Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (247)

Search Parameters:
Keywords = ant diversity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3686 KiB  
Article
Beauty or the Beast? A Puzzling Modification of the Clypeus and Mandibles on the Eocene Ant
by Dmitry Zharkov, Dmitry Dubovikoff and Evgeny Abakumov
Insects 2025, 16(8), 794; https://doi.org/10.3390/insects16080794 - 31 Jul 2025
Viewed by 369
Abstract
Some Cretaceous ants belonging to the stem group of Formicidae exhibit bizarre morphology. This wide range of unusual adaptive features is primarily related to the mouthparts and clypeus. The researchers were perplexed by their specific ecology, as modern ant lineages do not exhibit [...] Read more.
Some Cretaceous ants belonging to the stem group of Formicidae exhibit bizarre morphology. This wide range of unusual adaptive features is primarily related to the mouthparts and clypeus. The researchers were perplexed by their specific ecology, as modern ant lineages do not exhibit anything similar. Here, we report and describe a new genus based on an extraordinary and mysterious alate ant from Late Eocene Baltic amber. Undoubtedly, the new ant is classified within the subfamily Formicinae (one of the crown groups), yet it displays a highly specialised morphology and an unusual array of features that are not observed in any extant ant lineages. Neither recent nor extinct ants have such a combination of features. While the exact phylogenetic placement of the new ant remains uncertain, we offer a discussion of its potential affinities based on our constrained phylogenetic analyses. We propose that †Eridanomyrma gen. n. should be considered in the new tribe †Eridanomyrmini trib. n. This new taxon highlights the adaptive diversity of a highly specialised, extinct lineage of Eocene crown-group ants. We also present a 3D model based on X-ray computed microtomography (µCT). Full article
(This article belongs to the Special Issue Fossil Insects: Diversity and Evolutionary History)
Show Figures

Figure 1

18 pages, 7509 KiB  
Article
A New Kv1.3 Channel Blocker from the Venom of the Ant Tetramorium bicarinatum
by Guillaume Boy, Laurence Jouvensal, Nathan Téné, Jean-Luc Carayon, Elsa Bonnafé, Françoise Paquet, Michel Treilhou, Karine Loth and Arnaud Billet
Toxins 2025, 17(8), 379; https://doi.org/10.3390/toxins17080379 - 30 Jul 2025
Viewed by 283
Abstract
Ant venoms are rich sources of bioactive molecules, including peptide toxins with potent and selective activity on ion channels, which makes them valuable for pharmacological research and therapeutic development. Voltage-dependent potassium (Kv) channels, critical for regulating cellular excitability or cell cycle progression control, [...] Read more.
Ant venoms are rich sources of bioactive molecules, including peptide toxins with potent and selective activity on ion channels, which makes them valuable for pharmacological research and therapeutic development. Voltage-dependent potassium (Kv) channels, critical for regulating cellular excitability or cell cycle progression control, are targeted by a diverse array of venom-derived peptides. This study focuses on MYRTXA4-Tb11a, a peptide from Tetramorium bicarinatum venom, which was previously shown to have a strong paralytic effect on dipteran species without cytotoxicity on insect cells. In the present study, we show that Tb11a exhibited no or low cytotoxicity toward mammalian cells either, even at high concentrations, while electrophysiological studies revealed a blockade of hKv1.3 activity. Additionally, Ta11a, an analog of Tb11a from the ant Tetramorium africanum, demonstrated similar Kv1.3 inhibitory properties. Structural analysis supports that the peptide acts on Kv1.3 channels through the functional dyad Y21-K25 and that the disulfide bridge is essential for biological activity, as reduction seems to disrupt the peptide conformation and impair the dyad. These findings highlight the importance of three-dimensional structure in channel modulation and establish Tb11a and Ta11a as promising Kv1.3 inhibitors. Future research should investigate their selectivity across additional ion channels and employ structure-function studies to further enhance their pharmacological potential. Full article
(This article belongs to the Special Issue Unlocking the Deep Secrets of Toxins)
Show Figures

