Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (172)

Search Parameters:
Keywords = anti-tyrosinase agents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 857 KiB  
Review
Officinal Plants as New Frontiers of Cosmetic Ingredients
by Annabella Vitalone, Lucia D’Andrea, Antonella Di Sotto, Alessandra Caruso and Rita Parente
Cosmetics 2025, 12(4), 140; https://doi.org/10.3390/cosmetics12040140 - 3 Jul 2025
Viewed by 888
Abstract
In recent years, cosmetic science has adopted a more integrative approach to skincare, in which sensory experience and psychophysical well-being are increasingly valued. In this context, plant-derived ingredients, particularly those from officinal species, are gaining attention for their multifunctional bioactivities. This review explores [...] Read more.
In recent years, cosmetic science has adopted a more integrative approach to skincare, in which sensory experience and psychophysical well-being are increasingly valued. In this context, plant-derived ingredients, particularly those from officinal species, are gaining attention for their multifunctional bioactivities. This review explores a curated selection of medicinal plants widely used or emerging in dermocosmetics, highlighting their phytochemical composition, mechanisms of action, and experimental support. A narrative literature review was conducted using databases such as PubMed and Scopus, targeting studies on topical cosmetic applications. Results show that many officinal plants, including Camellia sinensis, Panax ginseng, and Mentha piperita, offer antioxidant, anti-inflammatory, antimicrobial, photoprotective, and anti-aging benefits. Less conventional species, such as Drosera ramentacea and Kigelia africana, demonstrated depigmenting and wound-healing potential. In particular, bioactive constituents like flavonoids, iridoids, saponins, and polyphenols act on key skin targets such as COX-2, MMPs, tyrosinase, and the Nrf2 pathway. These findings underscore the potential of botanical extracts to serve as effective, natural, and multifunctional agents in modern skincare. While only Mentha piperita is currently recognized as a traditional herbal medicinal product for dermatological use, this research supports the broader dermocosmetic integration of these species. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

19 pages, 4889 KiB  
Article
The Antioxidant and Skin-Brightening Effects of a Novel Caffeic Acid Derivative, Caffeic Acid-3,4-Dihydroxyphenylpropanolester
by Kyu-lim Kim, Ju-hee Jeon, Yeonjoon Kim and Kyung-Min Lim
Antioxidants 2025, 14(7), 806; https://doi.org/10.3390/antiox14070806 - 29 Jun 2025
Viewed by 586
Abstract
Caffeic acid (CA) is a naturally occurring polyphenol antioxidant found in coffee, tea, fruits, and vegetables, known for its strong antioxidant, anti-inflammatory, and anti-aging properties. However, its cosmetic application is limited because of poor dermal absorption due to its high polarity. This study [...] Read more.
Caffeic acid (CA) is a naturally occurring polyphenol antioxidant found in coffee, tea, fruits, and vegetables, known for its strong antioxidant, anti-inflammatory, and anti-aging properties. However, its cosmetic application is limited because of poor dermal absorption due to its high polarity. This study aimed to evaluate the antioxidant and skin-brightening effects of a novel lipophilic CA derivative, CAD (caffeic acid-3,4-dihydroxyphenylpropanolester). CAD was synthesized by conjugating CA with 3,4-DHPEA, a lipophilic antioxidant derived from olive oil. In both DPPH and ABTS assays, CAD exhibited more potent antioxidant activity than CA. In B16F10 melanoma cells, CAD significantly inhibited melanin production without cytotoxicity at concentrations lower than those required for CA. Cellular assays using DCF-DA staining demonstrated that CAD effectively reduced intracellular ROS levels. Mechanistic studies revealed that CAD inhibited tyrosinase activity and downregulated the expression of TYR, TRP-1, and TRP-2. Additionally, CAD suppressed MITF phosphorylation, along with reduced phosphorylation of ERK and JNK, elucidating its anti-melanogenic mechanism. Importantly, CAD showed dose-dependent skin-brightening effects in the 3D human skin model Melanoderm™, as evidenced by increased lightness and histological evaluation. In conclusion, CAD demonstrates strong potential as a safe and effective antioxidant and skin-brightening agent for cosmetic applications. Full article
(This article belongs to the Special Issue Methodologies for Improving Antioxidant Properties and Absorption)
Show Figures

