Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (207)

Search Parameters:
Keywords = anti-CK2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9723 KB  
Article
Effect of Spirulina platensis Versus Simvastatin on the Skeletal Muscles of Experimentally Induced Dyslipidemia: A Multitarget Approach to Muscle Ultrastructural and Cytomolecular Modulation
by Mai E. Abdelhady, Khaled H. Elmosalamy, Asmaa A. A. Kattaia and Mai A. Samak
Med. Sci. 2025, 13(3), 137; https://doi.org/10.3390/medsci13030137 - 15 Aug 2025
Viewed by 320
Abstract
Background/Objectives: Dyslipidemia is a prevalent metabolic disorder closely linked to cardiovascular complications and muscular pathologies, often managed using statins such as simvastatin. However, statin-induced myopathy remains a significant treatment-limiting side effect, necessitating the exploration of safe, natural alternatives. Spirulina platensis, a phytochemical-rich [...] Read more.
Background/Objectives: Dyslipidemia is a prevalent metabolic disorder closely linked to cardiovascular complications and muscular pathologies, often managed using statins such as simvastatin. However, statin-induced myopathy remains a significant treatment-limiting side effect, necessitating the exploration of safe, natural alternatives. Spirulina platensis, a phytochemical-rich marine-derived cyanobacterium, has emerged as a promising bioactive nutraceutical with potent antioxidant and anti-inflammatory properties. This study evaluated the comparative effects of Spirulina platensis and simvastatin in attenuating dyslipidemia-induced skeletal muscle injury in adult male albino rats. Methods: Forty animals were allocated to the control and high-fat diet (HFD) groups. After 4 weeks, the dyslipidemic rats were subdivided into untreated, simvastatin-treated, and Spirulina platensis-treated subgroups. Serum lipid profile, creatine kinase (CK), and malondialdehyde (MDA) levels were assessed. Histological, ultrastructural, and immunohistochemical analyses were conducted to assess muscle fiber integrity and expression of TGF-β1 and Bcl2. Results: Spirulina platensis significantly improved lipid parameters, reduced CK and MDA levels, preserved muscle histoarchitecture, and downregulated fibrotic (↓TGF-β1) and apoptotic (↑Bcl2) responses compared to the dyslipidemic and simvastatin-treated groups. Our results proved that Spirulina platensis ameliorates the effects of statin-associated myopathy while exerting lipid-lowering, cytoprotective, and antifibrotic effects. Conclusion: These molecular and ultrastructural benefits position Spirulina platensis as a promising, natural alternative to statins for managing dyslipidemia and preventing statin-induced myopathy. Future translational and clinical studies are warranted to further validate its efficacy and safety, supporting its broader application in metabolic and muscle-related disorders. Full article
Show Figures

Figure 1

24 pages, 15698 KB  
Article
Cardioprotective Effects of SAR Through Attenuating Cardiac-Specific Markers, Inflammatory Markers, Oxidative Stress, and Anxiety in Rats Challenged with 5-Fluorouracil
by Roza Haroon Rasheed and Tavga Ahmed Aziz
J. Xenobiot. 2025, 15(4), 130; https://doi.org/10.3390/jox15040130 - 10 Aug 2025
Viewed by 345
Abstract
This study aimed to evaluate the cardioprotective effects of two different doses of saroglitazar (SAR) in an animal model of cardiotoxicity induced by 5-fluorouracil (5-FU). Thirty-five rats were randomly allocated into five groups: the negative control, which received distilled water; the 5-FU (150 [...] Read more.
This study aimed to evaluate the cardioprotective effects of two different doses of saroglitazar (SAR) in an animal model of cardiotoxicity induced by 5-fluorouracil (5-FU). Thirty-five rats were randomly allocated into five groups: the negative control, which received distilled water; the 5-FU (150 mg/kg as I.P.) group; the N-acetylcysteine (100 mg/kg) group; and the SAR (0.5 and 5 mg/kg) groups. The last three groups received 5-FU on day 10 along with their treatment. An open field test was performed at zero-time and at the end of the study. On day eleven the animals were euthanized and blood samples were used for measuring troponin I, CK-MB, natriuretic peptide, lipid profile, LDH, ALT, AST, CRP, ESR, TNF-α, IL1β, MDA, and total antioxidant capacity (TAOC). Cardiac tissues were sent for histopathological examination. The study revealed that 5-FU elevated the levels of cardiac-specific and injury-related biomarkers, inflammatory and oxidative stress markers, and that the use of SAR, particularly the high dose, decreased all the cardiac- and other injury-related biomarkers as well as attenuating inflammatory and oxidative stress biomarkers. SAR-treated groups exhibited a significant increase in locomotor activity and a decrease in anxiety-like behavior, indicated by a reduction in time spent in one square and an increase in total movement time. Additionally, the histopathological findings greatly supported the biochemical results evidenced by stopping the detrimental effects caused by 5-FU through structural and functional alterations of cardiac tissues manifested as ameliorating congestion, inflammation, degeneration, arterial wall thinning, and endothelial loss. The dual-acting PPAR agonist SAR demonstrated cardiac protection activity, particularly the high dose, by attenuating cardiac-specific and nonspecific injury biomarkers along with anti-inflammatory and antioxidant activities and attenuated anxiety induced by 5-FU. These findings render SAR a promising candidate to be tested in clinical trials. Further studies are warranted with other cardiotoxicants to confirm these findings. Full article
(This article belongs to the Section Drug Therapeutics)
Show Figures

