Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (208)

Search Parameters:
Keywords = anchoring transition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1870 KB  
Article
Economic Policy Uncertainty, Geopolitical Risk, and the U.S.–China Relations: A Risk Transmission Perspective
by Jacky Yuk-Chow So and Un Loi Lao
J. Risk Financial Manag. 2025, 18(11), 596; https://doi.org/10.3390/jrfm18110596 - 24 Oct 2025
Viewed by 191
Abstract
This study examines risk transmission between the United States and China using integrated economic policy uncertainty (EPU) and geopolitical risk (GPR) indices. We employ a dual methodology that combines Vector Autoregressive (VAR) and Granger causality in quantiles tests to analyze interactions during systemic [...] Read more.
This study examines risk transmission between the United States and China using integrated economic policy uncertainty (EPU) and geopolitical risk (GPR) indices. We employ a dual methodology that combines Vector Autoregressive (VAR) and Granger causality in quantiles tests to analyze interactions during systemic leadership transitions, a dimension that is currently under-explored. Our dataset covers the period from June 2000 to June 2023. Results indicate that China is narrowing the economic influence gap and strengthening its role as a regional anchor. The U.S., however, maintains predominant global leadership. This dynamic reframes bilateral tensions as a “status dilemma” rather than a security conflict. Crucially, we identify asymmetric spillover effects: the U.S. uncertainty shocks spread globally, while China’s volatility remains regional. Our findings contribute to the understanding of financial stability by demonstrating that leadership asymmetries are critical determinants, providing valuable insights for designing systemic risk monitoring tools and contagion mitigation policies during periods of heightened uncertainty. Full article
(This article belongs to the Section Applied Economics and Finance)
Show Figures

Figure A1

19 pages, 897 KB  
Review
Evolution of Anchor Polymer Systems Used in Arthroscopic Shoulder Surgery—A Comprehensive Review
by Eun-Ji Yoon, Kyeong-Eon Kwon and Jong-Ho Kim
Bioengineering 2025, 12(11), 1146; https://doi.org/10.3390/bioengineering12111146 - 23 Oct 2025
Viewed by 96
Abstract
Arthroscopic shoulder surgery has undergone significant evolution over the past decades, particularly in the materials used for suture anchors. The transition from metallic to bioabsorbable polymer anchors has revolutionized soft tissue-to-bone repair procedures, offering distinct advantages in terms of biocompatibility, imaging compatibility, and [...] Read more.
Arthroscopic shoulder surgery has undergone significant evolution over the past decades, particularly in the materials used for suture anchors. The transition from metallic to bioabsorbable polymer anchors has revolutionized soft tissue-to-bone repair procedures, offering distinct advantages in terms of biocompatibility, imaging compatibility, and reduced complications. This comprehensive review examines the current state-of-the-art in anchor polymers used in arthroscopic shoulder surgery and their biocomposite formulations. Additionally, we explore the role of biostable polymers and emerging technologies in anchor design. The review synthesizes clinical outcomes, degradation kinetics, biocompatibility profiles, and mechanical properties of various anchor polymer systems. We also discuss the challenges associated with each material type, including osteolysis, cyst formation, premature degradation, and osseointegration. Recent advances in biocomposite anchors demonstrate promising solutions to address these limitations, offering controlled degradation rates and enhanced osteoconductivity. This review provides clinicians and researchers with a comprehensive understanding of anchor polymer technologies, their clinical applications, and future directions in arthroscopic shoulder surgery. Nevertheless, potential publication bias and heterogeneity among studies should be considered when interpreting comparative data. Full article
Show Figures

