Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (853)

Search Parameters:
Keywords = anthropogenic disturbances

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3081 KiB  
Article
Habitat Distribution Pattern of François’ Langur in a Human-Dominated Karst Landscape: Implications for Its Conservation
by Jialiang Han, Xing Fan, Ankang Wu, Bingnan Dong and Qixian Zou
Diversity 2025, 17(8), 547; https://doi.org/10.3390/d17080547 - 1 Aug 2025
Viewed by 142
Abstract
The Mayanghe National Nature Reserve, a key habitat for the endangered François’ langur (Trachypithecus francoisi), faces significant anthropogenic disturbances, including extensive distribution of croplands, roads, and settlements. These human-modified features are predominantly concentrated at elevations between 500 and 800 m and [...] Read more.
The Mayanghe National Nature Reserve, a key habitat for the endangered François’ langur (Trachypithecus francoisi), faces significant anthropogenic disturbances, including extensive distribution of croplands, roads, and settlements. These human-modified features are predominantly concentrated at elevations between 500 and 800 m and on slopes of 10–20°, which notably overlap with the core elevation range utilized by François’ langur. Spatial analysis revealed that langurs primarily occupy areas within the 500–800 m elevation band, which comprises only 33% of the reserve but hosts a high density of human infrastructure—including approximately 4468 residential buildings and the majority of cropland and road networks. Despite slopes >60° representing just 18.52% of the area, langur habitat utilization peaked in these steep regions (exceeding 85.71%), indicating a strong preference for rugged karst terrain, likely due to reduced human interference. Habitat type analysis showed a clear preference for evergreen broadleaf forests (covering 37.19% of utilized areas), followed by shrublands. Landscape pattern metrics revealed high habitat fragmentation, with 457 discrete habitat patches and broadleaf forests displaying the highest edge density and total edge length. Connectivity analyses indicated that distribution areas exhibit a more continuous and aggregated habitat configuration than control areas. These results underscore François’ langur’s reliance on steep, forested karst habitats and highlight the urgent need to mitigate human-induced fragmentation in key elevation and slope zones to ensure the species’ long-term survival. Full article
(This article belongs to the Topic Advances in Geodiversity Research)
Show Figures

Figure 1

18 pages, 1587 KiB  
Article
Urban Mangroves Under Threat: Metagenomic Analysis Reveals a Surge in Human and Plant Pathogenic Fungi
by Juliana Britto Martins de Oliveira, Mariana Barbieri, Dario Corrêa-Junior, Matheus Schmitt, Luana Lessa R. Santos, Ana C. Bahia, Cláudio Ernesto Taveira Parente and Susana Frases
Pathogens 2025, 14(8), 759; https://doi.org/10.3390/pathogens14080759 - 1 Aug 2025
Viewed by 216
Abstract
Coastal ecosystems are increasingly threatened by climate change and anthropogenic pressures, which can disrupt microbial communities and favor the emergence of pathogenic organisms. In this study, we applied metagenomic analysis to characterize fungal communities in sediment samples from an urban mangrove subjected to [...] Read more.
Coastal ecosystems are increasingly threatened by climate change and anthropogenic pressures, which can disrupt microbial communities and favor the emergence of pathogenic organisms. In this study, we applied metagenomic analysis to characterize fungal communities in sediment samples from an urban mangrove subjected to environmental stress. The results revealed a fungal community with reduced richness—28% lower than expected for similar ecosystems—likely linked to physicochemical changes such as heavy metal accumulation, acidic pH, and eutrophication, all typical of urbanized coastal areas. Notably, we detected an increase in potentially pathogenic genera, including Candida, Aspergillus, and Pseudoascochyta, alongside a decrease in key saprotrophic genera such as Fusarium and Thelebolus, indicating a shift in ecological function. The fungal assemblage was dominated by the phyla Ascomycota and Basidiomycota, and despite adverse conditions, symbiotic mycorrhizal fungi remained present, suggesting partial resilience. A considerable fraction of unclassified fungal taxa also points to underexplored microbial diversity with potential ecological or health significance. Importantly, this study does not aim to compare pristine and contaminated environments, but rather to provide a sanitary alert by identifying the presence and potential proliferation of pathogenic fungi in a degraded mangrove system. These findings highlight the sensitivity of mangrove fungal communities to environmental disturbance and reinforce the value of metagenomic approaches for monitoring ecosystem health. Incorporating fungal metagenomic surveillance into environmental management strategies is essential to better understand biodiversity loss, ecological resilience, and potential public health risks in degraded coastal environments. Full article
(This article belongs to the Section Fungal Pathogens)
Show Figures

