves, J.S.; Ferreira, J.P. The Impact of Glucagon-Like Peptide-1 Receptor Agonists on Kidney Outcomes: A Meta-Analysis of Randomized Placebo-Controlled Trials. Clin. J. Am. Soc. Nephrol. 2024, 20, 159–168. [Google Scholar] [CrossRef]
- Mann, J.F.E.; Rossing, P.; Bakris, G.; Belmar, N.; Bosch-Traberg, H.; Busch, R.; Charytan, D.M.; Hadjadj, S.; Gillard, P.; Górriz, J.L.; et al. Effects of semaglutide with and without concomitant SGLT2 inhibitor use in participants with type 2 diabetes and CKD in the FLOW trial. Nat. Med. 2024, 30, 2849–2856. [Google Scholar] [CrossRef]
- Mcfarlin, B.E.; Satake, E.; Dom, Z.M.; Ricca, J.; Kechter, A.V.; Wilson, J.M.; Duffin, K.L.; Krolewski, A. 409-P: Post Hoc Analyses of Longitudinal Changes of Plasma Proteins Associated with Progression to End-Stage Kidney Disease in Type 2 Diabetes Patients with CKD Treated with GLP-1 Receptor Agonist Dulaglutide (AWARD-7). Diabetes 2023, 72, 1. [Google Scholar] [CrossRef]
- Grewal, S.; Zaman, N.; Borgatta, L.; Nudy, M.; Foy, A.J.; Peterson, B. Usefulness of glucagon-like peptide-1 receptor agonists to reduce adverse cardiovascular disease events in patients with type 2 diabetes mellitus. Am. J. Cardiol. 2021, 154, 48–53. [Google Scholar] [CrossRef]
- Krisanapan, P.; Sanpawithayakul, K.; Pattharanitima, P.; Thongprayoon, C.; Miao, J.; Mao, M.A.; Suppadungsuk, S.; Tangpanithandee, S.; Craici, I.M.; Cheungpasitporn, W. Safety and efficacy of GLP-1 RAs in type 2 diabetes mellitus with advanced and end-stage kidney disease: A systematic review and meta-analysis. Diseases 2024, 12, 14. [Google Scholar] [CrossRef]
- Messak, M.; Abdelmageed, A.; Senbel, A.A.; Khattab, Y.A.; Mandour, Y.; Shaker, O.; Rehan, A.H.; Oransa, S.; Nasr, M.; Shabeeb, A.E.; et al. Efficacy and safety of GLP-1 agonists in Parkinson’s disease: A systematic review and meta-analysis of randomized controlled trials. Naunyn-Schmiedeberg‘s Arch. Pharmacol. 2025; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Imam, A.; Alim, H.; Binhussein, M.; Kabli, A.; Alhasnani, H.; Allehyani, A.; Aljohani, A.; Mohorjy, A.; Tawakul, A.; Samannodi, M.; et al. Weight loss effect of GLP-1 RAs with endoscopic bariatric therapy and bariatric surgeries. J. Endocr. Soc. 2023, 7, bvad129. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Liu, Y.; Liu, M.; Xu, Y.; Ling, Q.; Lin, W.; Zhang, J.; Yan, Z.; Ma, J.; Li, W.; et al. Clinical outcomes with GLP-1 RAs in patients with heart failure: A systematic review and meta-analysis of randomized controlled trials. Drugs 2023, 83, 1293–1307. [Google Scholar] [CrossRef] [PubMed]
- Giugliano, D.; Scappaticcio, L.; Longo, M.; Caruso, P.; Maiorino, M.I.; Bellastella, G.; Ceriello, A.; Chiodini, P.; Esposito, K. GLP-1 RAs and cardiorenal outcomes in type 2 diabetes: An updated meta-analysis of eight CVOTs. Cardiovasc. Diabetol. 2021, 20, 1–11. [Google Scholar]
- Herrera Comoglio, R.; Vidal Guitart, X. Cardiovascular outcomes, heart failure and mortality in type 2 diabetic patients treated with glucagon-like peptide 1 receptor agonists (GLP-1 RAs): A systematic review and meta-analysis of observational cohort studies. Int. J. Clin. Pract. 2020, 74, e13553. [Google Scholar] [CrossRef]
- Yao, H.; Zhang, A.; Li, D.; Wu, Y.; Wang, C.Z.; Wan, J.Y.; Yuan, C.S. Comparative effectiveness of GLP-1 RAs on glycaemic control, body weight, and lipid profile for type 2 diabetes: Systematic review and network meta-analysis. BMJ 2024, 384, e076410. [Google Scholar] [CrossRef]