Figure 1

15 pages, 5467 KiB  
Article
Comparative Genomic Analysis of Lactiplantibacillus plantarum: Insights into Its Genetic Diversity, Metabolic Function, and Antibiotic Resistance
by Ruiqi Li and Chongpeng Bi
Genes 2025, 16(8), 869; https://doi.org/10.3390/genes16080869 - 24 Jul 2025
Viewed by 208
Abstract
Background/Objectives: Lactiplantibacillus plantarum is widely utilized in the fermentation industry and offers potential health benefits. However, large-scale comparative genomic analyses aimed at exploring its metabolic functions and conducting safety assessments are still lacking. Methods: In this study, we performed a comparative [...] Read more.
Background/Objectives: Lactiplantibacillus plantarum is widely utilized in the fermentation industry and offers potential health benefits. However, large-scale comparative genomic analyses aimed at exploring its metabolic functions and conducting safety assessments are still lacking. Methods: In this study, we performed a comparative genomic analysis of 324 L. plantarum strains sourced from various origins and geographical locations. Results: The results revealed that L. plantarum possesses a total of 2403 core genes, of which 12.3% have an unknown function. The phylogenetic analysis revealed a mixed distribution from various origins, suggesting complex transmission pathways. The metabolic analysis demonstrated that L. plantarum strains can produce several beneficial metabolites, including lysine, acetate, and riboflavin. Furthermore, L. plantarum is highly capable of degrading various carbohydrates and proteins, increasing its adaptability. Further, we profiled the antimicrobial peptides (AMPs) in the genomes of L. plantarum. We identified a widely distributed AMP and its variants, presenting in a total of 280 genomes. In our biosafety assessment of L. plantarum, we identified several antibiotic resistance genes, such as Tet(M), ANT(6)-Ia, and mdeA, which may have potential for horizontal gene transfer within the Lactobacillaceae family. Conclusions: This study provides genomic insights into the genetic diversity, metabolic functions, antimicrobial properties, and biosafety of L. plantarum, underscoring its potential applications in biotechnology and environmental adaptation. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

17 pages, 1098 KiB  
Article
Attentional Functioning in Healthy Older Adults and aMCI Patients: Results from the Attention Network Test with a Focus on Sex Differences
by Laura Facci, Laura Sandrini and Gabriella Bottini
Brain Sci. 2025, 15(7), 770; https://doi.org/10.3390/brainsci15070770 - 19 Jul 2025
Viewed by 377
Abstract
Background/Objectives: The prognostic uncertainty of Mild Cognitive Impairment (MCI) imposes comprehensive neuropsychological evaluations beyond mere memory assessment. However, previous investigations into other cognitive domains, such as attention, have yielded divergent findings. Furthermore, while evidence suggests the presence of sex differences across the [...] Read more.
Background/Objectives: The prognostic uncertainty of Mild Cognitive Impairment (MCI) imposes comprehensive neuropsychological evaluations beyond mere memory assessment. However, previous investigations into other cognitive domains, such as attention, have yielded divergent findings. Furthermore, while evidence suggests the presence of sex differences across the spectrum of dementia-related conditions, no study has systematically explored attentional disparities between genders within this context. The current study aims to investigate differences in the attentional subcomponents, i.e., alerting, orienting, and executive control, between patients with MCI and healthy older controls (HOCs), emphasizing interactions between biological sex and cognitive impairment. Methods: Thirty-six participants (18 MCI, and 18 HOCs) were evaluated using the Attention Network Test (ANT). Raw RTs as well as RTs corrected for general slowing were analyzed using Generalized Mixed Models. Results: Both health status and sex influenced ANT performance, when considering raw RTs. Nevertheless, after adjusting for the baseline processing speed, the effect of cognitive impairment was no longer evident in men, while it persisted in women, suggesting specific vulnerabilities in females not attributable to general slowing nor to the MCI diagnosis. Moreover, women appeared significantly slower and less accurate when dealing with conflicting information. Orienting and alerting did not differ between groups. Conclusions: To the best of our knowledge, this is the first study investigating sex differences in attentional subcomponents in the aging population. Our results suggest that previously reported inconsistencies about the decline of attentional subcomponents may be attributable to such diversities. Systematically addressing sex differences in cognitive decline appears pivotal for informing the development of precision medicine approaches. Full article
Show Figures

