High-Expansion Natural Composite Films for Controlled Delivery of Hydroxycitric Acid in Obesity Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Garcinia Extract-Loaded Expandable Composite Films
2.3. Physicochemical Characterization of Garcinia Extract-Loaded Expandable Composite Films
2.3.1. Appearance, Weight Variation, and Thickness of Expandable Films
2.3.2. Measurement of Mechanical Strength of Expandable Films
2.3.3. Swelling Behavior of Expandable Films
2.3.4. Unfolding Behavior of Expandable Films
2.3.5. Expandable Capacity of Films in Simulated Gastric Fluid
2.3.6. Morphology of Expandable Films
2.3.7. X-Ray Diffraction (XRD) Analysis
2.3.8. HCA Content Analysis
2.3.9. In Vitro Release Studies of HCA from Expandable Films
2.3.10. Release Kinetics
2.4. In Vitro Cell Culture Experiments
2.4.1. In Vitro Cytotoxicity Studies
2.4.2. Anti-Inflammatory Activity Assay
2.4.3. Anti-Obesity Activity in 3T3-L1 Cell Line
2.5. Statistical Analysis
3. Results and Discussion
3.1. Preparation of Garcinia Extract-Loaded Expandable Composite Films
3.2. Physical Appearance of Films
3.3. Weight and Thickness
3.4. Mechanical Strength Measurements
3.5. Unfolding Behavior of Films
3.6. Swelling Behavior of Films
3.7. Measurement of Expansion Ability
3.8. Scanning Electron Microscopy (SEM) Studies
3.9. X-Ray Diffraction (XRD) Studies
3.10. Drug Content Uniformity
3.11. In Vitro Dissolution Testing
3.12. Release Kinetics Pattern
3.13. Cytotoxicity Assay
3.14. Anti-Inflammatory Assay
3.15. Lipid Accumulation Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lopes, C.M.; Bettencourt, C.; Rossi, A.; Buttini, F.; Barata, P. Overview on Gastroretentive Drug Delivery Systems for Improving Drug Bioavailability. Int. J. Pharm. 2016, 510, 144–158. [Google Scholar] [CrossRef] [PubMed]
- Elsherbeeny, W.; El-Gogary, R.; Nasr, M.; Sammour, O. Current Progress of Oral Site-Specific Dosage Forms: Emphasis on Gastroretentive Drug Delivery Systems. Arch. Pharm. Sci. Ain Shams Univ. 2022, 6, 221–238. [Google Scholar] [CrossRef]
- Sivaneswari, S.; Karthikeyan, E.; Chandana, P.J. Novel Expandable Gastro Retentive System by Unfolding Mechanism of Levetiracetam Using Simple Lattice Design—Formulation Optimization and in Vitro Evaluation. Bull. Fac. Pharm. Cairo Univ. 2017, 55, 63–72. [Google Scholar] [CrossRef]
- Radha, D.; Lal, J.S.; Devaky, K.S. Chitosan-Based Films in Drug Delivery Applications. Starch/Staerke 2022, 74, 2100237. [Google Scholar] [CrossRef]
- Boontawee, R.; Issarachot, O.; Kaewkroek, K.; Wiwattanapatapee, R. Foldable/Expandable Gastro-Retentive Films Based on Starch and Chitosan as a Carrier for Prolonged Release of Resveratrol. Curr. Pharm. Biotechnol. 2021, 23, 1009–1018. [Google Scholar] [CrossRef]