Figure 1

13 pages, 935 KiB  
Article
The Physiological Response of the Fiddler Crab Austruca lactea to Anthropogenic Low-Frequency Substrate-Borne Vibrations
by Soobin Joo, Jaemin Cho and Taewon Kim
Biology 2025, 14(8), 962; https://doi.org/10.3390/biology14080962 (registering DOI) - 31 Jul 2025
Viewed by 140
Abstract
Anthropogenic vibrational disturbances in the marine environment can affect benthic organisms, but these effects on marine animals remain poorly understood. To examine whether anthropogenic substrate-borne vibrations induce physiological stress in the white-clawed fiddler crab (Austruca lactea), individuals were exposed to vibrations [...] Read more.
Anthropogenic vibrational disturbances in the marine environment can affect benthic organisms, but these effects on marine animals remain poorly understood. To examine whether anthropogenic substrate-borne vibrations induce physiological stress in the white-clawed fiddler crab (Austruca lactea), individuals were exposed to vibrations at 120 Hz and 250 Hz (~100 dB re 1 µm/s2), and physiological indicators were measured. Lactate and ATP concentrations in the leg muscle were measured, and heat shock protein 70 kDa (HSP70) gene expression in the hepatopancreas was analyzed using RT-PCR with newly designed primers. At 120 Hz, ATP and lactate levels in the leg muscle did not differ significantly between the exposure and control groups. However, at 250 Hz, ATP levels were lower and lactate levels were higher in the exposure group compared to the control. HSP70 gene expression in the hepatopancreas did not differ significantly between the exposure and control groups at either frequency, although one individual exposed to 250 Hz exhibited markedly elevated expression, inducing higher expression variability in the exposed group. These results suggest that anthropogenic vibrational pollution may induce physiological stress in A. lactea, and that such physiological indices could serve as biomarkers for assessing vibroacoustic pollution on marine animals. Full article
(This article belongs to the Section Physiology)
Show Figures

Figure 1

14 pages, 3668 KiB  
Article
Infrasound-Altered Pollination in a Common Western North American Plant: Evidence from Wind Turbines and Railways
by Lusha M. Tronstad, Madison Mazur, Lauren Thelen-Wade, Delina Dority, Alexis Lester, Michelle Weschler and Michael E. Dillon
Environments 2025, 12(8), 266; https://doi.org/10.3390/environments12080266 - 31 Jul 2025
Viewed by 264
Abstract
Anthropogenic noise can have diverse effects on natural ecosystems, but less is known about the degree to which noise can alter organisms in comparison to other disturbances. A variety of frequencies are produced by man-made objects, ranging from high to low frequencies, and [...] Read more.
Anthropogenic noise can have diverse effects on natural ecosystems, but less is known about the degree to which noise can alter organisms in comparison to other disturbances. A variety of frequencies are produced by man-made objects, ranging from high to low frequencies, and we studied infrasound (<20 Hz) produced by wind turbines and trains. We estimated the number, mass and viability of seeds produced by flowers of Plains pricklypear (Opuntia polyacantha Haw.) that were left open to pollinators, hand-pollinated or bagged to exclude pollinators. Each pollination treatment was applied to plants at varying distances from wind turbines and railways (≤25 km). Self-pollinated Opuntia polyacantha and plants within the wind facility produced ≥1.6 times more seeds in the bagged treatments compared to more distant sites. Seed mass and the percent of viable seeds decreased with distance from infrasound. Viability of seeds was >70% for most treatments and sites. If wind facilities, railways and other man-made structures produce infrasound that increases self-pollination, crops and native plants near sources may produce heavier seeds with higher viability in the absence of pollinators, but genetic diversity of plants may decline due to decreased cross-pollination. Full article
Show Figures