Figure 1

20 pages, 5200 KiB  
Article
Novel and Potential Photoprotective and Tyrosinase Inhibitory Effects of Tetrastigma erubescens Extracts: Evidence from In Vitro Assays and Computational Approach
by Thi Thu Le Vu, Tu Quy Phan, Tien Lam Do and Van Bon Nguyen
Life 2025, 15(7), 995; https://doi.org/10.3390/life15070995 - 22 Jun 2025
Viewed by 419
Abstract
Tetrastigma erubescens, a native medicinal plant of Vietnam, has long been used in folk medicine to manage various diseases, including skin-related issues. However, limited research has been conducted on this herb’s bioactivities and chemical composition. This study aims to investigate the chemical [...] Read more.
Tetrastigma erubescens, a native medicinal plant of Vietnam, has long been used in folk medicine to manage various diseases, including skin-related issues. However, limited research has been conducted on this herb’s bioactivities and chemical composition. This study aims to investigate the chemical constituents and evaluate the anti-tyrosinase activity and UV-A/UV-B absorption capacity of T. erubescens extracts, highlighting their potential as natural sources for skin-whitening and sun protection agents. In vitro assays demonstrated that the ethyl acetate (EA) extract of T. erubescens exhibited a significant UV-A and UV-B absorption capacity. Notably, this extract showed a strong anti-tyrosinase activity for the first time, with a maximum inhibition rate of 99.2% and an IC50 value of 70.3 µg/mL. Based on the UHPLC and GCMS analysis, phenolic compounds (19) and ten volatile constituents (1019) were identified in the EA extract of T. erubescens. Of these, almost all volatiles and some phenolics were reported for the first time in this genus. The molecular docking analysis revealed that all identified phytochemicals showed a comparable or greater binding affinity to both mushroom tyrosinase (docking scores: from −7.5 to −14.1 kcal/mol) and human tyrosinase (from −6.7 to −14.8 kcal/mol) than kojic acid (−8.7 and −8.6 kcal/mol, respectively). In addition, these identified compounds showed favorable drug-like properties and low toxicity risks via ADMET prediction and Lipinski’s Rule of Five analyses. The results obtained in this work suggest that the EA extract of T. erubescens is a promising natural source of bioactive compounds for cosmetic applications, particularly in whitening and sun protection formulations. Full article
(This article belongs to the Special Issue Bioactive Natural Compounds: Therapeutic Insights and Applications)
Show Figures

Figure 1

22 pages, 517 KiB  
Article
Erica spiculifolia Salisb. (Balkan Heath): A Focus on Metabolic Profiling and Antioxidant and Enzyme Inhibitory Properties
by Reneta Gevrenova, Anna Szakiel, Cezary Pączkowski, Gokhan Zengin, Inci Kurt-Celep, Alexandra Stefanova and Dimitrina Zheleva-Dimitrova
Plants 2025, 14(11), 1648; https://doi.org/10.3390/plants14111648 - 28 May 2025
Viewed by 552
Abstract
Erica spiculifolia Salisb. (formerly Bruckenthalia spiculifolia Benth.) (Balkan heath) is renowned for its traditional usage as a diuretic, anti-inflammatory and antioxidant agent. For the first time, acylquinic acids, flavonoids and numerous proanthocyanidin oligomers were annotated/dereplicated by liquid chromatography–high-resolution mass spectrometry in methanol–aqueous extracts [...] Read more.
Erica spiculifolia Salisb. (formerly Bruckenthalia spiculifolia Benth.) (Balkan heath) is renowned for its traditional usage as a diuretic, anti-inflammatory and antioxidant agent. For the first time, acylquinic acids, flavonoids and numerous proanthocyanidin oligomers were annotated/dereplicated by liquid chromatography–high-resolution mass spectrometry in methanol–aqueous extracts from E. spiculifolia aerial parts harvested at the early and full flowering stage. Chlorogenic acid and proanthocyanidin tetra- and trimer A, B-type together with quercitrin and (+) catechin were the predominant compounds in the semi-quantitative analysis. Neutral triterpenoids, triterpenoid acids and phytosterols were determined in apolar extracts by gas chromatography–mass spectrometry. Triterpenoid acids accounted for 80% of the total triterpenoid content, dominated by ursolic and oleanolic acid, reaching up to 32.2 and 6.1 mg/g dw, respectively. Ursa/olean-2,12-dien-28-oic acids and 3-keto-derivatives together with α-amyrin acetate as a chemotaxonomic marker, α-amyrenone, α- and β-amyrin were evaluated. Total phenolic and flavonoid contents were 83.85 ± 0.89 mg gallic acid equivalents/g and 78.91 ± 0.41 mg rutin equivalents/g, respectively. The extract actively scavenged DPPH and ABTS radicals (540.01 and 639.11 mg Trolox equivalents (TE)/g), possessed high potential to reduce copper and iron ions (660.32 and 869.22 mg TE/g, respectively), and demonstrated high metal chelating capacity (15.57 Ethylenediaminetetraacetic acid equivalents/g). It exhibited prominent anti-lipase (18.32 mg orlistat equivalents/g) and anti-tyrosinase (71.90 mg kojic acid equivalents/g) activity. The extract inhibited α-glucoside (1.35 mmol acarbose equivalents/g) and acetylcholinesterase (2.56 mg galanthamin equivalents/g), and had moderate effects on α-amylase, elastase, collagenase and hyaluronidase. Balkan heath could be recommended for raw material production with antioxidant and enzyme inhibitory properties. Full article
Show Figures

