Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (364)

Search Parameters:
Keywords = angiogenic markers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2602 KB  
Article
Laser-Enhanced Biomorphic Scaffolds Support Multipotent Stem Cell Differentiation and Angiogenesis for Vascularised Bone Regeneration
by Sandeep Kumar, Neelam Iqbal, Yahui Pan, Evangelos Daskalakis, Heather Elizabeth Owston, El Mostafa Raif, Payal Ganguly, Sarathkumar Loganathan, Peter V. Giannoudis and Animesh Jha
J. Funct. Biomater. 2026, 17(2), 62; https://doi.org/10.3390/jfb17020062 - 26 Jan 2026
Viewed by 191
Abstract
Biomorphic hydroxyapatite scaffolds derived from rattan wood (GreenBone) show significant promise in bone tissue engineering due to their inherent structural similarity to natural bone. Laser-drilled GreenBone scaffolds were studied for enhanced porosity, nutrient diffusion, cellular infiltration, and vascularisation. Patient-derived bone marrow mesenchymal stromal/stem [...] Read more.
Biomorphic hydroxyapatite scaffolds derived from rattan wood (GreenBone) show significant promise in bone tissue engineering due to their inherent structural similarity to natural bone. Laser-drilled GreenBone scaffolds were studied for enhanced porosity, nutrient diffusion, cellular infiltration, and vascularisation. Patient-derived bone marrow mesenchymal stromal/stem cells (BMMSCs) and culture-expanded mesenchymal stem cells (cMSCs) demonstrated high cell viability (>90%), considerable adhesion, and extensive cytoskeletal organisation. Trilineage differentiation confirmed the multipotency of BMMSCs, with osteogenic, adipogenic, and chondrogenic markers being successfully expressed. BMMSCs and cMSCs exhibited enhanced differentiation and gene expression profiles. At week 4, key osteogenic and angiogenic genes such as BMP2, VEGFC, RUNX2, and COL1A1 showed elevated expression, indicating improved bone formation and vascularisation activity. Markers associated with extracellular matrix (ECM) remodelling, including MMP9 and TIMP1, were also upregulated, suggesting active tissue remodelling. ELISA analysis for VEGF further demonstrated increased VEGF secretion, highlighting the scaffold’s angiogenic potential. The improved cellular response and vascular signalling emphasise the translational relevance of laser-modified GreenBone scaffolds for bone tissue engineering, particularly for critical-sized defect repair requiring rapid vascularised bone regeneration. Full article
Show Figures

Graphical abstract

30 pages, 2872 KB  
Article
Formulation and Biological Evaluation of Glycyrrhiza glabra L. Methanolic Extract: An Exploratory Study in the Context of Rosacea
by Iulia Semenescu, Larisa Bora, Adina Octavia Dușe, Claudia Geanina Watz, Ștefana Avram, Szilvia Berkó, Gheorghe Emilian Olteanu, Adina Căta, Zorița Diaconeasa, Daliana Ionela Minda, Cristina Adriana Dehelean, Delia Muntean and Corina Danciu
Antioxidants 2026, 15(2), 158; https://doi.org/10.3390/antiox15020158 - 23 Jan 2026
Viewed by 363
Abstract
Rosacea is a chronic inflammatory skin disorder characterized by oxidative stress, innate immune dysregulation, vascular instability, and microbiome-related triggers. Glycyrrhiza glabra (Gg, licorice) root contains phenolics and triterpenoids with antioxidant, anti-inflammatory, antimicrobial, and anti-angiogenic properties that may benefit rosacea-prone skin. Xanthan-gum hydrogels containing [...] Read more.
Rosacea is a chronic inflammatory skin disorder characterized by oxidative stress, innate immune dysregulation, vascular instability, and microbiome-related triggers. Glycyrrhiza glabra (Gg, licorice) root contains phenolics and triterpenoids with antioxidant, anti-inflammatory, antimicrobial, and anti-angiogenic properties that may benefit rosacea-prone skin. Xanthan-gum hydrogels containing 2% methanolic Gg extract (S1, S2) were prepared and characterized. Rheology, in vitro release, and in vitro permeation were evaluated, with the aim of assessing their suitability as topical formulations for rosacea-prone skin. Antioxidant activity was assessed using DPPH, ABTS, and FRAP assays. Antimicrobial effects were tested against S. pyogenes, S. aureus, and C. acnes. Safety and bioactivity were examined through HaCaT keratinocyte assays (MTT, Neutral Red, LDH), the HET-CAM irritation test, and the CAM angiogenesis assay. Immunocytochemistry was performed on rosacea-related inflammatory markers. Both hydrogels showed suitable rheology, sustained release, and preserved strong antioxidant activity. Moderate antimicrobial effects were observed, particularly against S. pyogenes and C. acnes. HaCaT cell viability remained above 84% for the S2 formulation at the highest concentration (200 µg/mL), indicating improved cytocompatibility compared with formulation S1. The hydrogels were non-irritant in the HET-CAM model and reduced neovascularization in the CAM assay, with a more sustained effect observed for formulation S2. Immunohistochemistry supported potential modulation of inflammatory pathways relevant to rosacea, evidencing suppressed VEGF expression and preserved CD44-mediated integrity, particularly in the Labrasol-based formulation (S2), while Caspase-3 staining indicated a controlled apoptotic profile. Overall, Gg hydrogels are safe, biocompatible, non-irritant, and exhibit antioxidant, antimicrobial, and anti-angiogenic activities, supporting their potential as biocompatible topical formulations with antioxidant and pathway-modulating properties relevant to the biological features associated with rosacea, while underscoring the importance of formulation design. Full article
(This article belongs to the Special Issue Natural Antioxidants in Pharmaceuticals and Dermatocosmetology)
Show Figures