Graphical abstract

16 pages, 7401 KB  
Article
Sitagliptin Mitigates Diabetic Cardiomyopathy Through Oxidative Stress Reduction and Suppression of VEGF and FLT-1 Expression in Rats
by Qamraa H. Alqahtani, Tahani A. ALMatrafi, Amira M. Badr, Sumayya A. Alturaif, Raeesa Mohammed, Abdulaziz Siyal and Iman H. Hasan
Biomolecules 2025, 15(8), 1104; https://doi.org/10.3390/biom15081104 - 30 Jul 2025
Viewed by 415
Abstract
Diabetes mellitus (DM) is a global health challenge marked by chronic hyperglycemia, which can result in complications such as diabetic cardiomyopathy. Sitagliptin, an oral anti-hyperglycemic drug, has demonstrated efficacy in alleviating cardiovascular complications associated with DM. This study explored the impact of Sitagliptin’s [...] Read more.
Diabetes mellitus (DM) is a global health challenge marked by chronic hyperglycemia, which can result in complications such as diabetic cardiomyopathy. Sitagliptin, an oral anti-hyperglycemic drug, has demonstrated efficacy in alleviating cardiovascular complications associated with DM. This study explored the impact of Sitagliptin’s potential as a therapeutic agent, functioning not only to control blood sugar levels but also to enhance vascular health and strengthen cardiac resilience in diabetes. The investigation focused on alterations in the vascular endothelial growth factor (VEGF) and its receptor-1 (FLT-1) signaling pathways, as well as its potential to suppress inflammation and oxidative stress. A number of rats received a single dose of streptozotocin (STZ) 55 mg/kg (i.p.) to induce DM. Sitagliptin was administered orally (100 mg/kg/90 days) to normal and diabetic rats, after which samples were collected for investigation. Sitagliptin significantly mitigated weight loss in diabetic rats. Its administration significantly reduced blood glucose levels and improved serum troponin I and CK-MB levels. Heart sections from diabetic rats showed a marked increase in mTOR, VEGF, and FLT-1 immune reaction, while sitagliptin-treated diabetic rats’ heart sections showed moderate immune reactions. Sitagliptin’s protective effect was also associated with reduced inflammation, and apoptotic markers. In conclusion, Sitagliptin is suggested to offer beneficial effects on the vascular health of cardiac blood vessels, thereby potentially reducing myocardial stress in diabetic patients. Full article
(This article belongs to the Special Issue Pharmacology of Cardiovascular Diseases)
Show Figures

Graphical abstract

20 pages, 1386 KB  
Systematic Review
Comparison of the Effects of Cold-Water Immersion Applied Alone and Combined Therapy on the Recovery of Muscle Fatigue After Exercise: A Systematic Review and Meta-Analysis
by Junjie Ma, Changfei Guo, Long Luo, Xiaoke Chen, Keying Zhang, Dongxue Liang and Dong Zhang
Life 2025, 15(8), 1205; https://doi.org/10.3390/life15081205 - 28 Jul 2025
Viewed by 1590
Abstract
Cold-water immersion (CWI), as a common recovery method, has been widely used in the field of post-exercise fatigue recovery. However, there is still a lack of comprehensive and systematic scientific evaluation of the combined effects of cold-water immersion combined with other therapies (CWI [...] Read more.
Cold-water immersion (CWI), as a common recovery method, has been widely used in the field of post-exercise fatigue recovery. However, there is still a lack of comprehensive and systematic scientific evaluation of the combined effects of cold-water immersion combined with other therapies (CWI + Other). The aim of this study was to compare the effects of CWI and CWI + Other in post-exercise fatigue recovery and to explore the potential benefits of CWI + Other. We systematically searched PubMed, Embase, Web of Science, Cochrane Library and EBSCO databases to include 24 studies (475 subjects in total) and performed a meta-analysis using standardized mean difference (SMD) and 95% confidence intervals (CIs). The results showed that both CWI + Other (SMD = −0.68, 95% CI: −1.03 to −0.33) and CWI (SMD = −0.37, 95% CI: −0.65 to −0.10) were effective in reducing delayed-onset muscle soreness (DOMS). In subgroup analyses of athletes, both CWI + Other (SMD = −1.13, 95% CI: −1.76 to −0.49) and CWI (SMD = −0.47, 95% CI: −0.87 to −0.08) also demonstrated significant effects. In addition, CWI + Other significantly reduced post-exercise C-reactive protein (CRP) levels (SMD = −0.62, 95% CI: −1.12 to −0.13), and CWI with water temperatures higher than 10 °C also showed a CRP-lowering effect (MD = −0.18, 95% CI: −0.30 to −0.07), suggesting a potential benefit in anti-inflammation. There were no significant differences between the two interventions in the metrics of creatine kinase (CK; CWI: SMD = −0.01, 95% CI: −0.27 to 0.24; CWI + Other: SMD = 0.26, 95% CI: −0.51 to 1.03) or countermovement jump (CMJ; CWI: SMD = 0.22, 95% CI: −0.13 to 0.57; CWI + Other: SMD = 0.07, 95% CI: −0.70 to 0.85). Full article
(This article belongs to the Special Issue Focus on Exercise Physiology and Sports Performance: 2nd Edition)
Show Figures