- Monami, M.; Dicembrini, I.; Nardini, C.; Fiordelli, I.; Mannucci, E. Effects of glucagon-like peptide-1 receptor agonists on cardiovascular risk: A meta-analysis of randomized clinical trials. Diabetes Obes. Metab. 2014, 16, 38–47. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Pan, H.-C.; Shiao, C.-C.; Chuang, M.-H.; See, C.Y.; Yeh, T.-H.; Yang, Y.; Chu, W.-K.; Wu, V.-C. Impact of SGLT2i on patient outcomes: A network meta-analysis. Cardiovasc. Diabetol. 2023, 22, 290. [Google Scholar] [CrossRef]
- Marilly, E.; Cottin, J.; Cabrera, N.; Cornu, C.; Boussageon, R.; Moulin, P.; Lega, J.-C.; Gueyffier, F.; Cucherat, M.; Grenet, G. SGLT2i in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials balancing their risks and benefits. Diabetologia 2022, 65, 2000–2010. [Google Scholar] [CrossRef]
- Vistisen, D.; Carstensen, B.; Elisabetta, P.; Lanzinger, S.; Tan, E.C.-H.; Yabe, D.; Kim, D.J.; Sheu, W.H.-H.; Melzer-Cohen, C.; Holl, R.W.; et al. Empagliflozin is associated with lower cardiovascular risk compared with dipeptidyl peptidase-4 inhibitors in adults with and without cardiovascular disease: EMPagliflozin compaRative effectIveness and SafEty (EMPRISE) study results from Europe and Asia. Cardiovasc. Diabetol. 2023, 22, 233. [Google Scholar] [CrossRef]
- Ueda, P.; Wintzell, V.; Dahlqwist, E.; Eliasson, B.; Svensson, A.-M.; Franzén, S.; Gudbjörnsdottir, S.; Hveem, K.; Jonasson, C.; Melbye, M.; et al. The comparative cardiovascular and renal effectiveness of sodium–glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists: A Scandinavian cohort study. Diabetes Obes. Metab. 2022, 24, 473–485. [Google Scholar] [CrossRef]
- Zelniker, T.A.; Wiviott, S.D.; Raz, I.; Im, K.; Goodrich, E.L.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Furtado, R.H.M.; et al. Comparison of the Effects of Glucagon-Like Peptide Receptor Agonists and Sodium–Glucose Cotransporter 2 Inhibitors for Prevention of Major Adverse Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis of Cardiovascular Outcomes Trials. Circulation 2019, 139, 2022–2031. [Google Scholar] [PubMed]
- Monami, M.; Dicembrini, I.; Mannucci, E. Effects of SGLT-2 inhibitors on mortality and cardiovascular events: A comprehensive meta-analysis of randomized controlled trials. Acta Diabetol. 2017, 54, 19–36. [Google Scholar] [CrossRef] [PubMed]
- Nalesso, F.; Garzotto, F.; Cattarin, L.; Bettin, E.; Cacciapuoti, M.; Silvestre, C.; Stefanelli, L.F.; Furian, L.; Calò, L.A. The Future for End-Stage Kidney Disease Treatment: Implantable Bioartificial Kidney Challenge. Appl. Sci. 2024, 14, 491. [Google Scholar] [CrossRef]
- Nee, R.; Yuan, C.M.; Narva, A.S.; Yan, G.; Norris, K.C. Overcoming barriers to implementing new guideline-directed therapies for CKD. Nephrol. Dial. Transplant. 2023, 38, 532–541. [Google Scholar] [CrossRef]
- Borg, R.; Carlson, N.; Søndergaard, J.; Persson, F. The growing challenge of CKD: An overview of current knowledge. Int. J. Nephrol. 2023, 2023, 9609266. [Google Scholar] [CrossRef]
- Edwards, K.; Li, X.; Lingvay, I. Clinical and safety outcomes with GLP-1 RAs and SGLT2i in type 1 diabetes: A real-world study. J. Clin. Endocrinol. Metab. 2023, 108, 920–930. [Google Scholar] [CrossRef]
- Jayasinghe, K.; Biros, E.; Harris, T.; Wood, A.; O’sHea, R.; Hill, L.; Fowles, L.; Wardrop, L.; Shalhoub, C.; Hahn, D.; et al. Implementation and evaluation of a national multidisciplinary kidney genetics clinic network over 10 years. Kidney Int. Rep. 2024, 9, 2372–2385. [Google Scholar] [CrossRef]
Name of Drug | Approval Status | Protein Binding and BA | Tmax and Half-Life | Cmax | Approval Indications |
---|---|---|---|---|---|