Figure 1

22 pages, 6207 KB  
Article
Structural Analysis Methods and Key Influencing Factors on the Performance of Segmented Steel–Concrete Hybrid Wind Turbine Towers
by Yifan Dong, Minjuan He, Kun Zeng, Haiyan Fu, Zhongxiang Tu, Wenbing Peng and Ziwei Wang
Buildings 2025, 15(20), 3786; https://doi.org/10.3390/buildings15203786 - 20 Oct 2025
Viewed by 273
Abstract
The development of wind power aligns with the strategy of low-carbon development and plays a crucial role in the global transition to a green economy. The segmented steel–concrete wind turbine tower offers advantages such as modular fragment prefabrication, prestressed structural enhancement, and integrated [...] Read more.
The development of wind power aligns with the strategy of low-carbon development and plays a crucial role in the global transition to a green economy. The segmented steel–concrete wind turbine tower offers advantages such as modular fragment prefabrication, prestressed structural enhancement, and integrated intelligent construction. To investigate the structural performance of such towers, this paper established a numerical model based on an existing project. The model was validated against previous experiments and used for parametric analysis. A numerical model of a segmented steel–concrete wind turbine tower was developed to evaluate its overall deformation, stress distribution, and vertical and horizontal joint separation under various conditions. The concrete segment of the tower was numerically simplified, and a comparative analysis of structural performance was conducted between the detailed and simplified models. Based on the simplified model, the effects of the friction coefficient, prestress loss, and contact area on the anti-slip performance of the transition section of the towers were investigated and analyzed. The results indicated that the validity of the modeling approach was confirmed through the existing experimental results. The top displacement of the model incorporating vertical and horizontal joints (Model 1) did not exceed the limit of 1/100 under the safety factor considerations, indicating that the structure could ensure safety. The simplified model (Model 2) showed consistent behavior with Model 1, thereby providing a reliable basis for parametric studies. A reduction in the steel-to-steel friction coefficient, steel strand prestress, and contact area between the steel transition section and the embedded anchor plate resulted in an increase in the horizontal relative displacement between the steel transition section and the embedded anchor plate to varying extents. Notably, a more pronounced increase in displacement was observed under higher loading conditions. Overall, the horizontal relative displacement between the steel transition section and embedded anchor plate under single-loading conditions was below one millimeter in most of the studied conditions, which was relatively small compared to the assembly tolerance of the structure. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 4813 KB  
Article
Machine Learning-Assisted DFT Screening of Nitrogen-Doped Graphene Diatomic Catalysts for Nitrogen Reduction Reaction
by Xiulin Wang, Suofu Nie, Huichao Yao, Sida Wu, Yanze Li, Junli Feng, Yiyan Sui, Yuqing Zhang, Xinwei Wang and Xiuxia Zhang
Molecules 2025, 30(20), 4131; https://doi.org/10.3390/molecules30204131 - 20 Oct 2025
Viewed by 228
Abstract
This research seeks to investigate extremely efficient catalysts for the nitrogen reduction process (NRR), utilizing machine learning (ML)-aided density functional theory (DFT) computations. Specifically, we investigate dual transition metal atoms anchored on hexagonal nitrogen-doped graphene (TM1-TM2@N6G) as [...] Read more.
This research seeks to investigate extremely efficient catalysts for the nitrogen reduction process (NRR), utilizing machine learning (ML)-aided density functional theory (DFT) computations. Specifically, we investigate dual transition metal atoms anchored on hexagonal nitrogen-doped graphene (TM1-TM2@N6G) as prospective high-activity catalysts for the NRR. The findings indicate that the synergistic effect of dual transition metal atoms in the TM1-TM2@N6G catalyst overcomes the intrinsic constraints of the linear relationship among intermediates, facilitating the activation and adsorption of N2, thereby exhibiting significant potential for ammonia synthesis through N2 reduction. Particularly, four catalysts screened by ML and DFT exhibit good stability and excellent selectivity and activation towards N2. Among them, the catalysts Ti-Cr@N6G, Ti-Mo@N6G, and Ti-Pd@N6G possess two reaction pathways with minimum reaction energies of 0.55 eV, 0.50 eV, and 0.40 eV, respectively. Remarkably, Ti-Co@N6G, which features a single reaction pathway, exhibits a reaction energy lower than 0.05 eV, allowing the NRR to proceed spontaneously. It is noteworthy that incorporating ML into DFT calculations facilitates the rapid screening of all transition metal combinations, significantly accelerating the research on catalytic performance and optimizing the selection of catalysts. Full article
(This article belongs to the Special Issue Renewable Energy, Fuels and Chemicals from Biomass, 2nd Edition)
Show Figures