Figure 1

24 pages, 10977 KB  
Article
Potential of Pumpkin Pulp Carotenoid Extract in the Prevention of Doxorubicin-Induced Cardiotoxicity
by Milana Bosanac, Alena Stupar, Biljana Cvetković, Dejan Miljković, Milenko Čanković and Bojana Andrejić Višnjić
Pharmaceutics 2025, 17(8), 977; https://doi.org/10.3390/pharmaceutics17080977 - 28 Jul 2025
Viewed by 297
Abstract
Background/Objectives: Doxorubicin is a chemotherapeutic agent whose clinical use is limited by side effects (SEs). The most common SE is doxorubicin-induced cardiotoxicity (DIC), for which there is still no prevention. The hypothesis arises that active substances of natural origin could influence DIC [...] Read more.
Background/Objectives: Doxorubicin is a chemotherapeutic agent whose clinical use is limited by side effects (SEs). The most common SE is doxorubicin-induced cardiotoxicity (DIC), for which there is still no prevention. The hypothesis arises that active substances of natural origin could influence DIC prevention by affecting several pathways of DIC occurrence. Methods: Thirty Wistar rats were divided into six groups (control, NADES (C8:C10) solvent, pumpkin pulp extract, doxorubicin, NADES (C8:C10) solvent–doxorubicin, and pumpkin pulp extract–doxorubicin). During the experiment, parameters of general condition, body, and heart weight were observed. Heart function parameters were monitored by measuring the levels of serum NT-pro-BNP, CK-MB, and hsTnT. Tissue damage was evaluated by determining the doxorubicin damage score and the expression of anti-cardiac troponin I, anti-Nrf2, anti-Bcl-2, anti-caspase-3, anti-COX2, and anti-Ki67 antibodies. Results: Doxorubicin administration led to impaired general condition of animals and increased the levels of NT-proBNP, CK-MB, hsTnT, and myocardium tissue damage of medium grade. Its administration induced apoptosis (as evidenced by elevated Casp3), reduced antiapoptotic Bcl-2 and troponin I expression in cardiomyocytes. Reduced Nrf2 expression due to doxorubicin administration was restored when pumpkin pulp extract containing carotenoids was coadministered, which led to the normalization of Casp3, Bcl-2, and troponin I expression. Consequently, the general condition and body weight were better in animals treated with both doxorubicin and the other treatment compared to those treated with doxorubicin alone. Conclusions: The results of this study strongly suggest that pumpkin pulp extract containing carotenoids has a cardioprotective effect, possibly by regulating the Nrf2 pathway. Full article
(This article belongs to the Special Issue Plant Extracts and Their Biomedical Applications)
Show Figures