- Kaewkroek, K.; Petchsomrit, A.; Wira Septama, A.; Wiwattanapatapee, R. Development of Starch/Chitosan Expandable Films as a Gastroretentive Carrier for Ginger Extract-Loaded Solid Dispersion. Saudi Pharm. J. 2022, 30, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Kupkanchanakul, W.; Yamaguchi, T.; Naivikul, O. Gluten-Free Rice Breading Using Composited Rice Flour and Pre-Germinated Brown Rice Flour for Health Benefits. J. Nutr. Sci. Vitaminol. 2019, 65, S206–S211. [Google Scholar] [CrossRef]
- Song, D.; Niu, J.; Zhang, Z.; Sun, Z.; Wang, D.; Li, J.; Yang, B.; Ling, N.; Ji, C. Purple Sweet Potato Polysaccharide Exerting an Anti-Inflammatory Effect via a TLR-Mediated Pathway by Regulating Polarization and Inhibiting the Inflammasome Activation. J. Agric. Food Chem. 2024, 72, 2165–2177. [Google Scholar] [CrossRef]
- Hong, C.Y.; Jo, Y.J.; Kim, M.Y.; Chung, M.N.; Choi, E.K.; Kim, Y.B.; Lee, J.; Jeong, H.S. Biological Activities of Sweet Potato (Ipomoea Batatas L.) Tips and Tubers. Food Sci. Nutr. 2022, 10, 4041–4048. [Google Scholar] [CrossRef]
- Birt, D.F.; Boylston, T.; Hendrich, S.; Jane, J.L.; Hollis, J.; Li, L.; McClelland, J.; Moore, S.; Phillips, G.J.; Rowling, M.; et al. Resistant Starch: Promise for Improving Human Health. Adv. Nutr. 2013, 4, 587–601. [Google Scholar] [CrossRef]
- Zhou, N.; Zheng, S.; Xie, W.; Cao, G.; Wang, L.; Pang, J. Konjac Glucomannan: A Review of Structure, Physicochemical Properties, and Wound Dressing Applications. J. Appl. Polym. Sci. 2022, 139, 51780. [Google Scholar] [CrossRef]
- Wang, N.; Yu, W.; Chen, Y.; Liu, T.; Zhang, Y. Study on the Rheological and Gel Properties of Auricularia Auricula Pulp and Konjac Glucomannan Compound System. J. Future Foods 2025, 5, 380–387. [Google Scholar] [CrossRef]
- Mohammadpour, S.; Amini, M.R.; Shahinfar, H.; Tijani, A.J.; Shahavandi, M.; Ghorbaninejad, P.; Djafarian, K.; Shab-Bidar, S. Effects of Glucomannan Supplementation on Weight Loss in Overweight and Obese Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Obes. Med. 2020, 19, 100276. [Google Scholar] [CrossRef]
- Maia-Landim, A.; Lancho, C.; Poblador, M.S.; Lancho, J.L.; Ramírez, J.M. Garcinia Cambogia and Glucomannan Reduce Weight, Change Body Composition and Ameliorate Lipid and Glucose Blood Profiles in Overweight/Obese Patients. J. Herb. Med. 2021, 26, 100424. [Google Scholar] [CrossRef]
- Singh, J.; Kaur, L.; McCarthy, O.J. Factors Influencing the Physico-Chemical, Morphological, Thermal and Rheological Properties of Some Chemically Modified Starches for Food Applications—A Review. Food Hydrocoll. 2007, 21, 1–22. [Google Scholar] [CrossRef]
