Beauty or the Beast? A Puzzling Modification of the Clypeus and Mandibles on the Eocene Ant
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fossil Imaging
2.2. Description and Measurement
- HL—head length, maximum length of the head, measured from the transverse line connecting the posterior-most points of the occipital corners of the head to the anterior-most extremity of the clypeus (excluding horns);
- HW—head width, measured along the lower line of the eyes;
- SL—the maximum straight-line length of the scape measured from antennal bulb to the apex;
- PdL—pedicellum length;
- FI1—the length of the first flagellomere;
- FI2—the length of the second flagellomere;
- AnL—the maximum straight-line length of the right antenna measured from the base of the scape to the apex of the antenna;
- OL—the maximum length of the right eye measured by maximum diameter;
- MdL—the length of the mandible, measured from the mandibular apex to the anterior clypeus margin (excluding horns);
- WL—Weber’s length: the diagonal length of the mesosoma in profile from the point at which the pronotum meets the cervical shield to the posterior basal angle of the metapleuron;
- ML—mesosoma length: diagonal length of the mesosoma as measured from the anteriormost pronotal point to the posterior-most apex of the propodeal projection in dorsal view;
- FwL—the length of the right forewing measured by maximum diameter;
- PnL—the maximum length of the pronotum in dorsal view;
- PnW—the maximum width of the pronotum in dorsal view;
- MtL—mesoscutum length. Maximum length of the mesoscutum in dorsal view;
- MtW—mesoscutum width. Maximum width of the mesoscutum in dorsal view;
- MsL—mesoscutellum length. Maximum length of the mesoscutellum in dorsal view;
- MsW—mesoscutellum width. Maximum width of the mesoscutellum in dorsal view;
- PrdL—the maximum length of the propodeum in dorsal view;
- PrdW—the maximum width of the propodeum in dorsal view;
- PrdH—the height of the propodeum in profile, measured as the perpendicular distance from the ventral edge to the highest point of the propodeum;
- PtL—the length of the petiolar node in profile, measured as the distance from the place of attachment to the propodeum to the place of attachment to the gaster;
- PtW—the maximum width of the petiolar node in dorsal view;
- PtH—the height of the petiolar node in profile, measured as the perpendicular distance from the ventral edge to the highest point of the petiolar node;
- HFL—the maximum length of the right hind femur, measured in anterior view;
- HTL—the maximum length of the right hind tibia, measured in anterior view;
- GL—the length of the gaster, measured as the distance from the place of attachment of the postpetiole to the top of the gaster in ventral view;
- TL—the total length of the ant (=HL + MdL + WL + PtL + GL).
- Indices:
- CI (cephalic index) = HL/HW;
- SI1 (scape length index) = SL/HL;
- SI2 (scape width index) = SL/HW;
- OI1 (eye length index) = OL/HL;
- OI2 (eye width index) = OL/HW;
- PI1 (petiole height index) = PtL/PtH;
- PI2 (petiole width index) = PtL/PtW;
- MI (mesosomal index) = WL/PnW;
- PRI (propodeal index) = PrdL/PrdH.
- The nomenclature of the veins of the wings follows that of Perfilieva K. S. [30].
2.3. Phylogenetic Analyses
3. Results
3.1. Systematic Palaeontology
3.2. Phylogenetic Analyses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Head width ≥ 1 mm—see [33].Compound eyes and ocelli.
- The middle line of the eye situated at or posterior to head midlength (if false, then situated anterior to head midlength).
- Eyes are large, about equal to a third of the length of the head or more.Mandibles.
- Mandibular teeth number: (0) greater than 5 teeth; (1) 5 teeth or fewer.
- Gnawing mandibles (1).
- At least some mandibular teeth in form of fine serration—Applies primarily to Dolichoderinae.
- Mandible, third tooth from apex size as large as other teeth (i.e., not reduced)—Bolton [37] inferred that a small third tooth from the apex was probably an ancestral state for the Formicinae, with an enlarged tooth being a synapomorphy for the Camponotini.
- Mandibular basal and masticatory margins meeting at a strongly oblique angle—Observed among sampled taxa primarily among the Prenolepis genus group and some Plagiolepidini, where the juncture between the basal and masticatory margins is clearly defined as an angle.Other mouthparts.