Figure 1

22 pages, 6878 KiB  
Article
Separate Versus Unified Ecological Networks: Validating a Dual Framework for Biodiversity Conservation in Anthropogenically Disturbed Freshwater–Terrestrial Ecosystems
by Tianyi Cai, Qie Shi, Tianle Luo, Yuechun Zheng, Xiaoming Shen and Yuting Xie
Land 2025, 14(8), 1562; https://doi.org/10.3390/land14081562 - 30 Jul 2025
Viewed by 350
Abstract
Freshwater ecosystems—home to roughly 10% of known species—are losing biodiversity to river-morphology alteration, hydraulic infrastructure, and pollution, yet most ecological network (EN) studies focus on terrestrial systems and overlook hydrological connectivity under human disturbance. To address this, we devised and tested a dual [...] Read more.
Freshwater ecosystems—home to roughly 10% of known species—are losing biodiversity to river-morphology alteration, hydraulic infrastructure, and pollution, yet most ecological network (EN) studies focus on terrestrial systems and overlook hydrological connectivity under human disturbance. To address this, we devised and tested a dual EN framework in the Yangtze River Delta’s Ecological Green Integration Demonstration Zone, constructing freshwater and terrestrial networks independently before merging them. Using InVEST Habitat Quality, MSPA, the MCR model, and Linkage Mapper, we delineated sources and corridors: freshwater sources combined NDWI-InVEST indicators with a modified, sluice-weighted resistance surface, producing 78 patches (mean 348.7 ha) clustered around major lakes and 456.4 km of corridors (42.50% primary). Terrestrial sources used NDVI-InVEST with a conventional resistance surface, yielding 100 smaller patches (mean 121.6 ha) dispersed across woodlands and agricultural belts and 658.8 km of corridors (36.45% primary). Unified models typically favor large sources from dominant ecosystems while overlooking small, high-value patches in non-dominant systems, generating corridors that span both freshwater and terrestrial habitats and mismatch species migration patterns. Our dual framework better reflects species migration characteristics, accurately captures dispersal paths, and successfully integrates key agroforestry-complex patches that unified models miss, providing a practical tool for biodiversity protection in disturbed freshwater–terrestrial landscapes. Full article
Show Figures

Figure 1

16 pages, 1285 KiB  
Article
The Physiological Cost of Being Hot: High Thermal Stress and Disturbance Decrease Energy Reserves in Dragonflies in the Wild
by Eduardo Ulises Castillo-Pérez, Angélica S. Ensaldo-Cárdenas, Catalina M. Suárez-Tovar, José D. Rivera-Duarte, Daniel González-Tokman and Alex Córdoba-Aguilar
Biology 2025, 14(8), 956; https://doi.org/10.3390/biology14080956 - 29 Jul 2025
Viewed by 204
Abstract
Anthropogenic disturbance alters macro- and microclimatic conditions, often increasing ambient temperatures. These changes can strongly affect insects, particularly those experiencing high thermal stress (i.e., large differences between body and environmental temperature), as prolonged exposure to elevated temperatures can reduce their energetic reserves due [...] Read more.
Anthropogenic disturbance alters macro- and microclimatic conditions, often increasing ambient temperatures. These changes can strongly affect insects, particularly those experiencing high thermal stress (i.e., large differences between body and environmental temperature), as prolonged exposure to elevated temperatures can reduce their energetic reserves due to increased metabolic demands and physiological stress. We evaluated thermal stress in 16 insect dragonfly species during two sampling periods (2019 and 2022) in preserved and disturbed sites within a tropical dry forest in western Mexico. Also, we compared energetic condition (lipid and protein content) and thoracic mass for the seven most abundant species between both habitat types. In preserved sites, insects showed higher thermal stress at lower maximum temperatures, which decreased as temperatures increased. Dragonflies in disturbed sites maintained consistent levels of thermal stress across the temperature gradient. Thermal stress was linked to lower lipid and protein content, and individuals from disturbed sites had reduced energy reserves. We also found a weak but consistent positive relationship between mean ambient temperature and protein content. In preserved sites, thoracic mass increased with thermal stress, but only at high mean temperatures. These findings suggest that although species can persist in disturbed environments, their energetic condition may be compromised, potentially affecting their performance and fitness. Preserving suitable habitats is essential for preserving both biodiversity and ecological function. Full article
Show Figures