- Sakamoto, S. Glutinous-Endosperm Starch Food Culture Specific to Eastern and Southeastern Asia. In Redefining Nature: Ecology, Culture and Domestication; Routledge: London, UK, 2021. [Google Scholar] [CrossRef]
- Zahra, N.; Jabeen, S. Brown Rice as Useful Nutritional Source. Pak. J. Agric. Res. 2020, 33, 445–453. [Google Scholar] [CrossRef]
- Bao, J.; Bergman, C.J. Rice Flour and Starch Functionality. In Starch in Food: Structure, Function and Applications; Woodhead Publishing: Cambridge, UK, 2017; pp. 373–419. [Google Scholar] [CrossRef]
- Barathikannan, K.; Chelliah, R.; Vinothkanna, A.; Prathiviraj, R.; Tyagi, A.; Vijayalakshmi, S.; Lim, M.J.; Jia, A.Q.; Oh, D.H. Untargeted Metabolomics-Based Network Pharmacology Reveals Fermented Brown Rice towards Anti-Obesity Efficacy. NPJ Sci. Food 2024, 8, 20. [Google Scholar] [CrossRef]
- Umeyama, L.; Kasahara, S.; Sugawara, M.; Yokoyama, S.; Saiki, I.; Hayakawa, Y. Anti-Inflammatory Effect of Fermented Brown Rice and Rice Bran with Aspergillus Oryzae on Mice. Tradit. Kampo Med. 2021, 8, 60–65. [Google Scholar] [CrossRef]
- Emmambux, M.N. Resistant Starch. Starch/Staerke 2023, 75, 2370018. [Google Scholar] [CrossRef]
- Hu, H.; Jiang, H.; Sang, S.; McClements, D.J.; Jiang, L.; Wen, J.; Jin, Z.; Qiu, C. Research Advances in Origin, Applications, and Interactions of Resistant Starch: Utilization for Creation of Healthier Functional Food Products. Trends Food Sci. Technol. 2024, 148, 104519. [Google Scholar] [CrossRef]
- Fatima, S.; Khan, M.R.; Ahmad, I.; Sadiq, M.B. Recent Advances in Modified Starch Based Biodegradable Food Packaging: A Review. Heliyon 2024, 10, e27453. [Google Scholar] [CrossRef] [PubMed]
- Al-Maqtari, Q.A.; Li, B.; He, H.J.; Mahdi, A.A.; Al Ansi, W.; Saeed, A. An Overview of the Isolation, Modification, Physicochemical Properties, and Applications of Sweet Potato Starch. Food Bioproc. Tech. 2024, 17, 1–32. [Google Scholar] [CrossRef]
- Kraithong, S.; Lee, S.; Rawdkuen, S. The Influence of Hydrocolloids on the Properties Organic Red Jasmine Rice Noodles, Namely on Antioxidant Activity, Cooking, Texture, and Sensory Properties. Starch/Staerke 2019, 71, 1800145. [Google Scholar] [CrossRef]
- Wanichthanarak, K.; Thitisaksakul, M. ThRSDB: A Database of Thai Rice Starch Composition, Molecular Structure and Functionality. Database 2020, 2020, baaa068. [Google Scholar] [CrossRef]
- Shahid, M.; Law, D.; Azfaralariff, A.; Mackeen, M.M.; Chong, T.F.; Fazry, S. Phytochemicals and Biological Activities of Garcinia Atroviridis: A Critical Review. Toxics 2022, 10, 656. [Google Scholar] [CrossRef]