- Palp formula: 6:4 (0); less than 6:4 (1).Perioral sclerites.
- Hypostoma with lateral flanges which are conspicuous in profile view—A defining feature of Dolichoderus (see [58]).
- Pleurostomal (cranial) condyle conspicuously large and rectangular—A newly defined state which is characteristic of the dolichoderomorphs (Aneuretinae + Dolichoderinae).Frontoclypeal complex and toruli.
- Antennal toruli considerably distant from posterior clypeal margin (if FALSE, then closely approximated, abutting, or indenting).
- Antennal toruli nearly contacting, contacting, or indenting posterior clypeal margin—characterisation of this state drawn from [37].
- Antennal sockets in full-face view: fully exposed.
- Clypeus modified for reception of labrum (specifically, clypeus with anterolateral notches; see [33].Facial surfaces.
- Frontal carina present—Frontal carinae are present in the majority of formicoids and, among taxa included in this study, are absent for a few Formicinae.States of relative antennomere length.
- Scape length (SL) ≥ head width (HW).
- First antennomere bulk (both workers and females).
- Antennal segment number: 12 segments (0); 11 or fewer segments (1).
- Antenna filiform or slightly thickened.
- Antenna gradually incrassate towards apex but without a distinctly differentiated club.
- Apical antennomeres form a club.Antennae
- Erect macrosetae are present on scape.Cranial setation.
- Coarse, paired macrosetae present on face—This setational pattern is observed in various Prenolepis genus group taxa, as well as Anoplolepis gracilipes. If it occurs in at least some species. Including the workers.Metapleural glands.
- Metapleural gland: present (1); absent (0)—As with scape-to-flagellum length, presence of the metapleural gland is a canonical defining state of the Formicidae [37,53]. The gland has been variably lost in males and has been lost multiple times in the Camponotini.Propodeum.
- Propodeum armed with spines or other distinct protuberances—Propodeal armature has arisen independently among various Formicidae. Only queens were evaluated.
- Propodeal spiracle situated at or near posterolateral margin of propodeum (if false, then spiracle situated more anteriorly—Although not maximally consistent, a posteriorly situated spiracle is observed in Camponotini and Lasiini among other taxa.
- Spiracle on the propodeum is elongate and slit-like (1), (if false spiracle is round (0)).
- Propodeum produced posterodorsally as shelf overhanging posterior face—observed in Dolichoderus, and some Camponotus.
- Propodeum is elongated. (if observed in some species (1), if false (0)). Only queens were evaluated.Legs.
- Metacoxae wideset, with petiolar foramen extending to mesocoxal foramina—One of the defining states of Bolton’s [37] Lasiini tribe group, along with a U-shaped ventral petiolar cross-section.
- Anterior mesotibial spur/spurs is present.
- Anterior metatibial spur/spurs is present.Abdominal segment II (“petiole”).
- Petiole strongly inclined anteriorly or with posterior portion elongate—This is a feature of those groups which have the “gaster” overhanging the petiole, including the Tapinomini (Dolichoderinae), Plagiolepidini, and Prenolepis genus group.
- Petiolar node with dorsal armature (spine or spines present).
- Petiole is elongated with very long, low node. (if observed in some species (1), if false (0)). Only queens were evaluated.
- Petiole muscle orifice: (0) round; (1) oval. from [38].Abdominal segment III.
- Abdominal segment III tergosternal margins forming narrow shoulder laterad helcium—“Shouldering” of abdominal segment III was used by Bolton [37] to diagnose various groups of the Myrmicinae (e.g., comment iii of the Solenopsidine tribe group), but is also observed in Formicinae, such as the Prenolepis genus group and the Plagiolepidini.
- Abdominal segment III tergosternal margins raised high above helcium—This state, plus the preceding, were used by Bolton [37] to define his Plagiolepidini.Metasoma, posterior to segment III.
- Proventriculus: asepalous (0); sepalous (1).
- Abdominal terga VI and VII with dense, uniform layer of short and strongly curved setae.Wings
- Forewing of gynes with closed cells 1+2R and 3R, cells rm and mcu are absent.
- The length of the 1RS vein is approximately equal to the length of the 1M vein.