Figure 1

21 pages, 11816 KiB  
Article
The Dual Effects of Climate Change and Human Activities on the Spatiotemporal Vegetation Dynamics in the Inner Mongolia Plateau from 1982 to 2022
by Guangxue Guo, Xiang Zou and Yuting Zhang
Land 2025, 14(8), 1559; https://doi.org/10.3390/land14081559 - 29 Jul 2025
Viewed by 177
Abstract
The Inner Mongolia Plateau (IMP), situated in the arid and semi-arid ecological transition zone of northern China, is particularly vulnerable to both climate change and human activities. Understanding the spatiotemporal vegetation dynamics and their driving forces is essential for regional ecological management. This [...] Read more.
The Inner Mongolia Plateau (IMP), situated in the arid and semi-arid ecological transition zone of northern China, is particularly vulnerable to both climate change and human activities. Understanding the spatiotemporal vegetation dynamics and their driving forces is essential for regional ecological management. This study employs Sen’s slope estimation, BFAST analysis, residual trend method and Geodetector to analyze the spatial patterns of Normalized Difference Vegetation Index (NDVI) variability and distinguish between climatic and anthropogenic influences. Key findings include the following: (1) From 1982 to 2022, vegetation cover across the IMP exhibited a significant greening trend. Zonal analysis showed that this spatial heterogeneity was strongly regulated by regional hydrothermal conditions, with varied responses across land cover types and pronounced recovery observed in high-altitude areas. (2) In the western arid regions, vegetation trends were unstable, often marked by interruptions and reversals, contrasting with the sustained greening observed in the eastern zones. (3) Vegetation growth was primarily temperature-driven in the eastern forested areas, precipitation-driven in the central grasslands, and severely limited in the western deserts due to warming-induced drought. (4) Human activities exerted dual effects: significant positive residual trends were observed in the Hetao Plain and southern Horqin Sandy Land, while widespread negative residuals emerged across the southern deserts and central grasslands. (5) Vegetation change was driven by climate and human factors, with recovery mainly due to climate improvement and degradation linked to their combined impact. These findings highlight the interactive mechanisms of climate change and human disturbance in regulating terrestrial vegetation dynamics, offering insights for sustainable development and ecosystem education in climate-sensitive systems. Full article
Show Figures

Figure 1

23 pages, 15846 KiB  
Article
Habitats, Plant Diversity, Morphology, Anatomy, and Molecular Phylogeny of Xylosalsola chiwensis (Popov) Akhani & Roalson
by Anastassiya Islamgulova, Bektemir Osmonali, Mikhail Skaptsov, Anastassiya Koltunova, Valeriya Permitina and Azhar Imanalinova
Plants 2025, 14(15), 2279; https://doi.org/10.3390/plants14152279 - 24 Jul 2025
Viewed by 368
Abstract
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of [...] Read more.
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of the ecological conditions of its habitats, the floristic composition of its associated plant communities, the species’ morphological and anatomical characteristics, and its molecular phylogeny, as well as to identify the main threats to its survival. The ecological conditions of the X. chiwensis habitats include coastal sandy plains and the slopes of chinks and denudation plains with gray–brown desert soils and bozyngens on the Mangyshlak Peninsula and the Ustyurt Plateau at altitudes ranging from −3 to 270 m above sea level. The species is capable of surviving in arid conditions (less than 100 mm of annual precipitation) and under extreme temperatures (air temperatures exceeding 45 °C and soil surface temperatures above 65 °C). In X. chiwensis communities, we recorded 53 species of vascular plants. Anthropogenic factors associated with livestock grazing, industrial disturbances, and off-road vehicle traffic along an unregulated network of dirt roads have been identified as contributing to population decline and the potential extinction of the species under conditions of unsustainable land use. The morphometric traits of X. chiwensis could be used for taxonomic analysis and for identifying diagnostic morphological characteristics to distinguish between species of Xylosalsola. The most taxonomically valuable characteristics include the fruit diameter (with wings) and the cone-shaped structure length, as they differ consistently between species and exhibit relatively low variability. Anatomical adaptations to arid conditions were observed, including a well-developed hypodermis, which is indicative of a water-conserving strategy. The moderate photosynthetic activity, reflected by a thinner palisade mesophyll layer, may be associated with reduced photosynthetic intensity, which is compensated for through structural mechanisms for water conservation. The flow cytometry analysis revealed a genome size of 2.483 ± 0.191 pg (2n/4x = 18), and the phylogenetic analysis confirmed the placement of X. chiwensis within the tribe Salsoleae of the subfamily Salsoloideae, supporting its taxonomic distinctness. To support the conservation of this rare species, measures are proposed to expand the area of the Ustyurt Nature Reserve through the establishment of cluster sites. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