Figure 1

27 pages, 2278 KiB  
Systematic Review
Current Findings on Allium Species with Melanogenesis Inhibitory Activity
by Mariangela Marrelli, Maria Pia Argentieri, Vincenzo Musolino, Carmine Lupia, Claudia-Crina Toma, Filomena Conforti, Vincenzo Mollace and Giancarlo Statti
Plants 2025, 14(11), 1635; https://doi.org/10.3390/plants14111635 - 27 May 2025
Viewed by 717
Abstract
Allium genus (Amaryllidaceae) is widely distributed in the Northern hemisphere. Some species, including garlic and onion, have been used since ancient times as both food ingredients and medicinal plants. Many reviews deal with the chemical constituents, particularly the typical sulfur compounds, as well [...] Read more.
Allium genus (Amaryllidaceae) is widely distributed in the Northern hemisphere. Some species, including garlic and onion, have been used since ancient times as both food ingredients and medicinal plants. Many reviews deal with the chemical constituents, particularly the typical sulfur compounds, as well as with Allium pharmacological properties, such as antimicrobial, anti-inflammatory, antioxidant, and cytotoxic activities. The bibliographic search performed in this review is mainly focused on the potential role of Allium species in inhibiting melanogenesis, which has been mainly assessed through the evaluation of the inhibitory properties on tyrosinase, the key enzyme in melanin biosynthesis. Two well established models for identifying potential skin-whitening agents have been used to assess the anti-melanogenic effects of Allium species, the mushroom tyrosinase and the murine melanoma B16 cell line. Here, a literature search from Scopus, Web of Science, and PubMed databases has been performed using the keywords “Allium”, “tyrosinase”, “anti-melanogenic”, and “melanogenesis”, combined by means of Boolean operators. Based on selected inclusion criteria, 32 eligible papers have been selected. The aim of this systematic review is to offer an overview of the species for which the ability to affect melanogenesis has been demonstrated to date, highlighting a new and emerging perspective on the potential therapeutic use of Allium species. The biological properties of isolated pure compounds and the negative outcomes have been also considered. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

21 pages, 2128 KiB  
Article
Effects of Resveratrol Derivatives on Melanogenesis and Antioxidant Activity in B16F10 Cells
by Soyeon Kim, Changho Jhin, Sullim Lee, Ho Sik Rho and Chan Yoon Park
Int. J. Mol. Sci. 2025, 26(11), 4999; https://doi.org/10.3390/ijms26114999 - 22 May 2025
Viewed by 666
Abstract
Excessive melanogenesis causes abnormal pigmentation and a higher risk of skin disorders (e.g., melanoma). Resveratrol (RSV), a natural polyphenol, exerts antioxidant and anti-aging effects. However, the effects of RSV and its derivatives on melanogenesis remain unclear. This study investigated their effects on melanogenesis [...] Read more.
Excessive melanogenesis causes abnormal pigmentation and a higher risk of skin disorders (e.g., melanoma). Resveratrol (RSV), a natural polyphenol, exerts antioxidant and anti-aging effects. However, the effects of RSV and its derivatives on melanogenesis remain unclear. This study investigated their effects on melanogenesis and antioxidant activity in B16F10 cells. After measuring cell viability, B16F10 cells were incubated with 50 µM of RSV, dihydroresveratrol (DIRSV), and other RSV derivatives for 24 h. The relative melanin content and tyrosinase activity were quantified. The protein and mRNA levels of melanogenesis-related genes (MITF, CREB, TYR, and TRP) and the binding affinity of RSV derivatives to their target proteins were measured. The antioxidant activity was evaluated using ABTS and DPPH assays. RSV and DIRSV (50 µM) significantly reduced melanin content and tyrosinase activity, respectively. However, other derivatives had no significant effects. RSV, DIRSV, and other derivatives significantly suppressed MITF and CREB levels. Additionally, DIRSV significantly reduced p-CREB and TYR protein levels and showed a higher affinity for CREB than RSV, despite no significant changes in MITF, TYR, or TRP mRNA levels. In the antioxidant assays, RSV and DIRSV exhibited significant ABTS and DPPH radical scavenging activities. DIRSV, like RSV, inhibits melanogenesis and exhibits antioxidant effects in B16F10 cells. However, RSV derivatives demonstrate partial antioxidant activity and inhibit melanogenesis-related proteins but do not significantly affect melanogenesis. DIRSV’s practical applications as a skin-protective and -whitening agent warrant further exploration. Full article
Show Figures