Figure 1

23 pages, 3422 KB  
Article
Therapeutic Exosomes Carrying VEGFA siRNA Inhibit Pathological Corneal Angiogenesis via PI3K–Akt–Caspase-3 Signaling
by Woojune Hur, Basanta Bhujel, Seorin Lee, Seheon Oh, Ho Seok Chung, Hun Lee and Jae Yong Kim
Biomedicines 2026, 14(1), 246; https://doi.org/10.3390/biomedicines14010246 - 21 Jan 2026
Viewed by 267
Abstract
Background/Objectives: Neovascularization, defined as the sprouting of new blood vessels from pre-existing vasculature, is a critical pathological feature in ocular diseases such as pathological myopia and represents a leading cause of corneal vision loss. Vascular endothelial growth factor A (VEGFA) plays a pivotal [...] Read more.
Background/Objectives: Neovascularization, defined as the sprouting of new blood vessels from pre-existing vasculature, is a critical pathological feature in ocular diseases such as pathological myopia and represents a leading cause of corneal vision loss. Vascular endothelial growth factor A (VEGFA) plays a pivotal role in endothelial cell proliferation, migration, survival by anti-apoptotic signaling, and vascular permeability. Dysregulation of VEGFA is closely linked to pathological neovascularization. Exosomes, nanosized phospholipid bilayer vesicles ranging from 30 to 150 nm, have emerged as promising gene delivery vehicles due to their intrinsic low immunogenicity, superior cellular uptake, and enhanced in vivo stability. This study aimed to investigate whether highly purified mesenchymal stem cell (MSC)-derived exosomes loaded with VEGFA siRNA labeled with FAM can effectively suppress pathological corneal neovascularization (CNV) via targeeted cellular transduction and VEGFA inhibition. Furthermore, we examined whether the therapeutic effect involves the modulation of the PI3K–Akt–Caspase-3 signaling axis. Methods: Exosomes purified by chromatography were characterized by electronmicroscopy, standard marker immunoblotting, and nanoparticle tracking analysis. In vitro, we assessed exosome uptake and cytoplasmic release, suppression of VEGFA mRNA/protein, cell viability, and apoptosis. In a mouse CNV model, we evaluated tissue reach and stromal retention after repeated intrastromal injections; anterior segment angiogenic indices; CD31/VEGFA immunofluorescence/immunoblotting; phosphorylated PI3K and Akt; cleaved caspase-3; histology (H&E); and systemic safety (liver, kidney, and spleen). Results: Exosomes were of high quality and showed peak efficacy at 48 h, with decreased VEGFA mRNA/protein, reduced viability, and increased apoptosis in vitro. In vivo, efficient delivery and stromal retention were observed, with accelerated inhibition of neovascularization after Day 14 and maximal effect on Days 17–19. Treatment reduced CD31 and VEGFA, decreased p-PI3K and p-Akt, and increased cleaved caspase-3. Histologically, concurrent reductions in neovascularization, inflammatory cell infiltration, and inflammatory epithelial thickening were observed, alongside a favorable systemic safety profile. Conclusions:VEGFA siRNA-loaded exosomes effectively reduce pathological CNV via a causal sequence of intracellular uptake, cytoplasmic release, targeted inhibition, and phenotypic suppression. Supported by consistent PI3K–Akt inhibition and caspase-3–mediated apoptosis induction, these exosomes represent a promising local gene therapy that can complement existing antibody-based treatments. Full article
(This article belongs to the Special Issue Stem Cell Therapy: Traps and Tricks)
Show Figures