18 pages, 2839 KiB  
Article
Alien Flora on Weizhou Island, Northern South China Sea: Inventory and Invasion Risk Assessment
by Hong Wei, Xuan Wu and Linyu Bai
Diversity 2025, 17(8), 508; https://doi.org/10.3390/d17080508 - 24 Jul 2025
Viewed by 288
Abstract
Islands subjected to anthropogenic disturbance are highly susceptible to alien plant invasions. However, the alien floral diversity of China’s islands has been insufficiently studied, hindering its control. Weizhou Island (northern South China Sea) has experienced long-term human exploitation. We inventorized its alien, naturalized, [...] Read more.
Islands subjected to anthropogenic disturbance are highly susceptible to alien plant invasions. However, the alien floral diversity of China’s islands has been insufficiently studied, hindering its control. Weizhou Island (northern South China Sea) has experienced long-term human exploitation. We inventorized its alien, naturalized, and invasive vascular plants (based on herbarium specimen data for 2018–2024 and surveys of 112 plots); analyzed species composition, origins, life forms, and habitats; and conducted an invasive species risk assessment. This identified 203 aliens, including infraspecific and hybrid taxa, 129 (63.5%) naturalized and 71 (55.0% of the naturalized species) invasive. The aliens were dominated by the Fabaceae, Asteraceae, and Euphorbiaceae, particularly genera such as Euphorbia, Senna, and Portulaca, originating primarily in North America, Oceania, and Africa. Perennial herbs were the most common lifeform, followed by annual herbs and shrubs. Invasion hotspots were primarily abandoned farmland, roadsides, and agricultural lands. Using the Analytic Hierarchy Process, we classified the 71 invasive species as representing high-risk, moderate-risk, and low-risk (20, 16, and 35 species, respectively). Bidens pilosa, Ageratum conyzoides, Opuntia dillenii, and Leucaena leucocephala pose severe threats to the island ecosystem. This first complete inventory of the alien flora on Weizhou Island offers critical insight into the management of invasive alien plants in island ecosystems. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