Figure 1

16 pages, 2702 KiB  
Review
Harnessing Azelaic Acid for Acute Myeloid Leukemia Treatment: A Novel Approach to Overcoming Chemoresistance and Improving Outcomes
by Silvia Di Agostino, Anna Di Vito, Annamaria Aloisio, Giovanna Lucia Piazzetta, Nadia Lobello, Jessica Bria and Emanuela Chiarella
Int. J. Mol. Sci. 2025, 26(9), 4362; https://doi.org/10.3390/ijms26094362 - 3 May 2025
Viewed by 866
Abstract
Azelaic acid (AZA), an aliphatic dicarboxylic acid (HOOC-(CH2)7-COOH), is widely used in dermatology. It functions as an inhibitor of tyrosinase, mitochondrial respiratory chain enzymes, and DNA synthesis, while also scavenging free radicals and reducing reactive oxygen species (ROS) production by neutrophils. [...] Read more.
Azelaic acid (AZA), an aliphatic dicarboxylic acid (HOOC-(CH2)7-COOH), is widely used in dermatology. It functions as an inhibitor of tyrosinase, mitochondrial respiratory chain enzymes, and DNA synthesis, while also scavenging free radicals and reducing reactive oxygen species (ROS) production by neutrophils. AZA has demonstrated anti-proliferative and cytotoxic effects on various cancer cells. However, its therapeutic potential in acute myeloid leukemia (AML) remains largely unexplored. AML is a complex hematologic malignancy characterized by the clonal transformation of hematopoietic precursor cells, involving chromosomal rearrangements and multiple gene mutations. The disease is associated with poor prognosis and high relapse rates, primarily due to its propensity to develop resistance to treatment. Recent studies indicate that AZA suppresses AML cell proliferation by inducing apoptosis and arresting the cell cycle at the G1 phase, with minimal cytotoxic effects on healthy cells. Additionally, AZA exerts antileukemic activity by modulating the ROS signaling pathway, enhancing the total antioxidant capacity in both AML cell lines and patient-derived cells. AZA also sensitizes AML cells to Ara-C chemotherapy. In vivo, AZA has been shown to reduce leukemic spleen infiltration and extend survival. As our understanding of AML biology progresses, the development of new molecularly targeted agents, in combination with traditional chemotherapy, offers the potential for improved treatment outcomes. This review aims to provide a comprehensive synthesis of preclinical evidence on the therapeutic potential of AZA in AML, consolidating current knowledge and identifying future directions for its clinical application. Full article
(This article belongs to the Special Issue Molecular Mechanism of Acute Myeloid Leukemia)
Show Figures