Figure 1

22 pages, 2307 KB  
Review
Matrix Metalloproteinases in Hepatocellular Carcinoma: Mechanistic Roles and Emerging Inhibitory Strategies for Therapeutic Intervention
by Alexandra M. Dimesa, Mathew A. Coban and Alireza Shoari
Cancers 2026, 18(2), 288; https://doi.org/10.3390/cancers18020288 - 17 Jan 2026
Viewed by 379
Abstract
Liver cancer, also known as hepatocellular carcinoma (HCC), remains a major global health concern, with high mortality driven by late-stage diagnosis, limited treatment efficacy, and frequent therapeutic resistance. Matrix metalloproteinases (MMPs), a large family of zinc-dependent endopeptidases, are central to the biological processes [...] Read more.
Liver cancer, also known as hepatocellular carcinoma (HCC), remains a major global health concern, with high mortality driven by late-stage diagnosis, limited treatment efficacy, and frequent therapeutic resistance. Matrix metalloproteinases (MMPs), a large family of zinc-dependent endopeptidases, are central to the biological processes that drive liver tumor initiation and progression. By degrading and reorganizing extracellular matrix components, MMPs facilitate tumor expansion, tissue invasion, and metastatic dissemination. In addition, these enzymes regulate the availability of growth factors, cytokines, and chemokines, thereby influencing angiogenesis, inflammation, immune cell recruitment, and the development of an immunosuppressive tumor microenvironment. Aberrant expression or activity of multiple MMP family members is consistently associated with aggressive clinicopathologic features, including vascular invasion, increased metastatic potential, and reduced patient survival, highlighting their promise as prognostic markers and actionable therapeutic targets. Past attempts to modulate MMP activity were hindered by broad inhibition profiles and dose-limiting toxicities, underscoring the need for improved specificity and delivery strategies. Recent advances in molecular design, biologics engineering, and nanotechnology have revitalized interest in MMP targeting by enabling more selective, context-dependent modulation of proteolytic activity. Preclinical studies demonstrate that carefully tuned MMP inhibition can limit tumor invasion, enhance anti-angiogenic responses, and potentially improve the efficacy of existing systemic therapies, including immuno-oncology agents. This review synthesizes current knowledge on the multifaceted roles of MMPs in HCC pathobiology and evaluates emerging therapeutic strategies that may finally unlock the clinical potential of targeting these proteases. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Figure 1

18 pages, 4654 KB  
Article
Hypobaric Hypoxia Ameliorates Impaired Regeneration After Diabetic Skeletal Muscle Injury by Promoting HIF-1α Signaling
by Jinrun Lin, Minghao Geng, Li Zhou, Danni Qu, Hao Lin, Jihao Xing, Ryosuke Nakanishi, Hiroyo Kondo, Noriaki Maeshige and Hidemi Fujino
Int. J. Mol. Sci. 2026, 27(2), 648; https://doi.org/10.3390/ijms27020648 - 8 Jan 2026
Viewed by 236
Abstract
Diabetes mellitus severely impairs skeletal muscle regeneration after injury, limiting satellite cell activation and angiogenesis and disrupting barrier integrity while increasing fibrosis. Hypobaric hypoxia has been proposed to improve the regenerative microenvironment through hypoxia-responsive signaling, but its temporal effects and the coordination between [...] Read more.
Diabetes mellitus severely impairs skeletal muscle regeneration after injury, limiting satellite cell activation and angiogenesis and disrupting barrier integrity while increasing fibrosis. Hypobaric hypoxia has been proposed to improve the regenerative microenvironment through hypoxia-responsive signaling, but its temporal effects and the coordination between vascular and myogenic programs in diabetic muscle remain unclear. To clarify these processes, adult male mice were divided into five groups: diabetes mellitus control (DM), cardiotoxin-injured (CTX) diabetes assessed on days 7 and 14 (CTX7, CTX14), and hypobaric-hypoxia-treated diabetic injury assessed on days 7 and 14 (H+CTX7, H+CTX14). Animals in the hypoxia groups were exposed to a hypobaric hypoxia chamber for 8 h per day for 14 days. Fibrosis, angiogenic and myogenic markers, and endothelial junctional genes were examined using histology, immunofluorescence, immunoblotting, and qRT-PCR (Quantitative Real-Time PCR). Hypobaric hypoxia on day 7 enhanced HIF-1α (hypoxia-inducible factor 1 alpha), VEGF (vascular endothelial growth factor), eNOS (endothelial nitric oxide synthas), Kdr (kinase insert domain receptor, VEGFR-2), and Angpt2 (angiopoietin-2) expression, accompanied by simultaneous endothelial sprouting and early myogenic stimulation compared to CTX7. Improvements were observed in Angpt1 (angiopoietin-1), Cdh5 (cadherin-5, VE-cadherin), Emcn (endomucin), the Angpt1/Angpt2 ratio, and CD31 density. Myogenin and MyHC (myosin heavy chain) were induced with a reduction in eMyHC (embryonic myosin heavy chain) in accordance with stabilization of endothelium and maturation of fibers, which occurred by day 14. A decrease in fibrosis and an increase in the myofiber cross-sectional area occurred. These findings suggest that hypobaric hypoxia modulates HIF-1α signaling, which in turn induces the VEGF-Kdr-eNOS pathway and the angiopoietin–Tie2–VE-cadherin pathway. Together, these pathways coordinate vascular remodeling and myogenic regeneration, ultimately improving the structural and functional recovery of diabetic muscle. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