- Ab Rahman, W.N.W.; Lee, K.; Yee, J.W.; Gupta, M.; Ming, L. Evidence of Garcinia Cambogia as a Fat Burning and Appetite Suppressing Agents. Arch. Pharm. Pr. 2016, 7, 22. [Google Scholar] [CrossRef]
- Bhutani, P.; Rekha, U.; Shivakumar, H.N.; Ranjanna, P.K.; Paul, A.T. Rapid and Cost-Effective LC–MS/MS Method for Determination of Hydroxycitric Acid in Plasma: Application in the Determination of Pharmacokinetics in Commercial Garcinia Preparations. Biomed. Chromatogr. 2020, 34, e4902. [Google Scholar] [CrossRef]
- Ezhilarasi, P.N.; Muthukumar, S.P.; Anandharamakrishnan, C. Solid Lipid Nanoparticle Enhances Bioavailability of Hydroxycitric Acid Compared to a Microparticle Delivery System. RSC Adv. 2016, 6, 53784–53793. [Google Scholar] [CrossRef]
- Lee, H.J.; Na, Y.G.; Han, M.; Pham, T.M.A.; Lee, H.; Lee, H.K.; Myung, C.S.; Han, J.H.; Kang, J.S.; Kim, K.T.; et al. Statistical Design of Sustained-Release Tablet Garcinia Cambogia Extract and Bioconverted Mulberry Leaf Extract for Anti-Obesity. Pharmaceutics 2020, 12, 932. [Google Scholar] [CrossRef]
- Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, C.; Xie, S. DDSolver: An Add-in Program for Modeling and Comparison of Drug Dissolution Profiles. AAPS J. 2010, 12, 263–271. [Google Scholar] [CrossRef]
- Guevara, M.; Tejera, E.; Iturralde, G.A.; Jaramillo-Vivanco, T.; Granda-Albuja, M.G.; Granja-Albuja, S.; Santos-Buelga, C.; González-Paramás, A.M.; Álvarez-Suarez, J.M. Anti-Inflammatory Effect of the Medicinal Herbal Mixture Infusion, Horchata, from Southern Ecuador against LPS-Induced Cytotoxic Damage in RAW 264.7 Macrophages. Food Chem. Toxicol. 2019, 131, 110594. [Google Scholar] [CrossRef] [PubMed]
- Kraus, N.A.; Ehebauer, F.; Zapp, B.; Rudolphi, B.; Kraus, B.J.; Kraus, D. Quantitative Assessment of Adipocyte Differentiation in Cell Culture. Adipocyte 2016, 5, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Fungfoung, K.; Praparatana, R.; Issarachot, O.; Wiwattanapatapee, R. Development of Oral In Situ Gelling Liquid Formulations of Garcinia Extract for Treating Obesity. Gels 2023, 9, 660. [Google Scholar] [CrossRef] [PubMed]
- Otoni, C.G.; Lorevice, M.V.; de Moura, M.R.; Mattoso, L.H.C. On the Effects of Hydroxyl Substitution Degree and Molecular Weight on Mechanical and Water Barrier Properties of Hydroxypropyl Methylcellulose Films. Carbohydr. Polym. 2018, 185, 105–111. [Google Scholar] [CrossRef]
- Saepang, K.; Pitaksuteepong, T.; Buranrat, B.; Boontha, S. Optimization of HPMC-Based Oral Fast Dissolving Film of Cetirizine Dihydrochloride. Nat. Life Sci. Commun. 2024, 23, e20240. [Google Scholar] [CrossRef]