Tofogliflozin (10 mg) | Approved in Japan in March 2014 | 83% and 97.50% | 0.75 and 6.8 | 489 ng/mL | Highly selective SGLT2 inhibitor; moderate urinary glucose excretion |
Ertugliflozin (5–15 mg once daily) | Approved in December 2017 | 95% and 70–90% | 0.5–1.5 and 11–17 | 268 ng/mL (15 mg dose) | Type 2 Diabetes (DKD), Selective SGLT2 inhibition, promotes glycosuria and natriuresis |
Ipragliflozin (50 mg once daily) | Approved in Japan January 2014 with | 90% and 96.30% | 1 and 15–16 (50 mg dose) | 975 ng/mL | SGLT2 inhibition with low SGLT1 affinity; modest renal protection |
Canagliflozin (100–300 mg once daily) | First SGLT2 inhibitor Approved in March 2013 (USA, Canada, Japan) | 96% and 65% (300 mg dose) | 1–2 and 10.6 (100 mg dose); 13.1 (300 mg dose) | 1096 ng/mL (100 mg dose); 3480 ng/mL (300 mg dose) | Type 2 Diabetes, CKD with albuminuria |
Empagliflozin (10 mg once daily) | Approved in August 2014 with | 86.20% and 90–97% (mice); 89% (dogs); 31% (rats) | 1.5 and 13.2 (10 mg dose); 13.3 h (25 mg dose) | 259 nmol/L (10 mg dose); 687 nmol/L (25 mg dose) | Type 2 Diabetes, Heart Failure, CKD (incl. DKD) |
Luseogliflozin (2.5–5 mg once daily) | Approved in Japan in March 2014 with | 96% and 35.3% (male rats); 58.2% (female rats); 92.7% (male dogs) | 0.625 ± 0.354 and 9.24 ± 0.928 | 119 ± 27.0 ng/mL | Potent and selective SGLT2 inhibitor; shown to reduce albuminuria in early-stage DKD |
Dapagliflozin (10 mg once daily) | Approved by the EU in 2012 | 91% and 78% | 1–1.5 and 12.9 | 79.6 ng/mL (5 mg dose); 165.0 ng/mL (10 mg dose) | Type 2 Diabetes, Heart Failure, CKD (incl. DKD) |
Sotagliflozin (200–400 mg once daily) | Approved in EU for Type 1 DM, under review in USA for CKD | ~98%, Moderate; affected by food | 13–20 | ~1200–1400 ng/mL | Type 1 Diabetes (Europe); Investigational for CKD |
Trial | Year | Treatment or Drug | Study Population | Primary or Secondary End-Point | Key Findings |
---|---|---|---|---|---|
EMPA-REG OUTCOME | 2015 | Empagliflozin | CKD with or without T2DM (eGFR 20–45, or 45–90 with UACR ≥ 200) | Secondary | 28% decrease in renal disease progression; benefit across broad CKD population |
CANVAS | 2017 | Canagliflozin | T2DM + high CV risk; renal subgroup analyzed | Secondary | A persistent 40% decline in eGFR, slowed albuminuria progression; trend toward renal protection |
CREDENCE | 2019 | Canagliflozin | T2DM + CKD (eGFR 30–90, UACR ≥ 300 mg/g) | Primary | Serum creatinine levels doubling, end-stage kidney disease, 30% reduction in primary composite outcome; renal and CV protection confirmed |
DECLARE-TIMI | 2019 | Dapagliflozin | T2DM with/without CV disease (renal subcohort) | Secondary | 47% in renal composite (sustained eGFR decline, ESRD, renal death); reduced albuminuria progression |
DAPA-CKD | 2020 | Dapagliflozin | CKD with or without T2DM (eGFR 25–75, UACR 200–5000 mg/g) | Primary | Long-term eGFR decline of at least 50%, 39% decrease in primary endpoint; efficacy seen regardless of diabetes status |
EMPEROR-Reduced | 2020 | Empagliflozin | Patients with eGFR ≥ 20 (regardless of diabetes status) | Secondary | Sustained eGFR < 10–15 mL/min/1.73 m2 or a sustained ≥40% decrease in eGFR and fewer renal events in empagliflozin group |
EMPA-KIDNEY | 2022 | Empagliflozin | CKD with or without T2DM (eGFR 20–45, or 45–90 with UACR ≥ 200) | Primary | End-stage renal disease, a persistent drop in eGFR to less than 10 mL/min/1.73 m2, renal mortality, or a persistent eGFR decline of at least 40%, 28% reduction in renal disease progression |
EMPEROR-Preserved | 2021 | Empagliflozin | Patients with/without T2DM and CKD | Secondary | Reduced HF hospitalization; renal benefits consistent in CKD subgroups |