20 pages, 16316 KB  
Article
Percutaneous Coronary Intervention for Chronic Total Occlusions Modulates Cardiac Hypoxic and Inflammatory Stress
by Luis Carlos Maestre-Luque, Rafael Gonzalez-Manzanares, Ignacio Gallo, Francisco Hidalgo, Javier Suárez de Lezo, Miguel Romero, Simona Espejo-Perez, Carlos Perez-Sanchez, Julio Manuel Martínez-Moreno, Rafael González-Fernandez, Manuel Pan and Soledad Ojeda
J. Clin. Med. 2026, 15(2), 517; https://doi.org/10.3390/jcm15020517 - 8 Jan 2026
Viewed by 283
Abstract
Background/Objectives: The cardiac hypoxia- and inflammation-associated processes in patients with chronic coronary artery disease remain unknown. The coronary sinus (CS) can be used to explore changes in cardiac microenvironment. This study sought to evaluate acute changes in the CS concentration of hypoxia [...] Read more.
Background/Objectives: The cardiac hypoxia- and inflammation-associated processes in patients with chronic coronary artery disease remain unknown. The coronary sinus (CS) can be used to explore changes in cardiac microenvironment. This study sought to evaluate acute changes in the CS concentration of hypoxia and inflammation-associated biomarkers after the percutaneous revascularization of chronic total occlusions (CTO-PCI). Additionally, we explored changes in systemic inflammation and the potential of CS biomarkers to predict left ventricular ejection fraction (LVEF) improvement on follow-up. Methods: Thirty-three patients undergoing CTO-PCI were included. Samples from CS were collected before and after the revascularization. Twenty-six protein biomarkers associated with hypoxia and inflammation were measured using proximity extension assay technology. Systemic inflammation markers and LVEF on cardiac magnetic resonance imaging were assessed at baseline and 6-month follow-up. Results: CTO-PCI yielded a significant decrease in the concentration of CS pro-angiogenic biomarkers (angiopoietin-1, vascular endothelial growth factors). In addition, there was a significant increase in the anti-inflammatory biomarker interleukin-10 and a decrease in several pro-inflammatory biomarkers like interleukin-1β. The acute response in cardiac microenvironment was followed by a mid-term reduction in systemic inflammatory markers, particularly high-sensitivity C-reactive protein. Notably, interleukin-10 showed good performance to identify patients achieving LVEF improvement on follow-up in our cohort. Conclusions: Our results suggest that CTO-PCI might attenuate cardiac hypoxic and inflammatory stress. These exploratory findings warrant confirmation in larger, controlled studies. Full article
Show Figures

Figure 1

13 pages, 850 KB  
Article
NT-proBNP as a Predictive and Prognostic Biomarker for Complications in Hypertensive Pregnancy Disorders
by Diana Mocuta, Cristina Aur, Ioana Alexandra Zaha, Carmen Delia Nistor Cseppento, Liliana Sachelarie and Anca Huniadi
J. Clin. Med. 2026, 15(2), 519; https://doi.org/10.3390/jcm15020519 - 8 Jan 2026
Viewed by 351
Abstract
Background/Objectives: Hypertensive disorders of pregnancy (HDP) remain a significant cause of maternal and perinatal morbidity worldwide. In some healthcare settings, access to angiogenic testing is limited, underscoring the need for affordable biomarkers to guide risk assessment. NT-proBNP, a marker of myocardial wall stress [...] Read more.
Background/Objectives: Hypertensive disorders of pregnancy (HDP) remain a significant cause of maternal and perinatal morbidity worldwide. In some healthcare settings, access to angiogenic testing is limited, underscoring the need for affordable biomarkers to guide risk assessment. NT-proBNP, a marker of myocardial wall stress and cardio-renal dysfunction, may offer complementary prognostic value to the angiogenic sFlt-1/PlGF ratio. Methods: In this prospective multicenter observational study, we enrolled 180 pregnant women and categorized them into preeclampsia (PE, n = 95), non-PE HDP (gestational or chronic hypertension, n = 25), and healthy controls (n = 60). NT-proBNP and sFlt-1/PlGF levels were measured at enrollment, after 20 weeks of gestation, predominantly during the second and third trimesters. Associations with proteinuria, uric acid, creatinine, and maternal–fetal complications were examined using multivariable logistic regression adjusted for maternal age, BMI, and gestational age. Discrimination was assessed using receiver operating characteristic (ROC) curve analysis, and the incremental value of NT-proBNP beyond the sFlt-1/PlGF ratio was evaluated using ΔAUC and net reclassification improvement (NRI). Results: Median NT-proBNP levels were significantly higher in PE compared with non-PE HDP and controls (p < 0.01). NT-proBNP ≥200 pg/mL independently predicted maternal–fetal complications (adjusted OR 3.12, 95% CI 1.41–6.90, p = 0.005) and correlated with proteinuria (r = 0.47), creatinine (r = 0.43), and uric acid (r = 0.40) (all p < 0.001). sFlt-1/PlGF alone yielded an AUC of 0.84 (95% CI 0.77–0.89), while NT-proBNP alone demonstrated an AUC of 0.78 (0.71–0.84). Combining both biomarkers improved discrimination (AUC 0.88, 95% CI 0.82–0.92), with a ΔAUC of 0.04 (p = 0.02) and a continuous NRI of 0.21 (p = 0.03). The 200 pg/mL threshold for NT-proBNP achieved 80% sensitivity and 71% specificity (p < 0.001). Conclusions: NT-proBNP provides independent and complementary prognostic value to the sFlt-1/PlGF ratio in predicting maternal–fetal complications in HDP. A practical threshold of 200 pg/mL aids risk assessment, and integrating NT-proBNP into angiogenic models improves prediction. Further multicenter studies are needed to validate multimarker strategies and their cost-effectiveness. Full article
(This article belongs to the Special Issue Innovations in Preeclampsia)
Show Figures