- Ghadermazi, R.; Hamdipour, S.; Sadeghi, K.; Ghadermazi, R.; Khosrowshahi Asl, A. Effect of Various Additives on the Properties of the Films and Coatings Derived from Hydroxypropyl Methylcellulose—A Review. Food Sci. Nutr. 2019, 7, 3363–3377. [Google Scholar] [CrossRef]
- Basiak, E.; Lenart, A.; Debeaufort, F. Effect of Starch Type on the Physico-Chemical Properties of Edible Films. Int. J. Biol. Macromol. 2017, 98, 348–356. [Google Scholar] [CrossRef]
- Blaesi, A.H.; Kümmerlen, D.; Richter, H.; Saka, N. Mechanical Strength and Gastric Residence Time of Expandable Fibrous Dosage Forms. Int. J. Pharm. 2022, 613, 120792. [Google Scholar] [CrossRef]
- Bourtoom, T. Plasticizer Effect on the Properties of Biodegradable Blend from Rice Starch-Chitosan. Songklanakarin J. Sci. Technol. 2008, 30, 149–165. [Google Scholar]
- Suyatma, N.E.; Tighzert, L.; Copinet, A.; Coma, V. Effects of Hydrophilic Plasticizers on Mechanical, Thermal, and Surface Properties of Chitosan Films. J. Agric. Food Chem. 2005, 53, 3950–3957. [Google Scholar] [CrossRef]
- Shapi’i, R.A.; Othman, S.H. Effect of Concentration of Chitosan on the Mechanical, Morphological and Optical Properties of Tapioca Starch Film. Int. Food Res. J. 2016, 23, S187–S193. [Google Scholar]
- Panraksa, P.; Udomsom, S.; Rachtanapun, P.; Chittasupho, C.; Ruksiriwanich, W.; Jantrawut, P. Hydroxypropyl Methylcellulose E15: A Hydrophilic Polymer for Fabrication of Orodispersible Film Using Syringe Extrusion 3d Printer. Polymers 2020, 12, 2666. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Dong, F.; Wang, Q.; Li, Y.; Xiong, Y. Construction of Porous Starch-Based Hydrogel via Regulating the Ratio of Amylopectin/Amylose for Enhanced Water-Retention. Molecules 2021, 26, 3999. [Google Scholar] [CrossRef] [PubMed]
- Vlad, R.-A.; Pintea, A.; Pintea, C.; Rédai, E.-M.; Antonoaea, P.; Bîrsan, M.; Ciurba, A. Hydroxypropyl Methylcellulose—A Key Excipient in Pharmaceutical Drug Delivery Systems. Pharmaceutics 2025, 17, 784. [Google Scholar] [CrossRef]
- Ni, Y.; Liu, Y.; Zhang, W.; Shi, S.; Zhu, W.; Wang, R.; Zhang, L.; Chen, L.; Sun, J.; Pang, J.; et al. Advanced Konjac Glucomannan-Based Films in Food Packaging: Classification, Preparation, Formation Mechanism and Function. LWT 2021, 152, 112338. [Google Scholar] [CrossRef]
- Wannasarit, S.; Mahattanadul, S.; Issarachot, O.; Puttarak, P.; Wiwattanapatapee, R. Raft-Forming Gastro-Retentive Formulations Based on Centella Asiatica Extract-Solid Dispersions for Gastric Ulcer Treatment. Eur. J. Pharm. Sci. 2020, 143, 105204. [Google Scholar] [CrossRef]
- Cascone, S. Modeling and Comparison of Release Profiles: Effect of the Dissolution Method. Eur. J. Pharm. Sci. 2017, 106, 352–361. [Google Scholar] [CrossRef]