Figure 1

18 pages, 1988 KiB  
Article
What Can Ground-Dwelling Ants Tell Us About Different Land-Use Systems in the Brazilian Amazon?
by Elisangela Silva, Cristina Machado Borges, Emília Zoppas Albuquerque, Daniela Faria Florencio, Izaias Fernandes, Mariana Tolentino, Vanesca Korasaki, Júlio Louzada and Ronald Zanetti
Forests 2025, 16(7), 1190; https://doi.org/10.3390/f16071190 - 19 Jul 2025
Viewed by 361
Abstract
Tropical rainforests are rapidly disappearing due to human activities, particularly land-use changes, resulting in a heterogeneous mosaic of landscapes that substantially contribute to global terrestrial biodiversity loss. We investigated how changes in land-use affect species richness, composition, and functional guilds of ground-dwelling ants [...] Read more.
Tropical rainforests are rapidly disappearing due to human activities, particularly land-use changes, resulting in a heterogeneous mosaic of landscapes that substantially contribute to global terrestrial biodiversity loss. We investigated how changes in land-use affect species richness, composition, and functional guilds of ground-dwelling ants within various land-use systems at a local scale in the Amazonian rainforest. Our focus was to respond to the following: (i) How do local species richness and community composition reflect differences among land-use systems? (ii) Are ground-dwelling ants, especially specialists, negatively impacted by intensified land-use changes? We surveyed 55 sites representing five land-use systems: primary forest, secondary forest, forest corridor, selective logging, and Eucalyptus plantation. We registered 150 ant species, and species richness ranged from 43 to 94. Richness varies according to the land-use systems, likely influenced by differences in habitat structural complexity both vertically and horizontally. Ant species composition and guilds distribution also varied among land-use systems studied. Environments characterized by reduced structural complexity or higher disturbed levels, such as Eucalyptus plantations, tend to support lower resource availability, which may lead to decreased species richness. However, the surrounding matrix appears to play a key role in maintaining regional biodiversity, as evidenced by the absence of differences in ground-dwelling ants diversity across all land-use systems studied. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

26 pages, 8154 KiB  
Article
Investigation into the Efficient Cooperative Planning Approach for Dual-Arm Picking Sequences of Dwarf, High-Density Safflowers
by Zhenguo Zhang, Peng Xu, Binbin Xie, Yunze Wang, Ruimeng Shi, Junye Li, Wenjie Cao, Wenqiang Chu and Chao Zeng
Sensors 2025, 25(14), 4459; https://doi.org/10.3390/s25144459 - 17 Jul 2025
Viewed by 226
Abstract
Path planning for picking safflowers is a key component in ensuring the efficient operation of robotic safflower-picking systems. However, existing single-arm picking devices have become a bottleneck due to their limited operating range, and a breakthrough in multi-arm cooperative picking is urgently needed. [...] Read more.
Path planning for picking safflowers is a key component in ensuring the efficient operation of robotic safflower-picking systems. However, existing single-arm picking devices have become a bottleneck due to their limited operating range, and a breakthrough in multi-arm cooperative picking is urgently needed. To address the issue of inadequate adaptability in current path planning strategies for dual-arm systems, this paper proposes a novel path planning method for dual-arm picking (LTSACO). The technique centers on a dynamic-weight heuristic strategy and achieves optimization through the following steps: first, the K-means clustering algorithm divides the target area; second, the heuristic mechanism of the Ant Colony Optimization (ACO) algorithm is improved by dynamically adjusting the weight factor of the state transition probability, thereby enhancing the diversity of path selection; third, a 2-OPT local search strategy eliminates path crossings through neighborhood search; finally, a cubic Bézier curve heuristically smooths and optimizes the picking trajectory, ensuring the continuity of the trajectory’s curvature. Experimental results show that the length of the parallelogram trajectory, after smoothing with the Bézier curve, is reduced by 20.52% compared to the gantry trajectory. In terms of average picking time, the LTSACO algorithm reduces the time by 2.00%, 2.60%, and 5.60% compared to DCACO, IACO, and the traditional ACO algorithm, respectively. In conclusion, the LTSACO algorithm demonstrates high efficiency and strong robustness, providing an effective optimization solution for multi-arm cooperative picking and significantly contributing to the advancement of multi-arm robotic picking systems. Full article
Show Figures