- The 1RS vein and the 1M vein together form an obtuse angle. (If TRUE (1), if 1RS vein and 1M vein together form a 180-degree angle (0)).
- The 2r-rs vein is situated at approximately pterostigma midlength, directed by the lower margin posterodistally.
- The 4M vein departs from cell 1+2r distally from vein 2r-rs.
- The 5RS vein is almost straight, its distal margin is attached to 4R without being curved, forming an acute angle.
- The vein 2r-rs smoothly transitions into the vein 4M, so the vein 4M starts where the vein 2r-rs ends.
- The length of the cu-a vein is more than 2.5× shorter than 2M + Cu vein.
- Cell 3R is distinctly narrower than 1+2R.
References
- Griffiths, H.M.; Ashton, L.A.; Walker, A.E.; Hasan, F.; Evans, T.A.; Eggleton, P.; Parr, C.L. Ants are the major agents of resource removal from tropical rainforests. J. Anim. Ecol. 2018, 87, 293–300. [Google Scholar] [CrossRef]
- McGlynn, T.P.; Parra, E.L. Mechanisms of carbohydrate-fuelled ecological dominance in a tropical rainforest canopy-foraging ant. Ecol. Entomol. 2016, 41, 226–230. [Google Scholar] [CrossRef]
- Nel, A.; Perrault, G.; Perrichot, V.; Neraudeau, D. The oldest ant in the Lower Cretaceous of Charente-Maritime (SW France) (Insecta: Hymenoptera: Formicidae). Geol. Acta 2004, 2, 23–29.s. [Google Scholar]
- Perrichot, V.; Nel, A.; Neraudeau, D.; Lacau, S.; Guyot, T. New fossil ants in French Cretaceous amber. Sci. Nat. 2008, 95, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Perrichot, V. A new species of Baikuris (Hymenoptera: Formicidae: Sphecomyrminae) in mid-Cretaceous amber from France. Cretac. Res. 2015, 52, 585–590. [Google Scholar] [CrossRef]
- Engel, M.S.; Grimaldi, D.A. Primitive new ants in Cretaceous amber from Myanmar, New Jersey, and Canada (Hymenoptera: Formicidae). Am. Mus. Novit. 2005, 3485, 1–24. [Google Scholar] [CrossRef]
- Barden, P.; Grimaldi, D. A new genus of highly specialized ants in Cretaceous Burmese amber (Hymenoptera: Formicidae). Zootaxa 2013, 3681, 405–412. [Google Scholar] [CrossRef]
- Barden, P.; Grimaldi, D. A diverse ant fauna from the mid Cretaceous of Myanmar (Hymenoptera: Formicidae). PLoS ONE 2014, 9, e93627. [Google Scholar] [CrossRef]
- Barden, P.; Grimaldi, D. Adaptive radiation in socially advanced stem-group ants from the Cretaceous. Curr. Biol. 2016, 26, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Perrichot, V.; Wang, B.; Barden, P. New remarkable hell ants (Formicidae: Haidomyrmecinae stat. nov.) from mid-Cretaceous amber of northern Myanmar. Cretac. Res. 2020, 109, 104381. [Google Scholar] [CrossRef]
- Barden, P.; Hollister, W.H.; Grimaldi, D. A new genus of hell ants from the Cretaceous (Hymenoptera: Formicidae: Haidomyrmecini) with a novel head structure. Syst. Entomol. 2017, 42, 837–846. [Google Scholar] [CrossRef]
- Miao, Z.P.; Wang, M. A new species of hell ants (Hymenoptera: Formicidae: Haidomyrmecini) from the Cretaceous Burmese amber. J. Guangxi Univ. 2019, 37, 139–142. [Google Scholar] [CrossRef]
- Cao, H.J.; Boudinot, B.E.; Wang, Z.; Miao, X.F.; Shih, C.K.; Ren, D.; Gao, T.P. Two new iron maiden ants from Burmese amber (Hymenoptera: Formicidae: †Zigrasimeciini). Myrmecol. News. 2020, 30, 161–173. [Google Scholar] [CrossRef]
- Boudinot, B.E.; Perrichot, V.; Chaul, J.C.M. †Camelosphecia gen. nov., lost ant-wasp intermediates from the mid-Cretaceous (Hymenoptera, Formicoidea). ZooKeys 2020, 1005, 21–55. [Google Scholar] [CrossRef]