Figure 1

25 pages, 10636 KB  
Article
Qifu Decoction Alleviates Lipopolysaccharide-Induced Myocardial Dysfunction by Inhibiting TLR4/NF-κB/NLRP3 Inflammatory Pathway and Activating PPARα/CPT Pathway
by Lingxin Zhuo, Mingxuan Ma, Jiayi Zhang, Jiayu Zhou, Yuqi Zheng, Aiyin Liang, Qingqing Sun, Jia Liu and Wenting Liao
Pharmaceuticals 2025, 18(8), 1109; https://doi.org/10.3390/ph18081109 - 25 Jul 2025
Viewed by 441
Abstract
Background/Objectives: Sepsis-induced cardiomyopathy (SIC) is a serious clinical disorder with a high death rate. Qifu decoction (QFD) is a renowned traditional Chinese medicine with documented pharmacological actions, such as anti-inflammatory, anti-oxidant and anti-apoptosis activities, and it has good therapeutic effects on cardiovascular [...] Read more.
Background/Objectives: Sepsis-induced cardiomyopathy (SIC) is a serious clinical disorder with a high death rate. Qifu decoction (QFD) is a renowned traditional Chinese medicine with documented pharmacological actions, such as anti-inflammatory, anti-oxidant and anti-apoptosis activities, and it has good therapeutic effects on cardiovascular diseases. This study aimed to reveal the cardioprotective effects and underlying mechanisms of QFD against SIC. Methods: Electrocardiography, histopathological examination, and biochemical indicator determination were carried out to investigate the cardioprotective effects of QFD in the treatment of LPS-induced SIC mice. Metabolomics and network pharmacology strategies were employed to preliminarily analyze and predict the mechanisms of QFD against SIC. Molecular docking and Western blot were further applied to validate the core targets and potential pathways for the treatment of SIC in in vitro and in vivo models. Results: It was found that QFD considerably enhanced cardiac function; attenuated myocardial injury; and reduced the serum levels of LDH, CK-MB, IL-1β, and TNF-α by 28.7%, 32.3%, 38.6%, and 36.7%, respectively. Metabolomic analysis showed that QFD could regulate seven metabolic pathways, namely, glutathione metabolism; alanine, aspartate, and glutamate metabolism; arachidonic acid metabolism; glycerophospholipid metabolism; purine metabolism; sphingolipid metabolism; and fatty acid metabolism. Network pharmacology suggested that the anti-SIC effect of QFD may be mediated through the TNF, toll-like receptor, NOD-like receptor, NF-κB, and PPAR signaling pathways. Additionally, 26 core targets were obtained. Molecular docking revealed that active ingredients such as formononetin, kaempferol, quercetin, and (R)-norcoclaurine in QFD had a high affinity for binding to PPARα and TLR4. Further Western blot validation indicated that QFD could regulate the protein levels of NLRP3, TLR4, NF-κB, IL-6, TNF-α, COX2, sPLA2, PPARα, CPT1B, and CPT2. Conclusions: This study demonstrates that QFD can alleviate SIC by suppressing the TLR4/NF-κB/NLRP3 inflammatory pathway and modulating impaired FAO through the activation of the PPARα/CPT pathway, highlighting QFD as a promising candidate drug for SIC treatment. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