Figure 1

16 pages, 1863 KiB  
Article
Effect of Energycane Integration on Ground-Dwelling Arthropod Biodiversity in a Sugarcane-Sweet Corn Cropping System
by Amandeep Sahil Sharma, Ricardo A. Lesmes-Vesga, Simranjot Kaur, Hardeep Singh and Hardev Singh Sandhu
Agronomy 2025, 15(7), 1685; https://doi.org/10.3390/agronomy15071685 - 12 Jul 2025
Viewed by 214
Abstract
Integrating bioenergy crops into existing agricultural systems may influence soil biodiversity, yet evidence remains limited for second-generation bioenergy crops such as energycane. This study examined the impact of energycane integration on soil arthropod communities in the Everglades Agricultural Area, Florida, compared to traditional [...] Read more.
Integrating bioenergy crops into existing agricultural systems may influence soil biodiversity, yet evidence remains limited for second-generation bioenergy crops such as energycane. This study examined the impact of energycane integration on soil arthropod communities in the Everglades Agricultural Area, Florida, compared to traditional sugarcane and sweetcorn cropping systems. Over two crop cycles (plant cane and first ratoon), soil arthropod abundance and diversity were assessed using pitfall traps. Energycane and sugarcane, both perennial crops, showed no significant differences in order richness or Shannon diversity. Similarly, when energycane was compared with sugarcane and sweetcorn (during the first sampling), it had similar arthropod abundance. However, sweetcorn remained fallow in the second and third samplings, attracting arthropods like fire ants and earwigs, particularly due to pigweed. Diversity metrics based on Hill numbers revealed a decline in the effective abundance of ground-dwelling arthropods with increasing diversity order, influenced by differences in sampling duration. Importantly, no previous studies have been found that have reported on the effects of energycane integration into the existing cropping system on soil arthropod biodiversity. These findings highlight that energycane supports biodiversity levels comparable to sugarcane cropping systems with no negative impacts on soil arthropod abundance. This study underscores the need to consider soil biodiversity impacts when evaluating sustainable bioenergy crop transitions and the potential ecological trade-offs of perennial cropping systems. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

15 pages, 2390 KiB  
Article
Impact of Ants on the Order Composition of Canopy Arthropod Communities in Temperate and Tropical Forests
by Andreas Floren and Tobias Müller
Animals 2025, 15(13), 1914; https://doi.org/10.3390/ani15131914 - 28 Jun 2025
Viewed by 341
Abstract
Ants are key drivers of biodiversity in both tropical and temperate forests, though the underlying mechanisms of this remain debated. In tropical lowland rainforests, ants dominate the canopy as opportunistic predators, shaping arthropod abundance and community structure. By contrast, few arboreal ant species [...] Read more.
Ants are key drivers of biodiversity in both tropical and temperate forests, though the underlying mechanisms of this remain debated. In tropical lowland rainforests, ants dominate the canopy as opportunistic predators, shaping arthropod abundance and community structure. By contrast, few arboreal ant species exist in temperate forests due to climatic constraints, and predation pressure is generally low. This changes when ground-nesting Formica species enter the canopy to forage. Using insecticidal knockdown, we collected arthropod communities from trees with high and low ant abundance in both tropical and temperate forests and in different seasons. We found consistently higher arthropod abundances on trees with strong ant dominance, including preferred prey taxa such as Diptera, Psocoptera, and Lepidoptera. In temperate forests, high arthropod densities may be driven by aphid-produced honeydew, whereas in tropical rainforests, the absence of large hemipteran aggregations suggests that other mechanisms are involved. Consequently, this mechanism fails to explain high arthropod abundance in tropical primary forests. In contrast, secondary tropical forests host structurally and compositionally altered ant communities, resulting in reduced predation pressure and a marked increase in the abundance of individual species, including potential pest species. These findings suggest that biodiversity maintenance in the canopy depends on intact, diverse ant communities. Recolonization from nearby primary forests is essential for recovery, yet even after five decades, secondary forests remain ecologically distinct, rendering full restoration to primary forest conditions unlikely within a management-relevant timeframe. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