- Boudinot, B.E.; Richter, A.; Katzke, J.; Chaul, J.C.M.; Keller, R.A.; Economo, E.P.; Beutel, R.G.; Yamamoto, S. Evidence for the evolution of eusociality in stem ants and a systematic revision of †Gerontoformica (Hymenoptera: Formicidae). Zool. J. Linn. Soc. 2022, 195, 1355–1389. [Google Scholar] [CrossRef]
- Lattke, J.E.; Melo, G.A.R. New Haidomyrmecine ants (Hymenoptera: Formicidae) from mid-Cretaceous amber of northern Myanmar. Cretac. Res. 2020, 114, 104502. [Google Scholar] [CrossRef]
- Zhuang, Y.H.; Ran, H.; Li, X.Q.; Feng, C.; Liu, Y. A new species of the iron maiden ant based on an alate female from mid-Cretaceous Burmese amber (Hymenoptera: Formicidae: †Zigrasimecia). Cretac. Res. 2021, 130, 105056. [Google Scholar] [CrossRef]
- Zhuang, Y.H.; Liu, Y.; Ran, H.; Jarzembowski, E.A.; Zhang, Q.Q. A new species and one new wing type of the iron maiden ants from Kachin amber (Hymenoptera: Formicidae: Zigrasimecia). Cretac. Res. 2023, 154, 105742. [Google Scholar] [CrossRef]
- Richter, A.; Boudinot, B.; Yamamoto, S.; Katzke, J.; Beutel, R.G. The first reconstruction of the head anatomy of a Cretaceous insect, †Gerontoformica gracilis (Hymenoptera: Formicidae), and the early evolution of ants. Insect Syst. Divers. 2022, 6, 1–80. [Google Scholar] [CrossRef]
- Chaul, J.C.M. A revision of the Cretaceous ant genus Zigrasimecia Barden & Grimaldi, 2013 (Hymenoptera: Formicidae: †Zigrasimeciinae). Zootaxa 2023, 5325, 301–341. [Google Scholar] [CrossRef] [PubMed]
- Grimaldi, D.; Agosti, D. A formicine in New Jersey Cretaceous amber (Hymenoptera: Formicidae) and early evolution of the ants. Proc. Natl. Acad. Sci. USA 2000, 97, 13678–13683. [Google Scholar] [CrossRef]
- McKellar, R.C.; Glasier, J.R.N.; Engel, M.S. New ants (Hymenoptera: Formicidae: Dolichoderinae) from Canadian Late Cretaceous amber. Bull. Geosci. 2013, 88, 583–594. [Google Scholar] [CrossRef]
- Barden, P. Fossil ants (Hymenoptera: Formicidae): Ancient diversity and the rise of modern lineages. Myrmecol. News. 2017, 24, 1–30. [Google Scholar] [CrossRef]
- Lapolla, J.S.; Dlussky, G.M.; Perrichot, V. Ants and the fossil record. Annu. Rev. Entomol. 2013, 58, 609–630. [Google Scholar] [CrossRef]
- Perfilieva, K.S. Cretaceous-Burmese-Amber ants: Morphological features and community structure. Biol. Bull. Rev. 2023, 13, 38–54. [Google Scholar] [CrossRef]
- Sosiak, C.; Cockx, P.; Suarez, P.A.; McKellar, R.; Barden, P. Prolonged faunal turnover in earliest ants revealed by North American Cretaceous amber. Curr. Biol. 2024, 34, 8. [Google Scholar] [CrossRef]
- Martínez-Delclòs, X.; Briggs Derek, E.G.; Peñalver, E. Taphonomy of insects in carbonates and amber. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 203, 19–64. [Google Scholar] [CrossRef]
- Carpenter, F.M. The fossil ants of North America. Bull. Mus. comp. Zool. 1930, 70, 1–66. [Google Scholar]
- Iakovleva, A.I.; Aleksandrova, G.N.; Mychko, E.V. Late Eocene (Priabonian) dinoflagellate cysts from Primorsky quarry, southeast Baltic coast, Kaliningrad Oblast, Russia. Palynology 2022, 46, 1–40. [Google Scholar] [CrossRef]
- Perfilieva, K.S. Trends in evolution of ant wing venation (Hymenoptera, Formicidae). Entomol. Rev. 2010, 90, 857–870. [Google Scholar] [CrossRef]
- Ward, P.S.; Blaimer, B.B.; Fisher, B.L. A revised phylogenetic classification of the ant subfamily Formicinae (Hymenoptera: Formicidae), with resurrection of the genera Colobopsis and Dinomyrmex. Zootaxa 2016, 4072, 343–357. [Google Scholar] [CrossRef]