- Siepmann, J.; Peppas, N.A. Modeling of Drug Release from Delivery Systems Based on Hydroxypropyl Methylcellulose (HPMC). Adv. Drug Deliv. Rev. 2012, 64, 139–157. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Medzhitov, R. Origin and Physiological Roles of Inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef]
- Kojta, I.; Chacińska, M.; Błachnio-Zabielska, A. Obesity, Bioactive Lipids, and Adipose Tissue Inflammation in Insulin Resistance. Nutrients 2020, 12, 1305. [Google Scholar] [CrossRef]
- Susanti, D.; Hamidon, H.; Taher, M.; Ahmad Rusmili, M.R.; Hamid, S.A.; Zakaria, Z.A. Lipid Accumulation Modulation by Garcinia Atroviridis Fruit Extract in 3T3-L1 Adipocyte Cells. J. Biol. Act. Prod. Nat. 2020, 10, 303–316. [Google Scholar] [CrossRef]
Ingredients of Each Formulation (% w/v) * | ||||||||
---|---|---|---|---|---|---|---|---|
Batch Code | Chitosan | Glutinous Rice Starch | Konjac | Purple Potato Starch | Brown Rice Starch | Resistant Starch | Red Jasmine Rice Starch | HPMC E15 |
Effect of Chitosan | ||||||||
C-2 | 2 | - | - | - | - | - | - | - |
C-3 | 3 | - | - | - | - | - | - | - |
C-4 | 4 | - | - | - | - | - | - | - |
Effect of Polysaccharides | ||||||||
CG3 | 2 | 3 | - | - | - | - | - | - |
CG3.5 | 2 | 3.5 | - | - | - | - | - | - |
CK3 | 2 | - | 3 | - | - | - | - | - |
CK3.5 | 2 | - | 3.5 | - | - | - | - | - |
CP3 | 2 | - | - | 3 | - | - | - | - |
CP3.5 | 2 | - | - | 3.5 | - | - | - | - |
CB3 | 2 | - | - | - | 3 | - | - | - |
CB3.5 | 2 | - | - | - | 3.5 | - | - | - |
CRe3 | 2 | - | - | - | - | 3 | - | - |
CRe3.5 | 2 | - | - | - | - | 3.5 | - | - |
CRed3 | 2 | - | - | - | - | - | 3 | - |
CRed3.5 | 2 | - | - | - | - | - | 3.5 | - |
Effect of HPMC E15 | ||||||||
CG3.5-H1 | 2 | 3.5 | - | - | - | - | - | 1 |
CG3.5-H2 | 2 | 3.5 | - | - | - | - | - | 2 |
CK3-H1 | 2 | - | 3 | - | - | - | - | 1 |
CK3-H2 | 2 | - | 3 | - | - | - | - | 2 |
CP3-H1 | 2 | - | - | 3 | - | - | - | 1 |
CP3-H2 | 2 | - | - | 3 | - | - | - | 2 |
CB3.5-H1 | 2 | - | - | - | 3.5 | - | - | 1 |
CB3.5-H2 | 2 | - | - | - | 3.5 | - | - | 2 |
CRe3.5-H1 | 2 | - | - | - | - | 3.5 | - | 1 |
CRe3.5-H2 | 2 | - | - | - | - | 3.5 | - | 2 |
CRed3-H1 | 2 | - | - | - | - | - | 3 | 1 |
CRed3-H2 | 2 | - | - | - | - | - | 3 | 2 |
Batch code | Weight (g) | Thickness (mm) | Tensile Strength (g/cm2) | Drug Content (%) | |
---|---|---|---|---|---|
Chitosan | C-2 | 0.31 ± 0.024 | 0.26 ± 0.02 | 34.93 ± 2.067 | 98.27 ± 0.42 |
C-3 | 0.37 ± 0.013 | 0.35 ± 0.04 | 27.71 ± 3.115 | 93.38 ± 4.56 | |
C-4 | 0.42 ± 0.008 | 0.48 ± 0.01 | 22.61 ± 1.351 | 92.85 ± 3.06 | |
Glutinous rice starch | CG3 | 0.38 ± 0.018 | 0.30 ± 0.02 | 54.19 ± 2.313 | 92.72 ± 2.93 |
CG3.5 | 0.45 ± 0.025 | 0.39 ± 0.03 | 90.23 ± 6.338 | 88.03 ± 1.97 | |