Figure 1

27 pages, 2345 KB  
Review
Limbal Epithelial Stem Cells in Review: Immune and Lymphangiogenic Privilege and Their Clinical Relevance
by Berbang Meshko, Thomas Volatier, Claus Cursiefen and Maria Notara
Cells 2026, 15(1), 91; https://doi.org/10.3390/cells15010091 - 5 Jan 2026
Viewed by 631
Abstract
The cornea maintains transparency by preserving immune and (lymph)angiogenic privilege through active suppression of inflammation and vascular invasion, a process centrally regulated by limbal epithelial stem cells (LESCs) located at the corneoscleral junction. Beyond renewing the corneal epithelium, LESCs maintain immune and vascular [...] Read more.
The cornea maintains transparency by preserving immune and (lymph)angiogenic privilege through active suppression of inflammation and vascular invasion, a process centrally regulated by limbal epithelial stem cells (LESCs) located at the corneoscleral junction. Beyond renewing the corneal epithelium, LESCs maintain immune and vascular balance via extracellular matrix interactions and paracrine signalling, exerting predominantly anti-inflammatory and anti-(lymph)angiogenic effects in vivo. Disruption of the limbal niche by trauma, UV exposure, or genetic disorders such as aniridia leads to limbal stem cell deficiency (LSCD), chronic inflammation, loss of corneal avascularity, and vision loss. The identification of ABCB5 as a key LESC marker has clarified functional limbal subsets, highlighting ABCB5+ epithelial cells as mediators of repair, remodelling, and immune suppression, and positioning them as promising therapeutic targets for treatments that restore both epithelial integrity and corneal immune privilege. Full article
Show Figures

Figure 1

20 pages, 2378 KB  
Article
Phosphomimetic Thrombospondin-1 Modulates Integrin β1-FAK Signaling and Vascular Cell Functions
by Assala Raya, Bálint Bécsi and Anita Boratkó
Biomolecules 2026, 16(1), 84; https://doi.org/10.3390/biom16010084 - 4 Jan 2026
Viewed by 437
Abstract
Thrombospondin-1 (TSP1) is a multifunctional glycoprotein that plays a crucial role in angiogenesis and vascular remodeling. Ser93 of TSP1 has recently been identified as a novel phosphorylation site, influencing angiogenic properties; however, the underlying signaling mechanism remains unclear. Here, we investigated the functional [...] Read more.
Thrombospondin-1 (TSP1) is a multifunctional glycoprotein that plays a crucial role in angiogenesis and vascular remodeling. Ser93 of TSP1 has recently been identified as a novel phosphorylation site, influencing angiogenic properties; however, the underlying signaling mechanism remains unclear. Here, we investigated the functional impact of Ser93 phosphorylation using phosphomimetic (TSP1S93D) and phosphonull (TSP1S93A) mutants. Endothelial cell (EC) migration was analyzed using scratch assay and electric cell-substrate impedance sensing. Activation of key pathways (Akt, p38, ERK, and FAK) was analyzed by immunoblotting. TSP1 secretion was quantified by ELISA. Downstream effects on smooth muscle cells were examined by Western blot using conditioned media of endothelial cells. Expression of TSP1S93D significantly impaired endothelial migration and wound closure, associated with reduced phosphorylation of FAK and paxillin. Upstream of FAK signaling, TSP1S93D showed enhanced binding to integrin β1 and promoted its clustering. In contrast, TSP1S93D stimulated smooth muscle cell proliferation, migration, cytoskeletal remodeling, and phenotypic switching toward a synthetic, pro-inflammatory state characterized by elevated marker protein expression. Together, these findings demonstrate that the impaired angiogenic properties induced by TSP1S93D result from the modulation of integrin β1-FAK pathways in ECs, suppressing endothelial motility while promoting smooth muscle activation, suggesting a role in early vascular remodeling and inflammation. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