Figure 1

24 pages, 8064 KiB  
Article
Design and Synthesis of Novel 6-(Substituted phenyl)-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]thiazole Compounds as Tyrosinase Inhibitors: In Vitro and In Vivo Insights
by Hyeon Seo Park, Hee Jin Jung, Hye Soo Park, Hye Jin Kim, Sang Gyun Noh, Yujin Park, Pusoon Chun, Hae Young Chung and Hyung Ryong Moon
Molecules 2025, 30(7), 1535; https://doi.org/10.3390/molecules30071535 - 30 Mar 2025
Viewed by 733
Abstract
The 2,4-dihydroxyphenyl group is commonly present in the chemical structures of potent tyrosinase inhibitors. Based on this observation, a series of 6-(substituted phenyl)-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]thiazole compounds 113 were designed and synthesized as potential tyrosinase inhibitors. Among these, compounds 5 and 9 [...] Read more.
The 2,4-dihydroxyphenyl group is commonly present in the chemical structures of potent tyrosinase inhibitors. Based on this observation, a series of 6-(substituted phenyl)-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]thiazole compounds 113 were designed and synthesized as potential tyrosinase inhibitors. Among these, compounds 5 and 9 strongly inhibited mushroom tyrosinase activity. Particularly, compound 9 exhibited nanomolar IC50 values regardless of the substrate used, whereas kojic acid yielded IC50 values of 15.99–26.18 μM. Kinetic studies on mushroom tyrosinase revealed that compounds 5 and 9 competitively inhibited tyrosinase activity, findings further corroborated by in silico docking analysis. In B16F10 cell-based experiments, both compounds effectively inhibited the cellular tyrosinase activity and melanin formation. These inhibitory effects were confirmed through in situ cellular tyrosinase activity assays. Compound 9 exhibited strong antioxidant activity by scavenging radicals, suggesting that its ability to reduce melanin production may be attributed to a combination of its antioxidant and tyrosinase inhibitory properties. Additionally, five compounds, including compound 5, demonstrated effective depigmentation activity in vivo in zebrafish embryos, and their depigmentation efficacy was similar to that of kojic acid, even at concentrations hundreds of times lower. These findings suggest that 6-(substituted phenyl)-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]thiazole compounds may be promising anti-melanogenic agents. Full article
(This article belongs to the Special Issue Heterocycles in Medicinal Chemistry III)
Show Figures

Figure 1

16 pages, 490 KiB  
Article
Valorisation of Sunflower Crop Residue as a Potentially New Source of Bioactive Compounds
by Ivona Veličković, Stevan Samardžić, Marina T. Milenković, Miloš Petković and Zoran Maksimović
Horticulturae 2025, 11(2), 206; https://doi.org/10.3390/horticulturae11020206 - 15 Feb 2025
Cited by 1 | Viewed by 1056
Abstract
Reducing agricultural waste through reuse has become one of the most important strategies to minimise impact on the environment—an emerging global issue. Sunflower ranks fourth in the world in the production of vegetable oilseeds and therefore generates large amounts of agricultural waste. The [...] Read more.
Reducing agricultural waste through reuse has become one of the most important strategies to minimise impact on the environment—an emerging global issue. Sunflower ranks fourth in the world in the production of vegetable oilseeds and therefore generates large amounts of agricultural waste. The aim of this study was to investigate the phytochemical composition and bioactivity of sunflower crop residues in order to open up new opportunities for waste management. TPC and TFC were determined spectrophotometrically, while the dominant compounds were identified by LC-DAD-ESI-MS as ent-kaur-16-en-19-oic acid (KA) and 6Ac-7OH-dimethylchromone (DMC). Both compounds were present in higher concentrations in the ethyl acetate fraction (245.5 and 16.8 mg/g, respectively) than in the ethanol extract. None of the tested samples showed antimicrobial effects in the microdilution test. DMC showed remarkable antioxidant activity by DPPH, ABTS, FRAP and TRC in vitro assays, while both compounds proved to be promising enzyme inhibitory agents, being particularly efficient in inhibiting anti-neurodegenerative enzymes (IC50 values of DMC and KA were 1.20/1.37 mg/mL and 1.44/1.63 mg/mL for AChE/BChE, respectively) and tyrosinase. The results presented indicate that sunflower crop residues are a good candidate for the extraction of bioactive compounds with potential application in the food, pharmaceutical and cosmetic industries. Full article
Show Figures