- Matos-Maraví, P.; Clouse, R.M.; Sarnat, E.M.; Economo, E.P.; LaPolla, J.S.; Borovanska, M.; Rabeling, C.; Czekanski-Moir, J.; Latumahina, F.; Wilson, E.O.; et al. An ant genus-group (Prenolepis) illuminates the biogeography and drivers of insect diversification in the Indo-Pacific. Mol. Phylogenetics Evol. 2018, 123, 16–25. [Google Scholar] [CrossRef]
- Boudinot, B.E.; Borowiec, M.L.; Prebus, M.M. Phylogeny, evolution, and classification of the ant genus Lasius, the tribe Lasiini and the subfamily Formicinae (Hymenoptera: Formicidae). Syst. Entomol. 2022, 47, 113–151. [Google Scholar] [CrossRef]
- Fikáček, M.; Beutel, R.G.; Cai, C.; Lawrence, J.F.; Newton, A.F.; Solodovnikov, A.; Ślipiński, A.; Thayer, M.K.; Yamamoto, S. Reliable placement of beetle fossils via phylogenetic analyses—Triassic Leehermania as a case study (Staphylinidae or Myxophaga?). Syst. Entomol. 2020, 45, 175–187. [Google Scholar] [CrossRef]
- Li, Y.-D.; Liu, Z.; Huang, D.; Cai, C. An Unusual Lineage of Helotidae in Mid-Cretaceous Amber From Northern Myanmar (Coleoptera: Nitiduloidea). Invertebr. Syst. 2023, 37, 538–551. [Google Scholar] [CrossRef]
- Li, Y.-D.; Kolibáč, J.; Liu, Z.-H.; Ślipiński, A.; Yamamoto, S.; Yu, Y.-L.; Zhang, W.-T.; Cai, C.-Y. Foveapeltis gen. nov., an unusual cleroid genus with large hypomeral cavities from mid-Cretaceous amber (Coleoptera: Cleroidea). Ecol. Evol. 2024, 14, e11589. [Google Scholar] [CrossRef]
- Bolton, B. Synopsis and Classification of Formicidae; Memoirs of the American Entomological Institute: Gainesville, FL, USA, 2003; Volume 71, pp. 1–370. [Google Scholar]
- Lapolla, J.; Schultz, T.; Kjer, K.; Bischoff, J. Phylogenetic position of the ant genus Acropyga Roger (Hymenoptera: Formicidae) and the evolution of trophophoresy. Insect Syst. Evol. 2006, 37, 197–212. [Google Scholar] [CrossRef]
- Smith, M.R. TreeSearch: Morphological phylogenetic analysis in R. R J. 2023, 14, 305–315. [Google Scholar] [CrossRef]
- Goloboff, P.A.; Torres, A.; Arias, J.S. Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics 2018, 34, 407–437. [Google Scholar] [CrossRef]
- Smith, M.R. Bayesian and parsimony approaches reconstruct informative trees from simulated morphological datasets. Biol. Lett. 2019, 15, 20180632. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-D.; Ślipiński, A.; Huang, D.-Y.; Cai, C.-Y. New fossils of Sphaeriusidae from mid-Cretaceous Burmese amber revealed by confocal microscopy (Coleoptera: Myxophaga). Front. Earth Sci. 2023, 10, 901573. [Google Scholar] [CrossRef]
- Li, Y.-D.; Yamamoto, S.; Newton, A.F.; Cai, C. Kekveus brevisulcatus sp. nov., a new featherwing beetle from mid-Cretaceous amber of northern Myanmar (Coleoptera: Ptiliidae). PeerJ 2023, 11, e15306. [Google Scholar] [CrossRef]
- Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinform. 2020, 69, e96. [Google Scholar] [CrossRef] [PubMed]
- Radchenko, A. New species of the fossil ant genus Drymomyrmex (Hymenoptera, Formicidae, Formicinae) from the late Eocene Rovno amber (Ukraine). Palaeoentomology 2021, 4, 544–549. [Google Scholar] [CrossRef]
- Weitschat, W.; Wichard, W.; Penney, D. Baltic amber. In Biodiversity of Fossils in Amber from the Major World Deposits; Penney, D., Ed.; Siri Scientific Press: Manchester, UK, 2010; pp. 80–115. [Google Scholar]
- Dlussky, G.M.; Rasnitsyn, A.P. Paleontological record and stages of ant evolution. Uspehi Sovrem. Biol. 2007, 127, 118–134. [Google Scholar]
- Antweb. An Online Catalogue of the Ants of the World. Available online: http://www.antcat.org/ (accessed on 2 October 2024).