15 pages, 2387 KiB  
Article
First Preliminary Molecular Assessment of Ants from Cabo Verde
by Michael Joseph Jowers, Franco Guouman Ferreyra, Stephane Caut, José Carlos Brito and Raquel Vasconcelos
Genes 2025, 16(7), 725; https://doi.org/10.3390/genes16070725 - 22 Jun 2025
Viewed by 496
Abstract
Background/Objectives: Ants are one of the most abundant animal groups on the planet and have a considerable impact on ecosystems. In the Cabo Verde Archipelago, the study of invertebrates is very scarce and ants are no exception. Methods: In this work we focus [...] Read more.
Background/Objectives: Ants are one of the most abundant animal groups on the planet and have a considerable impact on ecosystems. In the Cabo Verde Archipelago, the study of invertebrates is very scarce and ants are no exception. Methods: In this work we focus on the taxonomic analysis of formicids and study their distribution and the possible presence of invasive species in the Cabo Verde Islands. In addition, the diversity of Cabo Verde ants is compared with that of the closest African coastal countries, Senegal and Mauritania, to study a possible colonization of African ants into the archipelago. For this, we use two molecular markers, cytochrome oxidase I and the wingless gene, to perform phylogenetic analyses and haplotype networks that facilitate identification. Results: Nine taxa were identified, five invasive species, Paratrechina longicornis, Pheidole megacephala, Trichomyrmex destructor, Brachyponera sennaarensis, and Solenopsis globularia, one endemic Monomorium subopacum and three unidentified species of native genera, Monomorium sp., Lepisiota sp. Camponotus sp. Conclusions: Molecular network patterns as well as phylogenetic analyses suggest that ants are widespread throughout the archipelago, a likely consequence of human introductions. Full article
(This article belongs to the Collection Feature Papers in ‘Animal Genetics and Genomics’)
Show Figures

Figure 1

10 pages, 3018 KiB  
Proceeding Paper
Real-Time Object Detection in Tap Water Utilizing YOLOv8 for Comprehensive Contamination Monitoring
by Glajemir E. Bautista, Paula Angelyn D. Gargar and Ramon G. Garcia
Eng. Proc. 2025, 92(1), 93; https://doi.org/10.3390/engproc2025092093 - 4 Jun 2025
Viewed by 469
Abstract
The study presents a real-time object detection system for tap water contamination, employing the YOLOv8 model to identify specific pollutants, including algae, ants, and sand. The presence of these pollutants poses significant risks to water quality and public health, particularly in urban settings. [...] Read more.
The study presents a real-time object detection system for tap water contamination, employing the YOLOv8 model to identify specific pollutants, including algae, ants, and sand. The presence of these pollutants poses significant risks to water quality and public health, particularly in urban settings. To address these concerns, a high-precision object detection system was implemented to monitor and analyze water samples effectively. The developed system integrates unconventional image processing, enabling the accurate identification of foreign objects and potential contaminants with high accuracy. The data collected were utilized to train the YOLOv8 model, ensuring reliable performance across diverse environmental conditions. The system provides timely detection of contaminants through real-time analysis, facilitating proactive water quality management. The performance of the YOLOv8 model was systematically evaluated using key metrics, including precision, recall, and inference speed, to validate its effectiveness. This object detection device represents a critical advancement in safeguarding public health by incorporating machine learning into existing water quality monitoring frameworks, ultimately supporting sustainable and safe urban water management. Full article
(This article belongs to the Proceedings of 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering)
Show Figures

Figure 1

30 pages, 3767 KiB  
Article
Enhancing Manufacturing Efficiency Through Symmetry-Aware Adaptive Ant Colony Optimization Algorithm for Integrated Process Planning and Scheduling
by Abbas Raza, Gang Yuan, Chongxin Wang, Xiaojun Liu and Tianliang Hu
Symmetry 2025, 17(6), 824; https://doi.org/10.3390/sym17060824 - 25 May 2025
Viewed by 577
Abstract
Integrated process planning and scheduling (IPPS) is an intricate and vital issue in smart manufacturing, requiring the coordinated optimization of both process plans and production schedules under multiple resource and precedence constraints. This paper presents a novel optimization framework, symmetry-aware adaptive Ant Colony [...] Read more.
Integrated process planning and scheduling (IPPS) is an intricate and vital issue in smart manufacturing, requiring the coordinated optimization of both process plans and production schedules under multiple resource and precedence constraints. This paper presents a novel optimization framework, symmetry-aware adaptive Ant Colony Optimization (SA-AACO), designed to resolve key limitations in existing metaheuristic approaches. The proposed method introduces three core innovations: (1) a symmetry-awareness mechanism to eliminate redundant solutions arising from symmetrically equivalent configurations; (2) an adaptive pheromone-updating strategy that dynamically balances exploration and exploitation; and (3) a dynamic idle time penalty system, integrated with time window-based machine selection. Benchmarked across ten IPPS scenarios, SA-AACO achieves a superior makespan in 9/10 cases (e.g., 29.1% improvement over CCGA in Problem 1) and executes 18-part processing within 30 min. While MMCO marginally outperforms SA-AACO in Problem 10 (makespan: 427 vs. 483), SA-AACO’s consistent dominance across diverse scales underscores the feasibility of its application in industry to balance quality and efficiency. By unifying symmetry handling and adaptive learning, this work advances the reconfigurability of IPPS solutions for dynamic industrial environments. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Optimization Algorithms and System Control)
Show Figures