12 pages, 255 KB  
Article
Anti-HMGCR-Antibody-Positive Statin-Induced Myositis: A Pilot Case Series on Treatment with Bempedoic Acid and Immunosuppressive Therapy
by Maurizio Benucci, Riccardo Terenzi, Francesca Li Gobbi, Emanuele Antonio Maria Cassarà, Tommaso Picchioni, Edda Russo, Barbara Lari, Mariangela Manfredi and Maria Infantino
Antibodies 2025, 14(3), 63; https://doi.org/10.3390/antib14030063 - 23 Jul 2025
Viewed by 664
Abstract
Background/Objectives: Immune-mediated necrotizing myopathy (IMNM) is a severe inflammatory myopathy marked by proximal muscle weakness, elevated creatine kinase (CK), and the presence of anti-HMGCR antibodies. Statin exposure is a recognized trigger for anti-HMGCR-positive IMNM, which may persist despite statin withdrawal. This pilot case [...] Read more.
Background/Objectives: Immune-mediated necrotizing myopathy (IMNM) is a severe inflammatory myopathy marked by proximal muscle weakness, elevated creatine kinase (CK), and the presence of anti-HMGCR antibodies. Statin exposure is a recognized trigger for anti-HMGCR-positive IMNM, which may persist despite statin withdrawal. This pilot case series explores, for the first time, the use of bempedoic acid—a liver-specific lipid-lowering agent with minimal muscle toxicity—as an alternative to statins in these patients. Methods: We report 10 anti-HMGCR-antibody-positive IMNM patients (6 females, 4 males) previously on statins for primary prevention (8 on atorvastatin, 2 on simvastatin) without prior cardiovascular events. Statins were discontinued at myositis onset. All patients received prednisone and immunosuppressants (methotrexate in 7, mycophenolate in 3), plus bempedoic acid. Anti-HMGCR antibodies were measured using a chemiluminescence method. Results: Their mean anti-HMGCR antibody levels decreased significantly from 390.93 ± 275.22 to 220.89 ± 113.37 CU/L (p = 0.027) after 6 months of treatment. Their CK levels dropped from 1278.9 ± 769.39 to 315.1 ± 157.72 IU/L (p = 0.001), and aldolase dropped from 11.63 ± 2.18 to 6.61 ± 1.22 U/L (p = 0.0001). The mean LDL-C value was 96.1 ± 8.16 mg/dL. No disease recurrence was observed. Autoimmune panels were negative for other myositis-associated and/or -specific antibodies. Conclusions: Bempedoic acid appears to be a safe, effective, and cost-efficient lipid-lowering alternative in statin-intolerant IMNM patients. Larger studies are warranted to confirm its efficacy across different subgroups and to optimize dyslipidemia management in this setting. Full article
(This article belongs to the Section Antibody-Based Diagnostics)
20 pages, 338 KB  
Article
LC-MS Analysis of the Polyphenolic Composition and Assessment of the Antioxidant, Anti-Inflammatory and Cardioprotective Activities of Agastache mexicana and Agastache scrophulariifolia Extracts
by Mihaela-Ancuța Nechita, Alina Elena Pârvu, Ana Uifălean, Sonia Iurian, Neli-Kinga Olah, Timea Henrietta Bab, Rodica Vârban, Vlad-Ionuț Nechita, Anca Toiu, Ovidiu Oniga, Daniela Benedec, Daniela Hanganu and Ilioara Oniga
Plants 2025, 14(14), 2122; https://doi.org/10.3390/plants14142122 - 9 Jul 2025
Viewed by 564
Abstract
This study offers a detailed assessment of the polyphenolic composition and antioxidant, anti-inflammatory, and cardioprotective properties of lyophilized extracts derived from the aerial parts of Agastache mexicana and Agastache scrophulariifolia. The polyphenolic content was determined through the quantification of total polyphenols, flavonoids, [...] Read more.
This study offers a detailed assessment of the polyphenolic composition and antioxidant, anti-inflammatory, and cardioprotective properties of lyophilized extracts derived from the aerial parts of Agastache mexicana and Agastache scrophulariifolia. The polyphenolic content was determined through the quantification of total polyphenols, flavonoids, and caffeic acid derivatives, complemented by LC-MS profiling. The antioxidant activity was evaluated in vitro using DPPH and FRAP assays, while the in vivo antioxidant and anti-inflammatory effects were investigated in a rat model of turpentine-oil-induced acute inflammation. Cardioprotective potential was assessed in a separate rat model of isoprenaline-induced myocardial infarction. Phytochemical analysis revealed a complex polyphenolic profile for both species, with tilianin and rosmarinic acid identified as predominant compounds. In the DPPH assay, both extracts exhibited marked radical scavenging activity (IC50: 65.91 ± 1.21 μg/mL for A. mexicana; 68.64 ± 2.48 μg/mL for A. scrophulariifolia). In the in vivo assays, the administration of the extracts significantly decreased pro-oxidant biomarkers (TOS, OSI, MDA, NO) and enhanced antioxidant markers (TAC, SH groups). Furthermore, the extracts led to a significant reduction in serum levels of GOT, GPT, and CK-MB in rats subjected to myocardial injury, supporting their cardioprotective efficacy. Overall, the results suggest that A. mexicana and A. scrophulariifolia represent promising natural sources of polyphenolic compounds with potential therapeutic value in oxidative-stress-related inflammatory and cardiovascular disorders. Full article
24 pages, 5303 KB  
Article
Pro-Apoptotic Activity of 1-(4,5,6,7-Tetrabromo-1H-benzimidazol-1-yl)propan-2-one, an Intracellular Inhibitor of PIM-1 Kinase in Acute Lymphoblastic Leukemia and Breast Cancer Cells
by Patrycja Wińska, Monika Wielechowska, Łukasz Milewski, Paweł Siedlecki and Edyta Łukowska-Chojnacka
Int. J. Mol. Sci. 2025, 26(12), 5897; https://doi.org/10.3390/ijms26125897 - 19 Jun 2025
Viewed by 756
Abstract
Inhibition of CK2 and/or PIM-1 kinases has been shown to induce apoptosis in a variety of cancer cell lines, underscoring their potential as valuable targets in anti-cancer drug development. In this study, a series of N-substituted derivatives of 4,5,6,7-tetrabromo-1H-benzimidazole, including [...] Read more.
Inhibition of CK2 and/or PIM-1 kinases has been shown to induce apoptosis in a variety of cancer cell lines, underscoring their potential as valuable targets in anti-cancer drug development. In this study, a series of N-substituted derivatives of 4,5,6,7-tetrabromo-1H-benzimidazole, including 2-oxopropyl/2-oxobutyl substituents and their respective hydroxyl analogues, were synthesized and evaluated for anti-cancer activity. The compounds’ ability to inhibit CK2α and PIM-1 kinases was assessed through enzymatic assays, complemented by comprehensive in silico enzyme–substrate docking analyses. Cytotoxicity was evaluated using the MTT assay in human cancer cell lines—including acute lymphoblastic leukemia (CCRF-CEM) and breast cancer (MCF-7, MDA-MB-231)—as well as in normal Vero cells. Apoptosis induction in the two most responsive cell lines (CCRF-CEM and MCF-7) was further examined using flow cytometry-based assays, including annexin V binding, mitochondrial membrane potential disruption, caspase-3 activation, and cell cycle analysis. Intracellular inhibition of CK2 and PIM-1 kinases was confirmed in CCRF-CEM and MCF-7 cells using Western blot and phospho-flow cytometry. Among the synthesized compounds, we identified a novel TBBi derivative exhibiting pronounced pro-apoptotic activity and the ability to inhibit PIM-1 kinase intracellularly. These findings support the hypothesis that PIM-1 kinase represents a promising molecular target for the treatment of leukemia. Full article
Show Figures