Graphical abstract

18 pages, 2493 KiB  
Article
Rifampicin Repurposing Reveals Anti-Melanogenic Activity in B16F10 Melanoma Cells
by Ye-Jin Lee and Chang-Gu Hyun
Molecules 2025, 30(4), 900; https://doi.org/10.3390/molecules30040900 - 15 Feb 2025
Viewed by 1163
Abstract
Drug repurposing is a cost-effective and innovative strategy for identifying new therapeutic applications for existing drugs, thereby shortening development timelines and accelerating the availability of treatments. Applying this approach to the development of cosmeceutical ingredients enables the creation of functional compounds with proven [...] Read more.
Drug repurposing is a cost-effective and innovative strategy for identifying new therapeutic applications for existing drugs, thereby shortening development timelines and accelerating the availability of treatments. Applying this approach to the development of cosmeceutical ingredients enables the creation of functional compounds with proven safety and efficacy, adding significant value to the cosmetic industry. This study evaluated the potential of rifampicin, a drug widely used for the treatment of tuberculosis and leprosy, as a cosmeceutical agent. The anti-melanogenic effects of rifampicin were assessed in B16F10 melanoma cells, showing no cytotoxicity at concentrations up to 40 µM and a significant reduction in intracellular tyrosinase activity and melanin content. Mechanistically, rifampicin reduced the expression of melanogenic enzymes, including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2, via a protein kinase A (PKA)-dependent pathway, leading to the suppression of microphthalmia-associated transcription factor (MITF), which is a key regulator of melanogenesis. Additionally, rifampicin inhibited the p38 signaling pathway but was independent of the PI3K/protein kinase B (Akt) pathway. Furthermore, it decreased Ser9 phosphorylation, enhancing glycogen synthase kinase-3β (GSK-3β) activity, promoted β-catenin phosphorylation, and facilitated β-catenin degradation, collectively contributing to the inhibition of melanin synthesis. To evaluate the topical applicability of rifampicin, primary human skin irritation tests were conducted, and no adverse effects were observed at concentrations of 20 µM and 40 µM. These findings demonstrate that rifampicin inhibits melanogenesis through multiple signaling pathways, including PKA, MAPKs, and GSK-3β/β-catenin. This study highlights the potential of rifampicin to be repurposed as a topical agent for managing hyperpigmentation disorders, offering valuable insights into novel therapeutic strategies for pigmentation-related conditions. Full article
(This article belongs to the Special Issue Advances in Chemistry of Cosmetics)
Show Figures

Figure 1

18 pages, 3686 KiB  
Article
Drug Repurposing of Voglibose, a Diabetes Medication for Skin Health
by Hyeon-Mi Kim and Chang-Gu Hyun
Pharmaceuticals 2025, 18(2), 224; https://doi.org/10.3390/ph18020224 - 7 Feb 2025
Cited by 1 | Viewed by 2642
Abstract
Background/Objectives: Voglibose, an α-glucosidase inhibitor commonly prescribed to manage postprandial hyperglycemia in diabetes mellitus, demonstrates potential for repurposing as an anti-melanogenic agent. This study aims to explore the inhibitory effects of voglibose on melanogenesis and elucidate its molecular mechanisms, highlighting its possible applications [...] Read more.
Background/Objectives: Voglibose, an α-glucosidase inhibitor commonly prescribed to manage postprandial hyperglycemia in diabetes mellitus, demonstrates potential for repurposing as an anti-melanogenic agent. This study aims to explore the inhibitory effects of voglibose on melanogenesis and elucidate its molecular mechanisms, highlighting its possible applications in treating hyperpigmentation disorders. Methods: The anti-melanogenic effects of voglibose were investigated using B16F10 melanoma cells. Cell viability, melanin content, and tyrosinase activity were assessed following voglibose treatment. Western blot analysis was performed to examine changes in melanogenic proteins and transcription factors. The role of signaling pathways, including PKA/CREB, MAPK, PI3K/AKT, and GSK3β/β-Catenin, was analyzed. Primary human skin irritation tests were conducted to evaluate the topical safety of voglibose. Results: Voglibose significantly reduced melanin synthesis and tyrosinase activity in B16F10 cells in a dose-dependent manner. Western blot analysis revealed decreased expression of MITF, TRP-1, and TRP-2, indicating the inhibition of melanogenesis. Voglibose modulated key signaling pathways, including the suppression of PKA/CREB, MAPK, and AKT activation, while restoring GSK3β activity to inhibit β-catenin stabilization. Human skin irritation tests confirmed voglibose’s safety for topical application, showing no adverse reactions at 50 and 100 μM concentrations. Conclusions: Voglibose demonstrates anti-melanogenic properties through the modulation of multiple signaling pathways and the inhibition of melanin biosynthesis. Its safety profile and efficacy suggest its potential as a repurposed drug for managing hyperpigmentation and advancing cosmeceutical applications. Full article
Show Figures