- Mayr, G.L. Die Ameisen des Baltischen Bernsteins; Beitr. Naturkd. Preuss: Königsberg, Germany, 1868; Volume 1, pp. 1–102. [Google Scholar]
- Penney, D.; Preziosi, R.F. Estimating fossil ant species richness in Eocene Baltic amber. Acta Palaeontol. Pol. 2014, 59, 927–929. [Google Scholar] [CrossRef]
- Wheeler, W.M. The Ants of the Baltic Amber; Schriften der Physikalisch-Ökonomischen Gesellschaft zu Königsberg: Leipzig und Berlin, Germany, 1915; Volume 55, pp. 1–142. [Google Scholar]
- Dlussky, G.M.; Fedoseeva, E.B. Origin and early stages of evolution in ants. In Cretaceous Biocoenotic Crisis and Insect Evolution; Ponomarenko, A.G., Ed.; Nauka: Moskva, Russia, 1988; pp. 70–144. [Google Scholar]
- Hölldobler, B.; Wilson, E.O. The Ants; Harvard University Press: Cambridge, MA, USA, 1990; p. 732. [Google Scholar]
- Williams, D.J. Mealybugs of the genera Eumyrmococcus Silvestri and Xenococcus Silvestri associated with the ant genus Acropyga Roger and a review of the subfamily (Hemiptera, Coccoidea, Pseudoccidae). Bull. Br. Mus. 1998, 67, 1–64. [Google Scholar]
- Wilson, E.O. Tropical social parasites in the ant genus Pheidole, with an analysis of the anatomical parasitic syndrome (Hymenoptera: Formicidae). Insectes Soc. 1984, 31, 316–334. [Google Scholar] [CrossRef]
- Emery, C. Über den Ursprung der dulotischen, parasitischen und myrmekophilen. Ameisen. Biol. Zentralbl. 1909, 29, 352–362. [Google Scholar]
- Pickering, K.T. The Cenozoic world. In Biotic Response to Global Change: The Last 145 Million Years; Culver, S.J., Rawson, P.F., Eds.; Cambridge University Press: Cambridge, UK, 2000; pp. 20–34. [Google Scholar]
- Shattuck, S.O. Generic-level relationships within the ant subfamily Dolichoderinae (Hymenoptera: Formicidae). Syst. Entomol. 1995, 20, 217–228. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zharkov, D.; Dubovikoff, D.; Abakumov, E. Beauty or the Beast? A Puzzling Modification of the Clypeus and Mandibles on the Eocene Ant. Insects 2025, 16, 794. https://doi.org/10.3390/insects16080794
Zharkov D, Dubovikoff D, Abakumov E. Beauty or the Beast? A Puzzling Modification of the Clypeus and Mandibles on the Eocene Ant. Insects. 2025; 16(8):794. https://doi.org/10.3390/insects16080794
Chicago/Turabian StyleZharkov, Dmitry, Dmitry Dubovikoff, and Evgeny Abakumov. 2025. "Beauty or the Beast? A Puzzling Modification of the Clypeus and Mandibles on the Eocene Ant" Insects 16, no. 8: 794. https://doi.org/10.3390/insects16080794
APA StyleZharkov, D., Dubovikoff, D., & Abakumov, E. (2025). Beauty or the Beast? A Puzzling Modification of the Clypeus and Mandibles on the Eocene Ant. Insects, 16(8), 794. https://doi.org/10.3390/insects16080794