Graphical abstract

16 pages, 5453 KB  
Article
Quasipaa spinosa-Derived Parvalbumin Attenuates Exercise-Induced Fatigue via Calcium Homeostasis and Oxidative Stress Modulation in Exhaustively Trained Mice
by Kai Sang, Congfei Lu, Yangfan Zhang and Qi Chen
Nutrients 2025, 17(12), 2043; https://doi.org/10.3390/nu17122043 - 19 Jun 2025
Viewed by 594
Abstract
Background: Quasipaa spinosa crude extract (QSce), a natural source rich in proteins such as parvalbumin (PV), has been traditionally used to promote physical recovery. However, its mechanisms in mitigating exercise-induced fatigue remain unclear. Methods: Using a murine treadmill exhaustion model, we evaluated [...] Read more.
Background: Quasipaa spinosa crude extract (QSce), a natural source rich in proteins such as parvalbumin (PV), has been traditionally used to promote physical recovery. However, its mechanisms in mitigating exercise-induced fatigue remain unclear. Methods: Using a murine treadmill exhaustion model, we evaluated the effects of QS-derived Parvalbumin (QsPV) (30 and 150 mg/kg/day) on endurance capacity, oxidative stress, tissue injury, and muscle function. Indicators measured included time to exhaustion, intracellular calcium levels, antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GSH-Px)], lipid peroxidation (malondialdehyde, MDA), injury markers [creatine kinase (CK), lactate dehydrogenase (LDH), cardiac troponin I (cTnI)], renal function (blood urea), and muscle force. Results: QsPV-150 significantly increased time to exhaustion by 34.6% compared to the exercise-only group (p < 0.01). It reduced MDA by 41.2% in skeletal muscle and increased SOD and GSH-Px levels by 35.4% and 28.1%, respectively. Serum CK, LDH, and cTnI were reduced by 39.5%, 31.7%, and 26.8%, respectively, indicating protection against muscle and cardiac injury. QsPV also decreased blood urea by 22.3% and improved renal histology, with reduced glomerular damage and tubular lesions. At the molecular level, QsPV restored calcium balance and downregulated calpain-1/2 and atrophy-related genes (MuRF-1, MAFbx-32). Muscle contractile force (GAS and SOL) improved by 12.2–20.3%. Conclusions: QsPV attenuates exercise-induced fatigue through multi-organ protection involving calcium buffering, oxidative stress reduction, and anti-atrophy effects. These findings support its potential as a natural recovery-enhancing supplement, pending further clinical and pharmacokinetic studies. Full article
Show Figures

Figure 1

23 pages, 4651 KB  
Article
High-Expansion Natural Composite Films for Controlled Delivery of Hydroxycitric Acid in Obesity Therapy
by Kantiya Fungfoung, Ousanee Issarachot, Rachanida Praparatana and Ruedeekorn Wiwattanapatapee
Polymers 2025, 17(12), 1697; https://doi.org/10.3390/polym17121697 - 18 Jun 2025
Viewed by 743
Abstract
Expandable films represent a promising gastroretentive drug delivery system, offering prolonged gastric retention and sustained drug release features particularly advantageous for obesity treatment. This study developed high-expansion films using konjac and various low glycemic index starches, including purple potato, brown rice, resistant, and [...] Read more.
Expandable films represent a promising gastroretentive drug delivery system, offering prolonged gastric retention and sustained drug release features particularly advantageous for obesity treatment. This study developed high-expansion films using konjac and various low glycemic index starches, including purple potato, brown rice, resistant, and red jasmine rice starches, in combination with chitosan and hydroxypropyl methylcellulose (HPMC) E15. Garcinia extract was incorporated into the films using the solvent casting technique. Among 27 formulations, all demonstrated rapid unfolding (within 15 min) and significant expansion (2-4 folds). Hydroxycitric acid (HCA), the active component, was encapsulated at efficiencies exceeding 80% w/w. The konjac-based films exhibited favorable mechanical properties, expansion capacity, and drug content uniformity. Notably, the CK3-H1 formulation (2% w/v chitosan, 3% w/v konjac, 1% w/v HPMC E15) provided sustained HCA release over 8 h via diffusion. Cytotoxicity tests showed no toxic effects on RAW 264.7 macrophages at concentrations up to 400 μg/mL. Furthermore, CK3-H1 achieved notable nitric oxide inhibition (35.80 ± 1.21%) and the highest reduction in lipid accumulation (31.09 ± 3.15%) in 3T3-L1 adipocytes, outperforming pure HCA and garcinia extract. These results suggest that expandable konjac-based films are a viable and effective delivery system for herbal anti-obesity agents. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials for Medical Applications)
Show Figures