15 pages, 6800 KiB  
Article
Urbanization Compromises the Sustainability of Coastal Ecosystems: Insights from the Reproductive Traits of the Bioindicator Clam Donax trunculus
by Mohamed Ben-Haddad, Sara Hajji, Mohamed Rida Abelouah and Aicha Ait Alla
Sustainability 2025, 17(14), 6622; https://doi.org/10.3390/su17146622 - 20 Jul 2025
Viewed by 345
Abstract
The sustainability of coastal ecosystems, associated fisheries, and environmental quality is increasingly threatened by anthropogenic activities and rapidly expanding urbanization. This study investigated the ecological impacts of increased coastal urbanization on intertidal sediment quality and the biological parameters of the wedge clam Donax [...] Read more.
The sustainability of coastal ecosystems, associated fisheries, and environmental quality is increasingly threatened by anthropogenic activities and rapidly expanding urbanization. This study investigated the ecological impacts of increased coastal urbanization on intertidal sediment quality and the biological parameters of the wedge clam Donax trunculus along the central Moroccan Atlantic coast. Between 2018 and 2022, a period characterized by intensified urban activity, total organic matter (TOM) in sediment significantly increased, whereas temperature and pH remained stable. Concurrently, D. trunculus populations experienced notable declines in abundance and biomass, along with marked disruptions in reproductive dynamics. The proportion of sexually mature individuals decreased, while spent individuals and male-biased sex ratios became more prominent. These findings suggest that urbanization-related pressures such as sediment enrichment, pollution, and physical disturbance are exerting measurable stress on this key bioindicator species. The results highlight the need for improved coastal management to mitigate the ecological consequences of rapid urban expansion on coastal sustainability. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

18 pages, 3184 KiB  
Article
Changes in Macroinvertebrate Community Structure Associated with Land Use in Sierra Nevada de Santa Marta, Colombia
by Cristian Granados-Martínez, Meyer Guevara-Mora, Eugenia López-López and José Rincón Ramírez
Water 2025, 17(14), 2142; https://doi.org/10.3390/w17142142 - 18 Jul 2025
Viewed by 1047
Abstract
Rivers in tropical semi-arid regions face increasing anthropogenic pressures yet remain critically understudied despite their global importance. This study evaluated the aquatic macroinvertebrate community structure in the Ranchería River, Colombia, across three land use conditions: conserved zones (CZs), urban/agricultural zones (UAZs), and mining [...] Read more.
Rivers in tropical semi-arid regions face increasing anthropogenic pressures yet remain critically understudied despite their global importance. This study evaluated the aquatic macroinvertebrate community structure in the Ranchería River, Colombia, across three land use conditions: conserved zones (CZs), urban/agricultural zones (UAZs), and mining influence zones (MZs). Ten sampling stations were established, and macroinvertebrate communities were assessed alongside physical, chemical, and hydromorphological variables during the dry season (January–March 2021). A total of 9288 individuals from 84 genera across 16 orders were collected. Generalized Linear Models revealed significant differences among zones for 67 genera (79.8%), indicating strong community responses to land use gradients. Conserved zones exhibited the highest diversity according to the Hill numbers and were dominated by sensitive taxa, including Simulium, Smicridea, and Leptohyphes. Urban/agricultural zones showed the lowest richness (35 genera) and were characterized by disturbance-tolerant species, particularly Melanoides. Mining zones displayed intermediate diversity but exhibited severe habitat alterations. A redundancy analysis with variance partitioning revealed that land use types constituted the primary driver of community structure (a 24.1% pure effect), exceeding the physical and chemical variables (19.5%) and land cover characteristics (19.2%). The integrated model explained 63.5% of the total compositional variation, demonstrating that landscape-scale anthropogenic disturbances exert a greater influence on aquatic communities than local environmental conditions alone. Different anthropogenic activities create distinct environmental filters affecting macroinvertebrate assemblages, emphasizing the importance of land use planning for maintaining aquatic ecosystem integrity in semi-arid watersheds. Full article
Show Figures