Figure 1

28 pages, 905 KiB  
Article
Exploring the Phytochemical Profile and Biological Insights of Epilobium angustifolium L. Herb
by Reneta Gevrenova, Gokhan Zengin, Gulsah Ozturk and Dimitrina Zheleva-Dimitrova
Plants 2025, 14(3), 415; https://doi.org/10.3390/plants14030415 - 31 Jan 2025
Cited by 3 | Viewed by 1118
Abstract
The aerial parts of Epilobium angustifolium L. (fireweed) (Onagraceae) are renowned for their use in the treatment of prostatic, kidney and urinary tract diseases, and skin infections. In this work, a comprehensive phytochemical profiling of the methanol-aqueous extract from E. anfustifolium aerial parts [...] Read more.
The aerial parts of Epilobium angustifolium L. (fireweed) (Onagraceae) are renowned for their use in the treatment of prostatic, kidney and urinary tract diseases, and skin infections. In this work, a comprehensive phytochemical profiling of the methanol-aqueous extract from E. anfustifolium aerial parts was performed by the means of liquid chromatography–Orbitrap high-resolution mass spectrometry. Annotation and dereplication of 121 secondary metabolites were achieved, including acylquinic acids, gallo- and ellagitannins, flavonoids, phenolic acids, and their glycosides. Forty-six compounds are reported for the first time in the species. Total phenolic and flavonoid content were 85.04 ± 0.18 mg GAE/g and 27.71 ± 0.74 mg QE/g, respectively. Antioxidant capacity assessment revealed that the extract actively scavenged DPPH and ABTS radicals (310.74 and 466.82 mg TE/g) along with a high reducing power in CUPRAC and FRAP assay (442.83 and 291.50 mg TE/g), respectively, and metal chelating (48.20 mg EDTA/g). The extract also had a distinct impact on α-glucosidase (3.48 mmol ACAE/g) and moderate activity towards α-amylase (0.44 mmol ACAE/g) and lipase (8.03 OE/g). It inhibited acetyl- and butyrylcholinesterase (2.05 and 1.67 mg GALE/g) and had a prominent anti-tyrosinase effect (61.91 mg KA/g). Our results contribute to establishing fireweed as a multifunctional agent for use in herbal preparations. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

21 pages, 5101 KiB  
Article
Insights on the Anti-Inflammatory and Anti-Melanogenic Effects of 2′-Hydroxy-2,6′-dimethoxychalcone in RAW 264.7 and B16F10 Cells
by Sung-Min Bae and Chang-Gu Hyun
Curr. Issues Mol. Biol. 2025, 47(2), 85; https://doi.org/10.3390/cimb47020085 - 29 Jan 2025
Viewed by 1181
Abstract
Chalcones are recognized for their diverse pharmacological properties, including anti-inflammatory and anti-melanogenic effects. However, studies on 2′-hydroxy-2-methoxychalcone derivatives remain limited. This study investigated the anti-inflammatory and melanin synthesis-inhibitory effects of three derivatives: 2′-hydroxy-2,4-dimethoxychalcone (2,4-DMC), 2′-hydroxy-2,5′-dimethoxychalcone (2,5′-DMC), and 2′-hydroxy-2,6′-dimethoxychalcone (2,6′-DMC). In lipopolysaccharide (LPS)-stimulated RAW [...] Read more.
Chalcones are recognized for their diverse pharmacological properties, including anti-inflammatory and anti-melanogenic effects. However, studies on 2′-hydroxy-2-methoxychalcone derivatives remain limited. This study investigated the anti-inflammatory and melanin synthesis-inhibitory effects of three derivatives: 2′-hydroxy-2,4-dimethoxychalcone (2,4-DMC), 2′-hydroxy-2,5′-dimethoxychalcone (2,5′-DMC), and 2′-hydroxy-2,6′-dimethoxychalcone (2,6′-DMC). In lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, 2,6′-DMC demonstrated a superior inhibition of nitric oxide (NO) production, pro-inflammatory cytokines, and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) compared to the other derivatives. A mechanistic analysis revealed that 2,6′-DMC modulates the NF-κB and MAPK signaling pathways to attenuate inflammation. Additionally, 2,6′-DMC exhibited a significant inhibition of α-melanocyte-stimulating hormone (α-MSH)-induced melanin synthesis in B16F10 melanoma cells by downregulating tyrosinase, TRP-1, TRP-2, and MITF expression. This regulation was achieved through the suppression of the Wnt/β-catenin, PI3K/AKT, MAPK, and PKA/CREB pathways. Compared to 2,4-DMC and 2,5′-DMC, 2,6′-DMC’s structural configuration, characterized by methoxy groups at the 2- and 6′-positions, contributed to its enhanced molecular stability and binding affinity, amplifying its inhibitory effects. A primary skin irritation test confirmed that 2,6′-DMC exhibited minimal irritation, demonstrating its safety for dermal applications. These findings suggest that 2,6′-DMC holds promise as a dual-function agent for managing inflammatory conditions and hyperpigmentation-related disorders. Full article
(This article belongs to the Special Issue Molecular Insights into Melanogenesis and Melanoma Development)
Show Figures