Drug and Brand Name | Backbone | Dosage | Renal Dose Adjustment | Route of Elimination | Half-Life | Action |
---|---|---|---|---|---|---|
Long-Acting Compound | ||||||
Albiglutide | Human GLP-1 | 30 mg, 50 mg Once weekly, SC | Caution advised in moderate-severe renal impairment | Not available | ~5 day | It mimics glucagon-like peptide-1 (GLP-1), stimulating insulin release and lowering blood sugar. |
Dulaglutide | Human GLP-1 | 0.75 mg, 1.5 mg Once weekly, SC | Safe in CKD up to eGFR ~15; limited data in ESRD | Proteolytic degradation | ~5 day | Safe and effective option for glycemic control in people with type 2 diabetes and moderate to severe CKD (CKD). |
Semaglutide | Human GLP-1 | 0.5 mg, 1.0 mg Once weekly, SC | Effective across CKD stages; renal benefits seen in trials | Proteolysis; excreted via urine and feces | ~1 wk | Semaglutide reduced the risk of major kidney disease events by 24% compared to placebo. |
Exenatide ER | Exendin-4 | 2 mg Once weekly, SC | Not recommended for patients with an eGFR < 45 mL/min/1.73 m2 or ESRD | Glomerular filtration followed by proteolysis; eliminated in the urine | ~1 wk | Extended-release GLP-1 RA; derived from GLP-1 RA, stimulates insulin secretion and delays gastric emptying. |
Liraglutide | Human GLP-1 | 0.6–3 mg Once daily, SC | No adjustment in mild-moderate CKD; monitor in severe CKD | Proteolysis; excreted via urine and feces | ~13 h | Short-acting GLP-1 RA; suppresses postprandial glucose via slowed gastric emptying and enhanced insulin response. |
Liraglutide | Human GLP-1 | 0.6–1.8 mg Once daily, SC | No dosage adjustment required; not recommended for patients with CrCl < 15 mL/min | Proteolysis; excreted via urine and feces | ~13 h | Activates GLP-1 receptors enhances insulin secretion, suppresses glucagon, promotes satiety. |
Short-Acting Compound | ||||||
Exenatide | Exendin-4 | 5 μg, 10 μg Twice daily, SC | Avoid in severe CKD (eGFR < 30); risk of accumulation | Glomerular filtration followed by proteolysis; eliminated in the urine | ~2.4 h | Activates GLP-1 receptors located on pancreatic β-cells, stimulates insulin secretion, suppression of glucagon secretion. |
Lixisenatide | Exendin-4 | 10 μg, 20 μg Once daily, SC | Not recommended if eGFR < 30mL/min/1.73 m2 | Glomerular filtration and proteolysis; excreted in the urine | ~3 h | Short-acting GLP-1 RA; suppresses postprandial glucose via slowed gastric emptying and enhanced insulin response. |
Oral Agent | ||||||
Semaglutide | Human GLP-1 | 3 mg, 7 mg, 14 mg Once daily | No dosage adjustment required | Proteolysis; excreted via urine and feces | ~1 wk | Potent GLP-1 RA; reduces renal hyperfiltration, improves glycemic and CV markers; anti-inflammatory renal effects. |
Fixed-Dose Combination | ||||||
Lixisenatide + glargine | Exendin-4 | 20 μg/iGlar 40 IU, 20 μg/iGlar 60 IU Once daily, SC | Closely monitor patients with CrCl 15–30 mL/min; not recommended for patients with CrCl < 15 mL/min | Glomerular filtration and proteolysis; excreted in the urine | ~3 h | Mimics endogenous GLP-1, activating GLP-1 receptors on pancreatic β-cells, Suppresses glucagon secretion, Improved β-cell function and insulin sensitivity. |
Liraglutide + degludec | Human GLP-1 | 1.8 mg/iDeg 50 IU Once daily, SC | Not studied in severe renal impairment; liraglutide is not recommended for patients with CrCl < 15 mL/min | excreted via urine and feces | ~13 h | Binds to GLP-1 receptors on pancreatic β-cells, increases glucose-dependent insulin secretion, improve renal hemodynamics, Lower risk of hypoglycemia and weight gain, reduced insulin dose requirement. |