Figure 1

18 pages, 1588 KiB  
Review
The Role of Red Wood Ants (Formica rufa Species Group) in Central European Forest Ecosystems—A Literature Review
by Ágnes Fürjes-Mikó, Sándor Csősz, Márton József Paulin and György Csóka
Insects 2025, 16(5), 518; https://doi.org/10.3390/insects16050518 - 13 May 2025
Viewed by 1837
Abstract
Red wood ants (RWA), belonging to the Formica rufa species group, play a crucial and fascinating role in Central Europe’s forest ecosystems. They have a high variety of effects, which they exert around their nests. Their generalist feeding on prey in the canopies [...] Read more.
Red wood ants (RWA), belonging to the Formica rufa species group, play a crucial and fascinating role in Central Europe’s forest ecosystems. They have a high variety of effects, which they exert around their nests. Their generalist feeding on prey in the canopies of trees lowers the frequency of defoliator outbreaks, as well as increases local biodiversity. Nearly half of their diverse diet is insects, including species considered harmful by foresters. They also have a mutualistic relation with honeydew-producing aphids and planthoppers, which connection has unclear effects on the forests. The habit of RWAs building nests could also positively influence soil composition, due to its structure and high amount of organic matter, which could potentially benefit tree growth. RWAs are also known to enhance the species richness of forests by supporting various myrmecophilous species associated with them. In this study, we review the role of RWAs in forest protection, drawing on the literature focusing on Hungary and Central Europe. Full article
(This article belongs to the Special Issue The Richness of the Forest Microcosmos)
Show Figures

Figure 1

29 pages, 37076 KiB  
Article
Research on Capacitated Multi-Ship Replenishment Path Planning Problem Based on the Synergistic Hybrid Optimization Algorithm
by Lin Yang, Qinghua Chen, Junjie Mu, Tangying Liu, Xiaoxiao Li and Shuxiang Cai
Biomimetics 2025, 10(5), 285; https://doi.org/10.3390/biomimetics10050285 - 2 May 2025
Viewed by 327
Abstract
Ship replenishment path planning is a critical problem in the field of maritime logistics. This study proposes a novel synergistic hybrid optimization algorithm (SHOA) that effectively integrates ant colony optimization (ACO), the Clarke–Wright algorithm (CW), and the genetic algorithm (GA) to solve the [...] Read more.
Ship replenishment path planning is a critical problem in the field of maritime logistics. This study proposes a novel synergistic hybrid optimization algorithm (SHOA) that effectively integrates ant colony optimization (ACO), the Clarke–Wright algorithm (CW), and the genetic algorithm (GA) to solve the capacitated multi-ship replenishment path planning problem (CMSRPPP). The proposed methodology employs a three-stage optimization framework: (1) initial path generation via parallel execution of the CW and ACO; (2) population initialization for the GA by strategically combining optimal solutions from ACO and the CW with randomized solutions; (3) iterative refinement using an enhanced GA featuring an embedded evolutionary reversal operation for local intensification. To evaluate performance, the SHOA is benchmarked against ACO, the GA, the particle swarm optimization algorithm, and the simulated annealing algorithm for the capacitated vehicle routing problem. Finally, the SHOA is applied to diverse CMSRPPP instances, demonstrating high adaptability, robust planning capabilities, and promising practical potential. Full article
Show Figures