Graphical abstract

13 pages, 7555 KB  
Article
Healed Perforated Corneal Ulcers in Human
by Yasser Helmy Mohamed, Masafumi Uematsu, Mao Kusano, Keiji Suzuki and Akio Oishi
Life 2025, 15(6), 939; https://doi.org/10.3390/life15060939 - 11 Jun 2025
Viewed by 523
Abstract
This study investigates the pathophysiological process of healed perforated corneal ulcers (HPCUs) in humans. All subjects underwent keratoplasty due to opacities or leakage from HPCUs. Half of each specimen was fixed with 4% glutaraldehyde for transmission electron microscope (TEM) examination. The other half [...] Read more.
This study investigates the pathophysiological process of healed perforated corneal ulcers (HPCUs) in humans. All subjects underwent keratoplasty due to opacities or leakage from HPCUs. Half of each specimen was fixed with 4% glutaraldehyde for transmission electron microscope (TEM) examination. The other half was fixed in 10% formaldehyde for immunofluorescence (IF) examination. TEM identified layered structures with two cell types (polygonal and elongated) connected by gap or adherent junctions during early stage of healing. Both apoptotic and mitotic changes were found in both types of cells. There were no endothelial cells or Descemet’s membrane (DM) present in early stage of healing. During the intermediate stage, the healed area comprised three layers: epithelium, Bowman’s layer, and stroma, with an increase in stromal collagen. Later, adjacent endothelial cells crept in, forming DM and completing the cornea’s 5-layer structure. IF examinations revealed that vimentin+ and α-smooth muscle actin (αSMA)+ myofibroblasts gathered around the damaged site. Proliferating cell nuclear antigen+ cells, which indicated cell proliferation, were found in both cells. Anti-phospho-histone H2AX antibodies were found in some epithelial cells. CK14-positive cells were only found in superficial polygonal cells. Corneal wound healing is a complex process that includes apoptosis, cell migration, mitosis, differentiation, and extracellular matrix remodeling. Full article
(This article belongs to the Special Issue Feature Paper in Physiology and Pathology: 2nd Edition)
Show Figures

Figure 1

17 pages, 2031 KB  
Review
Protein Kinase CK2 Inhibition Represents a Pharmacological Chance for the Treatment of Skin Diseases
by Michele Scuruchi, Desirèe Speranza, Giuseppe Bruschetta, Federico Vaccaro, Mariarosaria Galeano, Giovanni Pallio, Mario Vaccaro, Francesco Borgia, Federica Li Pomi, Massimo Collino and Natasha Irrera
Int. J. Mol. Sci. 2025, 26(11), 5404; https://doi.org/10.3390/ijms26115404 - 4 Jun 2025
Viewed by 748
Abstract
Protein kinase CK2 has emerged as a pivotal regulator of cellular processes involved in skin homeostasis, including cell proliferation, differentiation and inflammatory response regulation. In fact, CK2 activity dysregulation is implicated in the pathogenesis of different skin diseases, such as psoriasis, cancer and [...] Read more.
Protein kinase CK2 has emerged as a pivotal regulator of cellular processes involved in skin homeostasis, including cell proliferation, differentiation and inflammatory response regulation. In fact, CK2 activity dysregulation is implicated in the pathogenesis of different skin diseases, such as psoriasis, cancer and inflammatory dermatoses. CK2 overactivation fosters keratinocyte proliferation and pro-inflammatory cytokine production through the STAT3 and Akt pathways in psoriasis, thus contributing to epidermal hyperplasia and inflammation. In the realm of oncology, CK2 overexpression correlates with tumor progression, facilitating cell survival and metastasis in melanoma and non-melanoma skin cancers. Pharmacological inhibition of CK2 has demonstrated therapeutic potential, with CX-4945 (Silmitasertib) as the most studied adenosine triphosphate-competitive inhibitor (ATP-competitive inhibitor). Preclinical models reveal that CK2 inhibitors effectively mitigate pathological features of psoriasis, regulate keratinocyte differentiation, and suppress tumor growth in skin cancers. These inhibitors also potentiate the efficacy of conventional chemotherapeutics and exhibit anti-inflammatory effects in dermatological conditions. Future research will aim to enhance the specificity and delivery of CK2-targeting therapies, including topical formulations, to minimize systemic side effects. Combination therapies integrating CK2 inhibitors with other agents might offer synergistic benefits in managing skin diseases. This review underscores CK2’s critical role in skin and its therapeutic potential as a pharmacological target, advocating for innovative approaches to harness CK2 inhibition in dermatology. Full article
(This article belongs to the Special Issue The Role of Protein Kinase in Health and Diseases)
Show Figures