Trial | Drug | Renal End Point | Results |
---|---|---|---|
AWARD-7 | Dulaglutide versus glargine | Secondary | No significant lowering in urinary albumin-to-creatinine ratio (UACR); dulaglutide was more effective than insulin glargine in slowing renal function decline; changes in creatinine, cystatin C, and body weight did not show significant correlation. |
LIRA-RENAL | Liraglutide versus placebo | Changes in eGFR Changes in UACR | Liraglutide and a placebo did not vary in terms of eGFR or UACR. |
REWIND (NCT01394952) | Dulaglutide versus placebo | ≥30% eGFR decline from baseline, ESRD | Dulaglutide decreases incidence of macroalbuminuria, eGFR decline ≥ 30%, considerably lowers the worsening eGFR. Need for dialysis 15%, decrease in (macroalbuminuria). |
LEADER (NCT01394952) | Liraglutide versus placebo | Secondary 22% decrease in composite renal outcome (new macroalbuminuria, sustained eGFR decline, ESRD) | Liraglutide had a positive effect on macroalbuminuria; decreased incidence of nephropathy, patients with moderate-to-severe CKD saw a slower rate of reduction in eGFR over time. |
EXSCEL | Exenatide LAR versus placebo | 40% eGFR decline, Need for dialysis. Death for renal causes Macroalbuminuria | Exenatide LAR is more effective in reducing the occurrence of macroalbuminuria and performs better overall in terms of the composite renal outcome. |
FLOW trial/Sustain-6 (NCT01394952) | Semaglutide versus placebo | (eGFR decline ≥ 50% from baseline, requirement for dialysis, | The actual role of GLP-1RAs as drugs that can stop type 2 diabetes patients’ disease from getting worse (driven by reduction in new-onset macroalbuminuria), 36% decrease in new or worsening nephropathy. |
ELIXA | Lixisenatide versus placebo | Changes in UACR | Lixisenatide, independent of basal albuminuria, reduces the progression of UACR over time. There was no difference in the rate of eGFR reduction. |
SCALE | Liraglutide versus placebo | Changes in UACR | In addition to a significant drop in weight, both liraglutide groups showed a lower urine albumin/creatinine ratio (UACR) as compared to the placebo group. |
PIONEER 6 | Oral semaglutide | Reduce albuminuria and slow eGFR decline | Supports the cardiovascular safety profile of oral semaglutide, PIONEER 6 provides important evidence that oral semaglutide can be safely used in patients with type 2 diabetes that are at high risk for cardiovascular events. |
HARMONY | Albiglutide | Reducing cardiovascular risk | Provided strong evidence that GLP-1 RAs can reduce cardiovascular events in high-risk patients, reinforcing their role with proven cardioprotective benefits. |
AMPLITUDE-O | Efpeglenatide | Sustained decline in eGFR, progression to end-stage renal disease, or renal death | Robust evidence showed efpeglenatide’s dual role in improving cardiovascular and renal outcomes, particularly among patients with coexisting cardiorenal comorbidities. |
Mechanistic | SGLT2i | GLP-1RA |
---|---|---|
Primary Mechanism | Hemodynamic effects decrease glomerular hyperfiltration by preventing the reabsorption of glucose and sodium in the kidney’s proximal tubule. Hemodynamic changes, specifically natriuresis, volume depletion and intraglomerular pressure reduction, are the main drivers of their renoprotective implications. | Anti-inflammatory effects, lowering blood sugar and weight, GLP-1 receptor agonists can also reduce urinary albumin excretion by lowering circulating levels of proinflammatory cytokines and oxidative stress markers, improving endothelial function, and reducing inflammation in the glomeruli. |