CG3.5-H1 | 0.48 ± 0.027 | 0.46 ± 0.03 | 59.80 ± 3.046 | 86.85 ± 1.31 | |
CG3.5-H2 | 0.52 ± 0.017 | 0.48 ± 0.03 | 74.44 ± 7.738 | 85.60 ± 3.01 | |
Konjac | CK3 | 0.41 ± 0.012 | 0.40 ± 0.02 | 155.80 ± 7.581 | 94.46 ± 1.79 |
CK3.5 | 0.43 ± 0.015 | 0.46 ± 0.04 | 214.82 ± 6.011 | 87.87 ± 2.19 | |
CK3-H1 | 0.45 ± 0.027 | 0.45 ± 0.02 | 382.95 ± 2.137 | 92.94 ± 1.29 | |
CK3-H2 | 0.51 ± 0.008 | 0.50 ± 0.01 | 625.81 ± 4.810 | 81.56 ± 1.64 | |
Purple potato starch | CP3 | 0.42 ± 0.015 | 0.39 ± 0.03 | 57.14 ± 3.242 | 95.09 ± 3.62 |
CP3.5 | 0.43 ± 0.014 | 0.40 ± 0.04 | 71.55 ± 4.455 | 87.14 ± 1.64 | |
CP3-H1 | 0.46 ± 0.021 | 0.46 ± 0.02 | 78.03 ± 7.860 | 92.15 ± 1.20 | |
CP3-H2 | 0.51 ± 0.006 | 0.52 ± 0.03 | 86.43 ± 1.860 | 89.78 ± 3.36 | |
Brown rice starch | CB3 | 0.44 ± 0.018 | 0.42 ± 0.03 | 51.87 ± 2.962 | 86.77 ± 2.56 |
CB3.5 | 0.47 ± 0.001 | 0.42 ± 0.03 | 124.68 ± 3.213 | 90.20 ± 2.81 | |
CB3.5-H1 | 0.48 ± 0.013 | 0.42 ± 0.02 | 132.10 ± 7.245 | 90.16 ± 2.86 | |
CB3.5-H2 | 0.52 ± 0.020 | 0.51 ± 0.02 | 166.13 ± 2.108 | 87.20 ± 3.29 | |
Resistant starch | CRe3 | 0.44 ± 0.008 | 0.40 ± 0.02 | 88.68 ± 2.515 | 84.46 ± 1.43 |
CRe3.5 | 0.48 ± 0.014 | 0.43 ± 0.04 | 108.12 ± 4.877 | 89.40 ± 1.52 | |
CRe3.5-H1 | 0.51 ± 0.031 | 0.43 ± 0.03 | 115.08 ± 1.333 | 83.23 ± 2.72 | |
CRe3.5-H2 | 0.53 ± 0.006 | 0.53 ± 0.02 | 162.73 ± 2.220 | 81.77 ± 2.46 | |
Red jasmine rice starch | CRed3 | 0.41 ± 0.028 | 0.43 ± 0.04 | 53.07 ± 1.052 | 88.41 ± 3.58 |
CRed3.5 | 0.43 ± 0.022 | 0.46 ± 0.02 | 69.34 ± 1.970 | 84.08 ± 1.96 | |
CRed3-H1 | 0.46 ± 0.019 | 0.46 ± 0.02 | 74.50 ± 9.998 | 86.56 ± 1.66 | |
CRed3-H2 | 0.51 ± 0.032 | 0.54 ± 0.02 | 149.60 ± 4.834 | 80.51 ± 2.79 |
Batch Code | Swelling Index | Expandable Area (cm2) | Expansion Capacity * (Fold) | |
---|---|---|---|---|
Chitosan | C-2 | 382.85 ± 16.09 | 24.83 ± 1.32 | 3.10 ± 0.17 |
C-3 | 596.66 ± 8.15 | 28.61 ± 1.14 | 3.58 ± 0.14 | |
C-4 | 641.15 ± 16.04 | 31.21 ± 1.04 | 3.90 ± 0.13 | |
Glutinous rice starch | CG3 | 440.77 ± 11.93 | 23.46 ± 0.34 | 2.93 ± 0.04 |
CG3.5 | 760.73 ± 22.72 | 36.14 ± 2.13 | 4.52 ± 0.27 | |
CG3.5-H1 | 777.45 ± 29.04 | 27.01 ± 0.37 | 3.41 ± 0.09 | |
CG3.5-H2 | 801.94 ± 12.22 | 29.64 ± 0.39 | 3.90 ± 0.21 | |
Konjac | CK3 | 531.00 ± 23.06 | 34.57 ± 1.02 | 4.32 ± 0.13 |
CK3.5 | 745.95 ± 30.07 | 27.00 ± 2.19 | 3.38 ± 0.27 | |
CK3-H1 | 627.70 ± 5.88 | 34.57 ± 0.47 | 4.32 ± 0.06 | |
CK3-H2 | 616.21 ± 22.90 | 31.32 ± 1.57 | 4.12 ± 0.13 | |
Purple potato starch | CP3 | 293.09 ± 26.90 | 15.31 ± 0.42 | 1.91 ± 0.05 |
CP3.5 | 407.36 ± 15.80 | 16.05 ± 0.32 | 2.01 ± 0.04 | |
CP3-H1 | 410.67 ± 23.79 | 15.68 ± 0.28 | 2.05 ± 0.11 | |
CP3-H2 | 552.26 ± 27.68 | 18.60 ± 0.31 | 2.39 ± 0.11 | |