Figure 1

41 pages, 18914 KiB  
Article
Cost-Efficient RSSI-Based Indoor Proximity Positioning, for Large/Complex Museum Exhibition Spaces
by Panos I. Philippopoulos, Kostas N. Koutrakis, Efstathios D. Tsafaras, Evangelia G. Papadopoulou, Dimitrios Sigalas, Nikolaos D. Tselikas, Stefanos Ougiaroglou and Costas Vassilakis
Sensors 2025, 25(9), 2713; https://doi.org/10.3390/s25092713 - 25 Apr 2025
Viewed by 665
Abstract
RSSI-based proximity positioning is a well-established technique for indoor localization, featuring simplicity and cost-effectiveness, requiring low-price and off-the-shelf hardware. However, it suffers from low accuracy (in NLOS traffic), noise, and multipath fading issues. In large complex spaces, such as museums, where heavy visitor [...] Read more.
RSSI-based proximity positioning is a well-established technique for indoor localization, featuring simplicity and cost-effectiveness, requiring low-price and off-the-shelf hardware. However, it suffers from low accuracy (in NLOS traffic), noise, and multipath fading issues. In large complex spaces, such as museums, where heavy visitor traffic is expected to seriously impact the ability to maintain LOS, RSSI coupled with Bluetooth Low Energy (BLE) seems ideal in terms of market availability, cost-/energy-efficiency and scalability that affect competing technologies, provided it achieves adequate accuracy. Our work reports and discusses findings of a BLE/RSSI-based pilot, implemented at the Museum of Modern Greek Culture in Athens, involving eight buildings with 47 halls with diverse areas, shapes, and showcase layouts. Wearable visitor BLE beacons provided cell-level location determined by a prototype tool (VTT), integrating in its architecture different functionalities: raw RSSI data smoothing with Kalman filters, hybrid positioning provision, temporal methods for visitor cell prediction, spatial filtering, and prediction based on popular machine learning classifiers. Visitor movement modeling, based on critical parameters influencing signal measurements, provided scenarios mapped to popular behavioral models. One such model, “ant”, corresponding to relatively slow nomadic cell roaming, was selected for basic experimentation. Pilot implementation decisions and methods adopted at all layers of the VTT architecture followed the overall concept of simplicity, availability, and cost-efficiency, providing a maximum infrastructure cost of 8 Euro per m2 covered. A total 15 methods/algorithms were evaluated against prediction accuracy across 20 RSSI datasets, incorporating diverse hall cell allocations and visitor movement patterns. RSSI data, temporal and spatial management with simple low-processing methods adopted, achieved a maximum prediction accuracy average of 81.53% across all datasets, while ML algorithms (Random Forest) achieved a maximum prediction accuracy average of 87.24%. Full article
Show Figures

Figure 1

12 pages, 4613 KiB  
Article
Testing a Hump-Shaped Pattern with Increasing Elevation for Ant Species Richness in Daliang Mountain, Sichuan, China
by Shi-Jia You, Zheng-Hui Xu and Xin-Min Zhang
Diversity 2025, 17(5), 308; https://doi.org/10.3390/d17050308 - 24 Apr 2025
Viewed by 512
Abstract
Ants have long been regarded as ubiquitous insects that are indicators of environmental change and ecosystems. Understanding the patterns of ant species richness along elevational gradients is crucial for elucidating their ecological functions within ecosystems. However, there is currently no comprehensive consensus on [...] Read more.
Ants have long been regarded as ubiquitous insects that are indicators of environmental change and ecosystems. Understanding the patterns of ant species richness along elevational gradients is crucial for elucidating their ecological functions within ecosystems. However, there is currently no comprehensive consensus on the pattern. In this study, we explored the pattern of ant species richness along an elevational gradient in the Mt. Daliang region (Sichuan, China), a biodiversity conservation hotspot in China. The ant species richness was investigated using 115 plots 50 × 50 m in size, distributed across 12 elevation bands of 250 m interval between 750 to 3500 m a.s.l. We identified 157 ant species from 51 genera and seven subfamilies. Myrmicinae was the most diverse subfamily, consisting of 20 genera and 84 species, followed by Formicinae, Dolichoderinae, Ponerinae, Dorylinae, Amblyoponinae, and Proceratiinae. We found a unimodal distribution pattern of ant species richness along the elevational gradient, with the highest ant species richness occurring at mid-elevations. This hump-shaped pattern of ant species richness was presented alongside the temperature variation. Furthermore, our results indicated that ground-foraging ant species were the most abundant in this region and that ants prefer to nest in the soil. Our findings highlight the importance of elevation in influencing ant species richness in Daliang Mountain, Sichuan, China, and provide novel insights into the potential drivers of elevational gradients in ant species communities. Full article
Show Figures

Figure 1

Back to TopTop