Clinical Implication | Slower progression of DKD and a lower chance of estimated glomerular filtration rate (eGFR) or progression to end-stage kidney disease (ESKD) are the results of lower blood pressure and glomerular pressure. | Significant decreases in albuminuria; these reductions are believed to be caused by the anti-inflammatory and anti-oxidative properties of these medications. |
Efficacy in Key Populations (Diabetic CKD) | Reduce albuminuria and delay the deterioration of kidney function in diabetic CKD. Due to their hemodynamic effects, it lowers challenges of renal endpoints in diabetic patients. | Reduce albuminuria in diabetic populations, effect on hard renal endpoints including a substantial drop in eGFR or the development of ESKD. |
Efficacy in Key Populations (Non-Diabetic CKD) | The effect in CKD patients without diabetes implicated through clinical trials like DAPA CKD. In both diabetic and non-diabetic CKD, these drugs lower progression to ESKD and prolonged fall in eGFR (independent of glycemic management). | Due to a lack of data and a less obvious molecular explanation in the absence of hyperglycemia, the role of GLP-1 receptor agonists in non-diabetic CKD is still unclear. |
In Early CKD (Higher eGFR, Minimal Structural Damage) | In early CKD patients, SGLT2i promote a protective hemodynamic shift, reflected by a transient dip in eGFR which correlates with reduced albuminuria and slower disease progression. | In early CKD patients, GLP-1 RAs may modestly lower albuminuria by improving vascular health through endothelial function and reducing oxidative stress, though their influence on significant declines in eGFR remains limited. |
In Advanced CKD (Lower eGFR, Greater Structural Damage) | In patients with advanced CKD, SGLT2i retain robust reno-cardiovascular benefits despite attenuated glycemic efficacy, as demonstrated by landmark trials, such as DAPA-CKD and EMPA-KIDNEY, supporting their therapeutic role beyond glucose control. | In advanced CKD, the renoprotective efficacy of GLP-1 RAs remains uncertain due to limited trial data; although they continue to be valuable for glycemic control and cardiovascular risk reduction. |
MACE Reduction | Trials like EMPA REG OUTCOME have demonstrated that in CKD patients with established atherosclerotic disease, SGLT2i demonstrate a consistent reduction in MACE, though this effect is more modest in lower-risk populations. | In CKD patients, GLP-1 RAs offer significant cardiovascular protection, with consistent MACE reduction particularly in those with established cardiovascular disease, largely driven by their anti-inflammatory and anti-atherosclerotic effects (outcomes of LEADER, SUSTAIN6 and REWIND trials). |
Heart Fail Divergence | In CKD patients, SGLT2i significantly reduce heart failure hospitalization and cardiovascular death through hemodynamic and neurohormonal mechanisms that alleviate myocardial stress and volume overload, independent of glycemic control (Outcome of Trial DAPA HF and EMPEROR Reduced). | In CKD patients, GLP-1 RAs demonstrate significant cardiovascular benefits, primarily by improving metabolic and inflammatory profiles, but their impact on heart failure progression remains minimal or neutral (Data from LEADER and SUSTAIN 6). |