24 pages, 7533 KB  
Article
FAK-Activated Mucosal Healing Promotes Resistance to Reinjury
by Sema Oncel, Guiming Liu, Louis Kwantwi, Emilie E. Vomhof-DeKrey, Ricardo Gallardo-Macias, Vadim J. Gurvich and Marc D. Basson
Cells 2026, 15(1), 16; https://doi.org/10.3390/cells15010016 - 22 Dec 2025
Cited by 1 | Viewed by 567
Abstract
Background: Gastrointestinal (GI) mucosal injury is a frequent complication of long-term nonsteroidal anti-inflammatory drug (NSAID) use. Effective mucosal healing requires coordinated epithelial migration, proliferation, and angiogenesis, which may be influenced by focal adhesion kinase (FAK). This study aimed to determine whether our newly [...] Read more.
Background: Gastrointestinal (GI) mucosal injury is a frequent complication of long-term nonsteroidal anti-inflammatory drug (NSAID) use. Effective mucosal healing requires coordinated epithelial migration, proliferation, and angiogenesis, which may be influenced by focal adhesion kinase (FAK). This study aimed to determine whether our newly developed FAK activators promote intestinal mucosal healing by enhancing angiogenesis and whether FAK activation increases resistance to reinjury. Methods: Ischemic jejunal ulcers were induced in C57BL/6 mice. After 24 h, mice received intraperitoneal injections of the FAK activator ZINC40099027 (ZN27, 900 µg/kg every 6 h) or vehicle for 2, 4, or 14 days. Ulcer areas were quantified, and liver and kidney function were assessed. Ulcer and adjacent tissues were analyzed by immunofluorescence staining for angiogenesis and proliferation markers. In vitro, human umbilical vein endothelial cells (HUVECs) were treated with ZN27 to evaluate proliferation, migration, angiogenesis, and intracellular signaling. In a reinjury model, male C57BL/6J mice received continuous infusion of the FAK activator M64HCl (25 mg/kg/day) or vehicle for 7 days, with a single subcutaneous injection of indomethacin (10 mg/kg) on day 1 to induce GI injury. Fourteen days after the first dose of indomethacin, the mice received a second indomethacin challenge, and one day later, total ulcer areas in the pyloric opening and small intestine were quantified. Results: Ulcer areas were significantly smaller in ZN27-treated mice compared with vehicle-treated controls at 3 and 5 days, accompanied by increased expression of angiogenesis and proliferation markers. In vitro, ZN27 enhanced HUVEC migration via FAK activation in an ERK1/2-dependent manner and increased the number of angiogenic sprouts. In the reinjury model, treatment with M64HCl during the initial indomethacin-induced injury resulted in significantly smaller ulcer areas in both the pyloric opening and small intestine after the second indomethacin challenge compared with controls. Conclusions: FAK activation accelerates ischemic ulcer healing, in part by enhancing angiogenesis. Moreover, FAK activation during an initial injury reduces susceptibility to recurrent NSAID-induced intestinal injury, perhaps because it promotes initial higher-quality ulcer repair. Full article
(This article belongs to the Special Issue Translational Aspects of Cell Signaling)
Show Figures

Figure 1

16 pages, 1526 KB  
Article
Role of Cytokines in Wound Healing Following Wound Catheter Analgesia in Rats
by Marija Lipar, Andrea Martinović, Tamara Nikuševa Martić, Tihana Kurtović, Jadranka Bubić Špoljar, Andrea Gelemanović, Marko Hohšteter, Lidija Medven Zagradišnik, Ivana Mihoković Buhin, Andrija Musulin, Višnja Nesek Adam, Božo Gorjanc, Slobodan Vukičević and Dražen Vnuk
Vet. Sci. 2025, 12(12), 1214; https://doi.org/10.3390/vetsci12121214 - 18 Dec 2025
Viewed by 306
Abstract
Background: Local analgesia administered through a wound catheter is widely used for postoperative pain control, yet its effects on wound healing remain incompletely understood. This study examined how levobupivacaine alone or combined with meloxicam or buprenorphine influences inflammatory markers, angiogenesis, apoptosis, and transforming [...] Read more.
Background: Local analgesia administered through a wound catheter is widely used for postoperative pain control, yet its effects on wound healing remain incompletely understood. This study examined how levobupivacaine alone or combined with meloxicam or buprenorphine influences inflammatory markers, angiogenesis, apoptosis, and transforming growth factor β1 (TGF-β1) expression during wound healing in rats. Methods: Thirty Sprague Dawley rats were assigned to five groups: control, saline, levobupivacaine (L), levobupivacaine/meloxicam (L/MEL), and levobupivacaine/buprenorphine (L/BUP). Treatments were administered via a wound catheter for three days. Blood and skin samples were collected before surgery and on days 3, 10, and 21. Results: Levobupivacaine combined with meloxicam or buprenorphine caused fluctuations in white blood cell counts, while albumin levels remained stable. Angiogenesis in the L/MEL group was markedly increased compared with the control, saline, and levobupivacaine-only groups, but the newly formed vessels exhibited consistently narrow lumina during the early healing phase. Caspase-3–positive cells were most numerous in L/MEL during inflammatory and proliferative phases, whereas delayed caspase-3 activation was observed in L/BUP. TGF-β1 expression peaked in both adjuvant groups on days 3 and 10. Conclusions: Meloxicam and buprenorphine increased TGF-β1 expression, but their vascular effects differed considerably. Meloxicam induced a marked increase in angiogenesis, but the newly formed vessels were structurally immature, displaying uniformly narrow lumina and poor architectural organisation, which led to their subsequent regression. In contrast, buprenorphine supported the formation of more mature vascular structures, characterised by wider vessel lumina and a more organised vascular network. These findings demonstrate that adjuvants used with levobupivacaine can significantly modify angiogenic and apoptotic responses and should be carefully considered when selecting multimodal local analgesia strategies after surgery. Full article
(This article belongs to the Section Veterinary Biomedical Sciences)
Show Figures