Brown rice starch | CB3 | 513.12 ± 29.36 | 21.01 ± 0.18 | 2.63 ± 0.02 |
CB3.5 | 604.98 ± 40.18 | 23.22 ± 0.20 | 2.90 ± 0.02 | |
CB3.5-H1 | 651.56 ± 27.67 | 27.38 ± 0.98 | 3.51 ± 0.12 | |
CB3.5-H2 | 679.82 ± 16.91 | 25.43 ± 0.56 | 3.26 ± 0.08 | |
Resistant starch | CRe3 | 330.43 ± 15.79 | 18.62 ± 1.34 | 2.33 ± 0.17 |
CRe3.5 | 519.50 ± 7.55 | 19.75 ± 1.01 | 2.55 ± 0.04 | |
CRe3.5-H1 | 615.96 ± 17.57 | 19.84 ± 0.95 | 2.48 ± 0.12 | |
CRe3.5-H2 | 641.60 ± 15.62 | 19.32 ± 0.79 | 2.57 ± 0.21 | |
Red jasmine rice starch | CRed3 | 544.32 ± 31.28 | 22.11 ± 0.33 | 2.86 ± 0.09 |
CRed3.5 | 625.93 ± 25.96 | 20.69 ± 0.49 | 2.63 ± 0.03 | |
CRed3-H1 | 600.89 ± 21.07 | 28.62 ± 0.56 | 3.58 ± 0.07 | |
CRed3-H2 | 639.83 ± 12.17 | 25.80 ± 1.05 | 3.40 ± 0.25 |
Batch Code | Kinetic Release Models | |||||||
---|---|---|---|---|---|---|---|---|
Zero Order (R2) | First Order (R2) | Higuchi (R2) | Hixson–Crowell (R2) | Korsmeyer–Peppas (R2) | n | Weibull (R2) | β | |
CK3 | 0.2977 | 0.8973 | 0.9119 | 0.8508 | 0.9915 | 0.344 | 0.9870 | 0.587 |
CK3.5 | 0.2605 | 0.8437 | 0.8902 | 0.7988 | 0.9800 | 0.335 | 0.9679 | 0.544 |
CK3-H1 | 0.6306 | 0.9301 | 0.9828 | 0.9029 | 0.9911 | 0.440 | 0.9782 | 0.753 |
CK3-H2 | 0.6682 | 0.9309 | 0.9905 | 0.8864 | 0.9945 | 0.458 | 0.9941 | 0.668 |
Samples | The Percentage of Nitric Oxide Inhibition |
---|---|
Indomethacin conc. 50 µg/mL | 52.90 ± 2.60 |
HCA std. conc. 100 µg/mL | 27.67 ± 0.23 |
Extract conc. 200 µg/mL (equivalent to HCA 103.46 µg) | 26.94 ± 1.05 |
CK3-H1 formulation conc. 400 µg/mL (equivalent to HCA 108 µg) | 35.80 ± 1.21 |
Blank CK3-H1 formulation conc. 400 µg/mL | 14.23 ± 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fungfoung, K.; Issarachot, O.; Praparatana, R.; Wiwattanapatapee, R. High-Expansion Natural Composite Films for Controlled Delivery of Hydroxycitric Acid in Obesity Therapy. Polymers 2025, 17, 1697. https://doi.org/10.3390/polym17121697
Fungfoung K, Issarachot O, Praparatana R, Wiwattanapatapee R. High-Expansion Natural Composite Films for Controlled Delivery of Hydroxycitric Acid in Obesity Therapy. Polymers. 2025; 17(12):1697. https://doi.org/10.3390/polym17121697
Chicago/Turabian StyleFungfoung, Kantiya, Ousanee Issarachot, Rachanida Praparatana, and Ruedeekorn Wiwattanapatapee. 2025. "High-Expansion Natural Composite Films for Controlled Delivery of Hydroxycitric Acid in Obesity Therapy" Polymers 17, no. 12: 1697. https://doi.org/10.3390/polym17121697
APA StyleFungfoung, K., Issarachot, O., Praparatana, R., & Wiwattanapatapee, R. (2025). High-Expansion Natural Composite Films for Controlled Delivery of Hydroxycitric Acid in Obesity Therapy. Polymers, 17(12), 1697. https://doi.org/10.3390/polym17121697