Safety and Tolerability | SGLT2i have a strong safety profile in CKD patients, with only a slight increase in risk for vaginal and urinary tract infections. As oral agents, they avoid injection-related issues and are generally well tolerated, with manageable side effects like volume depletion and polyuria. | GLP-1 RAs commonly cause dose-dependent gastrointestinal side effects and injection-site reactions, which are generally mild and transient. Severe adverse events are rare, and the risk of hypoglycemia remains low when not combined with insulin secretagogues. |
Category | Drug | Clinical Trails |
---|---|---|
SGLT2i trials | Empagliflozin | •EMPA-REG OUTCOME: 28% reduction in renal disease progression; benefit across broad CKD spectrum |
•EMPEROR-Reduced: Reduction in sustained ≥40% eGFR decline or progression to renal failure | ||
•EMPA-KIDNEY: 28% reduction in renal disease progression; increased ESKD, eGFR decline ≥40%, renal death | ||
•EMPEROR-Preserved: Renal benefit consistent in CKD subgroup; not a primary renal trial | ||
Canagliflozin | •CANVAS: Slowed albuminuria progression; trend toward renal protection (secondary endpoint) | |
•CREDENCE: 30% reduction in primary renal outcome (ESKD, doubling of creatinine, renal death) | ||
Dapagliflozin | •DECLARE-TIMI: 47% reduction in renal composite (sustained eGFR decline, ESRD, renal death); reduced albuminuria | |
•DAPA-CKD: 39% reduction in primary renal endpoint; benefits seen with/without diabetes | ||
GLP-1 RA Trials | Dulaglutide | •AWARD-7: Slowed eGFR decline vs. insulin glargine; no significant UACR change |
•REWIND: Reduced Macroalbuminuria; reduce ≥30% eGFR decline; 15% reduction in dialysis need | ||
Liraglutide | •LIRA-RENAL: No significant difference in eGFR or UACR vs. placebo | |
•LEADER: 22% reduced composite renal outcome (macroalbuminuria, sustained eGFR decline, ESRD) | ||
•SCALE: Reduced UACR with weight loss benefit | ||
Exenatide LAR | •EXSCEL: Reduced Macroalbuminuria; improved composite renal outcomes | |
Semaglutide | •SUSTAIN-6/FLOW: 36% reduction in new/worsening nephropathy; Decreased macroalbuminuria | |
•PIONEER 6: Reduced Albuminuria; slowed eGFR decline; safe in high CV risk diabetic population | ||
Lixisenatide | •ELIXA: Reduced UACR progression; no change in eGFR | |
Albiglutide | •HARMONY: CV benefit shown; renal outcomes not directly reported | |
Efpeglenatide | •AMPLITUDE-O: Reduced Sustained eGFR decline, ESKD, and renal death |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabbani, S.A.; El-Tanani, M.; Kumar, R.; Saini, M.; El-Tanani, Y.; Sharma, S.; Aljabali, A.A.A.; Hajeer, E.; Rizzo, M. Repurposing Diabetes Therapies in CKD: Mechanistic Insights, Clinical Outcomes and Safety of SGLT2i and GLP-1 RAs. Pharmaceuticals 2025, 18, 1130. https://doi.org/10.3390/ph18081130
Rabbani SA, El-Tanani M, Kumar R, Saini M, El-Tanani Y, Sharma S, Aljabali AAA, Hajeer E, Rizzo M. Repurposing Diabetes Therapies in CKD: Mechanistic Insights, Clinical Outcomes and Safety of SGLT2i and GLP-1 RAs. Pharmaceuticals. 2025; 18(8):1130. https://doi.org/10.3390/ph18081130
Chicago/Turabian StyleRabbani, Syed Arman, Mohamed El-Tanani, Rakesh Kumar, Manita Saini, Yahia El-Tanani, Shrestha Sharma, Alaa A. A. Aljabali, Eman Hajeer, and Manfredi Rizzo. 2025. "Repurposing Diabetes Therapies in CKD: Mechanistic Insights, Clinical Outcomes and Safety of SGLT2i and GLP-1 RAs" Pharmaceuticals 18, no. 8: 1130. https://doi.org/10.3390/ph18081130
APA StyleRabbani, S. A., El-Tanani, M., Kumar, R., Saini, M., El-Tanani, Y., Sharma, S., Aljabali, A. A. A., Hajeer, E., & Rizzo, M. (2025). Repurposing Diabetes Therapies in CKD: Mechanistic Insights, Clinical Outcomes and Safety of SGLT2i and GLP-1 RAs. Pharmaceuticals, 18(8), 1130. https://doi.org/10.3390/ph18081130