Figure 1

26 pages, 5507 KB  
Article
A Fluid Dynamics-Model System for Advancing Tissue Engineering and Cancer Research Studies: Biological Assessment of the Innovative BioAxFlow Dynamic Culture Bioreactor
by Giulia Gramigna, Federica Liguori, Ludovica Filippini, Maurizio Mastantuono, Michele Pistillo, Margherita Scamarcio, Alessia Mengoni, Antonella Lisi, Giuseppe Falvo D’Urso Labate and Mario Ledda
Biomimetics 2025, 10(12), 848; https://doi.org/10.3390/biomimetics10120848 - 18 Dec 2025
Viewed by 522
Abstract
In this study, an innovative bioreactor, named BioAxFlow, particularly suitable for tissue engineering applications, is tested. Unlike traditional bioreactors, it does not rely on mechanical components to agitate the culture medium, but on the unique fluid-dynamics behaviour induced by the geometry of the [...] Read more.
In this study, an innovative bioreactor, named BioAxFlow, particularly suitable for tissue engineering applications, is tested. Unlike traditional bioreactors, it does not rely on mechanical components to agitate the culture medium, but on the unique fluid-dynamics behaviour induced by the geometry of the culture chamber, which ensures continuous movement of the medium, promoting the constant exposure of the cells to nutrients and growth factors. Using the human osteosarcoma cell line SAOS-2, the bioreactor’s ability to enhance cell adhesion and proliferation on polylactic acid (PLA) scaffolds, mimicking bone matrix architecture, is investigated. Cells cultured in the bioreactor showed significant improvement in cell growth and adhesion, compared to static cultures, and a more homogeneous cell distribution upon the scaffold surfaces, which is crucial for the development of functional tissue constructs. The bioreactor also preserves the osteogenic potential of SAOS-2 cells as assessed by the expression of key osteogenic markers. Additionally, it retains the tumorigenic characteristics of SAOS-2 cells, including the expression of pro-angiogenic factors and apoptosis-related genes. These results indicate that the BioAxFlow bioreactor could be an effective platform for tissue engineering and cancer research, offering a promising tool for both regenerative medicine applications and drug testing. Full article
Show Figures

Graphical abstract

17 pages, 1330 KB  
Systematic Review
Chitosan-Based Nanoparticles and Biomaterials for Pulp Capping and Regeneration: A Systematic Review with Quantitative and Evidence-Mapping Synthesis
by Saleh Ali Alqahtani, Mohammad Alamri, Ghadeer Alwadai, Naif N. Abogazalah, Vinod Babu Mathew and Betsy Joseph
Biomimetics 2025, 10(12), 822; https://doi.org/10.3390/biomimetics10120822 - 9 Dec 2025
Viewed by 623
Abstract
Preserving dental pulp vitality is a key goal in minimally invasive dentistry. Conventional materials such as calcium hydroxide and mineral trioxide aggregate (MTA) are effective but limited in bioactivity and mechanical strength. This systematic review evaluated the biological efficacy of chitosan-based nanoparticles and [...] Read more.
Preserving dental pulp vitality is a key goal in minimally invasive dentistry. Conventional materials such as calcium hydroxide and mineral trioxide aggregate (MTA) are effective but limited in bioactivity and mechanical strength. This systematic review evaluated the biological efficacy of chitosan-based nanoparticles and biomaterials for pulp capping and regeneration. Following PRISMA 2020 guidelines, electronic searches were conducted across five databases up to April 2025. Controlled in vitro and animal studies using chitosan-based nanoparticles, hydrogels, or composite scaffolds were included. Risk of bias was assessed using SYRCLE (animal) and ToxRTool (in vitro), and certainty of evidence was rated via the GRADE-Preclinical framework. Due to methodological heterogeneity, data were synthesized using direction-of-effect coding and visualized through Albatross and heatmap plots. Sixteen studies met the criteria, consistently demonstrating enhanced cell viability, mineralization, and upregulation of odontogenic and angiogenic markers (BMP-2, TGF-β1, VEGF, DSPP) compared with MTA or calcium hydroxide. Animal models confirmed improved angiogenesis, reparative dentin formation, and pulp vitality preservation. Despite uniformly positive biological outcomes, the overall certainty was rated Low to Very Low owing to small samples and unclear randomization. Chitosan-based biomaterials show promising regenerative potential, warranting well-designed preclinical and clinical studies for translational validation. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Graphical abstract