Figure 1

24 pages, 9140 KiB  
Article
Design, Synthesis, and Antioxidant and Anti-Tyrosinase Activities of (Z)-5-Benzylidene-2-(naphthalen-1-ylamino)thiazol-4(5H)-one Analogs: In Vitro and In Vivo Insights
by Hee Jin Jung, Hye Jin Kim, Hyeon Seo Park, Hye Soo Park, Jeongin Ko, Dahye Yoon, Yujin Park, Pusoon Chun, Hae Young Chung and Hyung Ryong Moon
Molecules 2025, 30(2), 289; https://doi.org/10.3390/molecules30020289 - 13 Jan 2025
Cited by 1 | Viewed by 1294
Abstract
Fifteen compounds (115) constructed on a hybrid structure combining a β-phenyl-α,β-unsaturated carbonyl template and a 2-aminothiazol-4(5H)-one scaffold were designed and synthesized as potential novel anti-tyrosinase substances. Two compounds (10 and 15) showed more potent inhibition [...] Read more.
Fifteen compounds (115) constructed on a hybrid structure combining a β-phenyl-α,β-unsaturated carbonyl template and a 2-aminothiazol-4(5H)-one scaffold were designed and synthesized as potential novel anti-tyrosinase substances. Two compounds (10 and 15) showed more potent inhibition against mushroom tyrosinase than kojic acid, and the inhibitory activity of 10 (IC50 value: 1.60 μM) was 11 times stronger than that of kojic acid. Lineweaver–Burk plots indicated that these two compounds were competitive inhibitors that bound to the mushroom tyrosinase active site, which was supported by in silico experiments. Compound 10 was an anti-tyrosinase and anti-melanogenic substance in B16F10 cells and was more potent than kojic acid, without cytotoxicity. Compound 15 exhibited the most potent effect on zebrafish larval depigmentation and showed a depigmentation effect comparable to kojic acid, even at a concentration 200 times lower. Compounds 8 and 10 exhibited strong antioxidant capacities, scavenging 2,2-diphenyl-1-picrylhydrazyl, (2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid)+ radicals, and reactive oxygen species. Hybrid compounds 10 and 15 are potential therapeutic agents for skin hyperpigmentation disorders. Full article
Show Figures

Figure 1

19 pages, 3637 KiB  
Article
Valorization of Hom Thong Banana Peel (Musa sp., AAA Group) as an Anti-Melanogenic Agent Through Inhibition of Pigmentary Genes and Molecular Docking Study
by Pichchapa Linsaenkart, Wipawadee Yooin, Supat Jiranusornkul, Korawan Sringarm, Chaiwat Arjin, Pornchai Rachtanapun, Kittisak Jantanasakulwong, Juan M. Castagnini and Warintorn Ruksiriwanich
Int. J. Mol. Sci. 2024, 25(23), 13202; https://doi.org/10.3390/ijms252313202 - 8 Dec 2024
Cited by 1 | Viewed by 1610
Abstract
Prolonged and unprotected exposure to the environment explicitly influences the development of hyperpigmented lesions. The enzyme tyrosinase (TYR) is a key target for regulating melanin synthesis. Several bioactive compounds derived from plant extracts have been found to possess potent anti-melanogenesis properties against TYR. [...] Read more.
Prolonged and unprotected exposure to the environment explicitly influences the development of hyperpigmented lesions. The enzyme tyrosinase (TYR) is a key target for regulating melanin synthesis. Several bioactive compounds derived from plant extracts have been found to possess potent anti-melanogenesis properties against TYR. In particular, the potential of banana peels from various varieties has garnered interest due to their application in skin hyperpigmentation treatment. A molecular docking study demonstrated interactions between rosmarinic acid, which is predominantly found in all Hom Thong peel extracts, and the active site of TYR (PDB ID: 2Y9X) at residues HIS263, VAL283, SER282, and MET280, with the lowest binding energy of −5.05 kcal/mol, showing the strongest interaction. Additionally, Hom Thong banana peels are rich in phenolic compounds that could inhibit melanin content and tyrosinase activity in both human and mouse melanoma cells. These effects may be attributed to the suppression of gene expression related to melanogenesis, including the regulator gene MITF and pigmentary genes TYR, TRP-1, and DCT, indicating effects comparable to those of the standard treatment groups with arbutin and kojic acid. Our findings indicated the potential of Hom Thong peel extracts as anti-melanogenic agents. Full article
Show Figures

Figure 1

Back to TopTop