Graphical abstract

16 pages, 3285 KB  
Article
Ginsenosides as Potential Natural Ligands of SLC3A2: Computational Insights in Cancer
by Jing Lu
Life 2025, 15(6), 907; https://doi.org/10.3390/life15060907 - 4 Jun 2025
Viewed by 705
Abstract
Panax ginseng has been used as a traditional Oriental medicinal herb. This research investigates the potential of ginsenosides, bioactive phyto compounds derived from ginseng, as ligands of the solute carrier (SLC) family, including SLC3A2, SLC7A6, SLC7A11, SLC7A5, SLC7A8, SLC43A1, LCN2, SLC7A9, SLC7A7, [...] Read more.
Panax ginseng has been used as a traditional Oriental medicinal herb. This research investigates the potential of ginsenosides, bioactive phyto compounds derived from ginseng, as ligands of the solute carrier (SLC) family, including SLC3A2, SLC7A6, SLC7A11, SLC7A5, SLC7A8, SLC43A1, LCN2, SLC7A9, SLC7A7, and SLC7A10 proteins—which are overexpressed in various cancers and linked to metastasis. Using molecular docking (MD), ginsenosides (Km, Ro, compound K (CK), Rk1, and Ra1) with high binding affinities to SLC3A2 were identified, exhibiting binding energies of −9.3, −9.1, −8.7, −8.0, and −7.7 kcal/mol, respectively. Further molecular dynamics simulations (MDSs) conducted using GROMACS revealed improved stability, flexibility, and dynamic behavior of the selected ginsenosides, predicting their potential as natural ligands to bind with SLC3A2. Though this computational prediction underscores these ginsenosides as promising candidates as natural ligands to bind and interact with SLC family proteins during anti-cancer therapies, further in vitro and in vivo studies are needed to validate these interactions and anti-cancer effects. Full article
Show Figures

Figure 1

18 pages, 2081 KB  
Article
The Effects of an Automatic Flushing Valve on the Hydraulic Performance of a Subsurface Drip Irrigation System for Alfalfa
by Zaiyu Li, Yan Mo, Feng Wu, Hao Gao, Ronglian Wang and Jiandong Wang
Agriculture 2025, 15(10), 1107; https://doi.org/10.3390/agriculture15101107 - 21 May 2025
Viewed by 475
Abstract
The automatic flushing valve (AFV) enables automatic flushing of drip irrigation systems, improving their anti-clogging performance. This study focuses on a subsurface drip irrigation system (SDI) for alfalfa, selecting T20 and T70 AFVs (with designed flushing durations of 20 and 70 s, respectively) [...] Read more.
The automatic flushing valve (AFV) enables automatic flushing of drip irrigation systems, improving their anti-clogging performance. This study focuses on a subsurface drip irrigation system (SDI) for alfalfa, selecting T20 and T70 AFVs (with designed flushing durations of 20 and 70 s, respectively) installed at the end of the dripline and a buried dripline without an AFV as a control. The aim of this study was to explore the variations in AFV hydraulic performance over two years of operation and the impact on the irrigation uniformity of SDI systems. The results revealed that the flushing duration (FD) and flushing water volume (FQ) of both T20 and T70 fluctuated over time, with an average coefficient of variation (CV) of 13.2%. The FD and FQ of the two types of AFVs are affected by the daily average temperature (T), and when T increases from 20.1 °C to 25.7 °C, the FD and FQ increased by an average of 22.6%. After 2 years of operation, the average relative flow rate (Dra) and irrigation uniformity (Cu) of the T20 and T70 SDI emitters were 93.7% and 96.8%. Both the Dra and Cu were significantly influenced by FD (p < 0.05). Compared with CK and T20, T70 significantly increased the Dra and Cu by 6.3% and 4.6%, respectively. The order of degree of clogging at different positions in the dripline was rear > middle > front for the CK and T20 treatments, whereas for T70, it was middle > front > rear. With the installation of the T70 AFV, the time required for the SDI system to reach moderate clogging (Dra = 50~80%) was extended from 3~7 years to 8~20 years, resulting in a 180% increase in operation time. The T70 AFV is recommended for use in the alfalfa SDI of this study. Full article
Show Figures

Figure 1

Back to TopTop