Graphical abstract

16 pages, 3185 KiB  
Article
Genetic Diversity and Phylogenetic Relationships of Castor fiber birulai in Xinjiang, China, Revealed by Mitochondrial Cytb and D-loop Sequence Analyses
by Linyin Zhu, Yingjie Ma, Chengbin He, Chuang Huang, Xiaobo Gao, Peng Ding and Linqiang Zhong
Animals 2025, 15(14), 2096; https://doi.org/10.3390/ani15142096 - 16 Jul 2025
Viewed by 262
Abstract
Castor fiber birulai is a subspecies of the Eurasian beaver that has a relatively small population size compared to other Castor subspecies. There is limited genetic research on this subspecies. In this study, mitochondrial cytochrome b (Cytb) and D-loop sequences were [...] Read more.
Castor fiber birulai is a subspecies of the Eurasian beaver that has a relatively small population size compared to other Castor subspecies. There is limited genetic research on this subspecies. In this study, mitochondrial cytochrome b (Cytb) and D-loop sequences were analysed in genetic samples obtained from 19 individuals residing in the Buergen River Basin, Xinjiang, China. The Cytb region presented a single haplotype, whereas three haplotypes were identified in the D-loop region. The genetic diversity within the Chinese population was low (D-loop Hd = 0.444; Pi = 0.0043), markedly lower than that observed in other geographical populations of C. fiber. Phylogenetic reconstructions and haplotype network analyses revealed substantial genetic differentiation between C. f. birulai and other Eurasian lineages (Fst > 0.95), supporting the status of C. f. birulai as a distinct evolutionary lineage. Although the genetic distance between the Chinese and Mongolian populations was relatively small (distance = 0.00269), significant genetic differentiation was detected (Fst = 0.67055), indicating that anthropogenic disturbances—such as hydraulic infrastructure and fencing along the cross-border Bulgan River—may have impeded gene flow and dispersal. Demographic analyses provided no evidence of recent population expansion (Fu’s Fs = 0.19152), suggesting a demographically stable population. In subsequent studies, we recommend increasing nuclear gene data to verify whether the C. f. birulai population meets the criteria for Evolutionarily Significant Unit classification, and strengthening cross-border protection and cooperation between China and Mongolia. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

27 pages, 6077 KiB  
Article
Identification of Restoration Pathways for the Climate Adaptation of Wych Elm (Ulmus glabra Huds.) in Türkiye
by Derya Gülçin, Javier Velázquez, Víctor Rincón, Jorge Mongil-Manso, Ebru Ersoy Tonyaloğlu, Ali Uğur Özcan, Buse Ar and Kerim Çiçek
Land 2025, 14(7), 1391; https://doi.org/10.3390/land14071391 - 2 Jul 2025
Viewed by 456
Abstract
Ulmus glabra Huds. is a mesophilic, montane broadleaf tree with high ecological value, commonly found in temperate riparian and floodplain forests across Türkiye. Its populations in Türkiye have declined due to anthropogenic disturbances and climatic pressures that cause habitat fragmentation and threaten the [...] Read more.
Ulmus glabra Huds. is a mesophilic, montane broadleaf tree with high ecological value, commonly found in temperate riparian and floodplain forests across Türkiye. Its populations in Türkiye have declined due to anthropogenic disturbances and climatic pressures that cause habitat fragmentation and threaten the species’ long-term survival. In this research, we used Maximum Entropy (MaxEnt) to build species distribution models (SDMs) and applied the Restoration Planner (RP) tool to identify and prioritize critical restoration sites under both current and projected climate scenarios (SSP245, SSP370, SSP585). The SDMs highlighted areas of high suitability, primarily along the Black Sea coast. Future projections show that habitat fragmentation and shifts in suitable areas are expected to worsen. To systematically compare restoration options across different future scenarios, we derived and applied four spatial network status indicators using the RP tool. Specifically, we calculated Restoration Pixels (REST_PIX), Average Distance of Restoration Pixels from the Network (AVDIST_RP), Change in Equivalent Connected Area (ΔECA), and Restoration Efficiency (EFFIC) using the RP tool. For the 1 <-> 2 restoration pathways, the highest efficiency (EFFIC = 38.17) was recorded under present climate conditions. However, the largest improvement in connectivity (ΔECA = 60,775.62) was found in the 4 <-> 5 pathway under the SSP585 scenario, though this required substantial restoration effort (REST_PIX = 385). Temporal analysis noted that the restoration action will have most effectiveness between 2040 and 2080, while between 2081 and 2100, increased habitat fragmentation can severely undermine ecological connectivity. The result indicates that incorporation of habitat suitability modeling into restoration planning can help to design cost-effective restoration actions for degraded land. Moreover, the approach used herein provides a reproducible framework for the enhancement of species sustainability and habitat connectivity under varying climate conditions. Full article
Show Figures