14 pages, 5930 KB  
Article
The Levonorgestrel Intrauterine System Attenuates the Expression of Angiopoietin-1, Angiopoietin-2, and Vascular Endothelial Growth Factor in Adenomyosis
by SiHyun Cho, Hyun Kyung Kim, Young Sik Choi and Joo Hyun Park
J. Clin. Med. 2025, 14(24), 8629; https://doi.org/10.3390/jcm14248629 - 5 Dec 2025
Viewed by 439
Abstract
Background/Objectives: Adenomyosis is characterized by aberrant endometrial invasion and heavy menstrual bleeding, with angiogenesis being implicated as a key mechanism of this condition. We compared vascular endothelial growth factor (VEGF), angiopoietin-1 (ANGPT-1), and angiopoietin-2 (ANGPT-2) expression in eutopic and ectopic endometria from [...] Read more.
Background/Objectives: Adenomyosis is characterized by aberrant endometrial invasion and heavy menstrual bleeding, with angiogenesis being implicated as a key mechanism of this condition. We compared vascular endothelial growth factor (VEGF), angiopoietin-1 (ANGPT-1), and angiopoietin-2 (ANGPT-2) expression in eutopic and ectopic endometria from patients with adenomyosis and evaluated whether the levonorgestrel intrauterine system (LNG-IUS) modulates these angiogenic markers. Methods: In a case–control analysis, specimens from patients with adenomyosis without an LNG-IUS (n = 20), those with adenomyosis with prior LNG-IUS insertion (n = 18), and controls (n = 12) were analyzed. Immunohistochemistry with H-scores was used to assess protein expression in eutopic and ectopic tissues. ANGPT1, ANGPT2, and VEGFA mRNA in eutopic endometrial tissue were quantified by qRT-PCR. Results: In untreated adenomyosis patients, ectopic endometria showed higher protein expression than eutopic tissue for ANGPT-1, ANGPT-2, and VEGF (all p ≤ 0.05). The LNG-IUS was associated with significantly lower expression of all three markers in both eutopic and ectopic tissue (all p < 0.01), with eutopic levels approaching those of controls. qRT-PCR findings corroborated the decrease in ANGPT1, ANGPT2, and VEGFA transcript levels after LNG-IUS insertion (all p < 0.05). Conclusions: Adenomyosis is characterized by upregulated angiogenic signaling in both eutopic and ectopic endometria. The LNG-IUS attenuates ANGPT-1, ANGPT-2, and VEGF expression at both the protein and transcript levels, suggesting that modulation of angiogenic pathways may contribute to its therapeutic benefit in abnormal uterine bleeding associated with adenomyosis. Full article
Show Figures

Figure 1

27 pages, 9480 KB  
Article
The Anti-EMMPRIN Monoclonal Antibody hMR18-mAb Induces Tumor Dormancy and Inhibits the EMT Process in Human Carcinoma Cell Lines Co-Cultured with Macrophages
by Elina Simanovich, Felix Oyelami, Phillipp Brockmeyer and Michal A. Rahat
Biomedicines 2025, 13(12), 2950; https://doi.org/10.3390/biomedicines13122950 - 30 Nov 2025
Viewed by 502
Abstract
Background: The epithelial-to-mesenchymal transition (EMT) process is necessary for metastasis as it enables tumor cells’ migration and invasion. In the remote organ, tumor cells can develop into metastatic lesions or arrest their proliferation and become dormant, thus suspending metastatic development. EMMPRIN is [...] Read more.
Background: The epithelial-to-mesenchymal transition (EMT) process is necessary for metastasis as it enables tumor cells’ migration and invasion. In the remote organ, tumor cells can develop into metastatic lesions or arrest their proliferation and become dormant, thus suspending metastatic development. EMMPRIN is a membrane glycoprotein, implicated in cell–cell interactions, proliferation, angiogenesis, and EMT. We asked whether neutralizing EMMPRIN with the new anti-EMMPRIN monoclonal antibody hMR18-mAb can inhibit EMT. Methods: We co-cultured tumor cell lines (breast carcinoma MCF-7, MDA-MB-231, or oral squamous cell carcinoma SCC-40) together with U937 monocytic-like cells, with or without hMR18-mAb or its negative control rabbit IgG. Results: We demonstrate that depending on the initial state of the cells along the epithelial–mesenchymal axis (E/M axis), co-culture enhanced the EMT process, whereas hMR18-mAb reversed this effect. The co-culture increased EMT-inducer cytokines in all cell lines (by 2.5-fold), while hMR18-mAb reduced them (by ~55–70% in the breast cancer cells and by 81% in the SCC-40 cells). The co-culture reduced E-cadherin (by 2-fold in MCF-7 and SCC-40 cells) and increased vimentin expression (by 2–3-fold in MDA-MB-231 and SCC-40), while hMR18-mAb reverted this effect. Co-culture enhanced proliferation, migration, and angiogenic potential of the tumor cells, while hMR18-mAb reduced these by ~20%, 30–44% and ~60–80%, respectively. Co-culture reduced the standard markers of dormancy (NR2F1, p21, p27) and stemness (SOX2, Nanog) (by 30–60% in MCF-7 and SCC-40), while hMR18-mAb elevated gene expression of these markers (by 1.5–3.5-fold) in all cell lines, pushing the cells towards dormancy. Conclusions: We conclude that EMMPRIN is a gatekeeper that prevents cells from entering dormancy, and that hMR18-mAb disrupts this effect. As it is the first antibody shown to induce dormancy in tumor cells and stop the development of metastases, this could become a new therapeutic strategy to prevent and treat metastasis. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Graphical abstract

Back to TopTop