Figure 1

24 pages, 1862 KiB  
Article
Dynamics and Anthropisation of Edible Caterpillar Habitats in the Landscape of the Luki Biosphere Reserve, Democratic Republic of the Congo
by Ernestine Lonpi Tipi, Médard Mpanda Mukenza, Yannick Useni Sikuzani, Jean-Pierre Messina Ndzomo, Raoul Sambieni Kouagou, François Malaisse, Joseph Lumande Kasali, Damase Khasa and Jan Bogaert
Land 2025, 14(7), 1384; https://doi.org/10.3390/land14071384 - 1 Jul 2025
Viewed by 379
Abstract
The Luki Biosphere Reserve landscape is located in the southwest of the Democratic Republic of Congo. Illicit anthropogenic activities in this landscape have contributed to the degradation of forest massifs, which are habitats for edible caterpillars. Accordingly, based on five Landsat images covering [...] Read more.
The Luki Biosphere Reserve landscape is located in the southwest of the Democratic Republic of Congo. Illicit anthropogenic activities in this landscape have contributed to the degradation of forest massifs, which are habitats for edible caterpillars. Accordingly, based on five Landsat images covering 2004–2024 period, we analysed the dynamics of edible caterpillar habitats in the Luki Biosphere Reserve, its periphery, and the landscape. The study was complemented by the calculation of class area, number of class patches, dominance, and the disturbance index. The results show that fragmentation and attrition have caused forest areas to decline by 46.13%, 21.17%, and 23.54% in the Reserve, its periphery, and at the landscape level, respectively. The dynamics of caterpillar habitats are reflected in the replacement of forest and fallow land by savannah. The level of disturbance has thus risen from 0.3 to 1.6 in the Reserve, from 2.5 to 13.9 in the periphery, and from 2.0 to 9.2 on a landscape scale. These results are mainly attributed to the expansion of agricultural land. Our observations imply an extent of disturbance in caterpillar habitats that might cause their scarcity, and strongly indicate the need for promoting effective strategies for preserving and restoring forest ecosystems in this landscape. Full article
Show Figures

Figure 1

24 pages, 2803 KiB  
Review
Mammal Fauna Changes in Baltic Countries During Last Three Decades
by Linas Balčiauskas, Valdis Pilāts and Uudo Timm
Diversity 2025, 17(7), 464; https://doi.org/10.3390/d17070464 - 1 Jul 2025
Viewed by 659
Abstract
We examined three decades of changes in the mammal fauna of Estonia, Latvia, and Lithuania in the context of climate variability, land use transformation, and anthropogenic pressures. We compiled distributional, abundance, and status data from publications, atlases, official game statistics, and long-term monitoring [...] Read more.
We examined three decades of changes in the mammal fauna of Estonia, Latvia, and Lithuania in the context of climate variability, land use transformation, and anthropogenic pressures. We compiled distributional, abundance, and status data from publications, atlases, official game statistics, and long-term monitoring programs, and we evaluated trends using compound annual growth rates or temporal indices. Our review identified losses such as regional extinctions of garden dormice and European mink, declines in small insectivores (e.g., pond bats and shrews) and herbivores (e.g., Microtus voles), and the contraction of boreal specialists (e.g., Siberian flying squirrels). However, we also identified gains, including increases in ungulate numbers (e.g., roe deer, red deer, fallow deer, moose, and wild boars before African swine fewer outbreak) and the recovery of large carnivores (e.g., wolves and lynxes). Invasions by non-native species (e.g., American mink, raccoon dog, and raccoon) and episodic disturbances, such as African swine fever and the “anthropause” caused by the SARS-CoV-2 pandemic, have further reshaped community composition. The drivers encompass climatic warming, post-socialist forest succession, intensified hunting management, and rewilding policies, with dispersal capacity mediating the responses of species. Our results underscore the dual legacy of historical land use and contemporary climate forcing in structuring the fauna dynamics of Baltic mammal communities in the face of declining specialists and invasive taxa. Full article
(This article belongs to the Special Issue Diversity in 2025)
Show Figures

Figure 1

Back to TopTop