Figure 1

20 pages, 2427 KB  
Review
Advancing Sustainable Energy Security in Türkiye: Geopolitical and Policy Perspectives
by Mehmet İvgin and Tufan Demirel
Sustainability 2025, 17(20), 9264; https://doi.org/10.3390/su17209264 - 18 Oct 2025
Viewed by 273
Abstract
Energy security remains a central challenge in the context of global sustainability, as geopolitical dynamics, technological advancements, and environmental imperatives converge to reshape energy systems worldwide. This comprehensive review explores the intricate relationship between geopolitics and energy policy, with a particular focus on [...] Read more.
Energy security remains a central challenge in the context of global sustainability, as geopolitical dynamics, technological advancements, and environmental imperatives converge to reshape energy systems worldwide. This comprehensive review explores the intricate relationship between geopolitics and energy policy, with a particular focus on Türkiye’s evolving energy landscape. It examines how diversification of energy sources, investments in renewable technologies, resilient infrastructure development, and international collaborations collectively contribute to securing national and global energy futures. The study highlights the geopolitical significance of strategic energy corridors, resource competition, and the emergent role of renewable energy in redefining power structures. Drawing on comparative case studies, including Germany’s Energiewende, Norway’s resource management, Japan’s post-Fukushima challenges, and the United States’ shale revolution, the review distills lessons applicable to Türkiye and other emerging economies navigating energy transitions. Future trends discussed include the rising importance of energy storage, smart grids, digitalization, cybersecurity, and equitable energy access. Policy recommendations emphasize integrated approaches that balance economic growth, environmental stewardship, and national security, advocating for proactive diversification, innovation, and multilateral cooperation. The article concludes that achieving a resilient, low-carbon, and geopolitically stable energy system requires coordinated global efforts anchored in adaptive governance and inclusive stakeholder engagement. This work provides a valuable framework for policymakers, researchers, and practitioners committed to advancing sustainable and secure energy pathways in Türkiye and beyond. Full article
(This article belongs to the Special Issue Advances in Sustainable Energy Systems)
Show Figures

Figure 1

24 pages, 13118 KB  
Article
A Workflow for Urban Heritage Digitization: From UAV Photogrammetry to Immersive VR Interaction with Multi-Layer Evaluation
by Chengyun Zhang, Guiye Lin, Yuyang Peng and Yingwen Yu
Drones 2025, 9(10), 716; https://doi.org/10.3390/drones9100716 - 16 Oct 2025
Viewed by 594
Abstract
Urban heritage documentation often separates 3D data acquisition from immersive interaction, limiting both accuracy and user impact. This study develops and validates an end-to-end workflow that integrates UAV photogrammetry with terrestrial LiDAR and deploys the fused model in a VR environment. Applied to [...] Read more.
Urban heritage documentation often separates 3D data acquisition from immersive interaction, limiting both accuracy and user impact. This study develops and validates an end-to-end workflow that integrates UAV photogrammetry with terrestrial LiDAR and deploys the fused model in a VR environment. Applied to Piazza Vittorio Emanuele II in Rovigo, Italy, the approach achieves centimetre-level registration, completes roofs and upper façades that ground scanning alone cannot capture, and produces stable, high-fidelity assets suitable for real-time interaction. Effectiveness is assessed through a three-layer evaluation framework encompassing vision, behavior, and cognition. Eye-tracking heatmaps and scanpaths show that attention shifts from dispersed viewing to concentrated focus on landmarks and panels. Locomotion traces reveal a transition from diffuse roaming to edge-anchored strategies, with stronger reliance on low-visibility zones for spatial judgment. Post-VR interviews confirm improved spatial comprehension, stronger recognition of cultural values, and enhanced conservation intentions. The results demonstrate that UAV-enabled completeness directly influences how users perceive, navigate, and interpret heritage spaces in VR. The workflow is cost-effective, replicable, and transferable, offering a practical model for under-resourced heritage sites. More broadly, it provides a methodological template for linking drone-based data acquisition to measurable cognitive and cultural outcomes in immersive heritage applications. Full article
(This article belongs to the Special Issue Implementation of UAV Systems for Cultural Heritage)
Show Figures

Figure 1

19 pages, 619 KB  
Article
Through the Face of the Dead: Constructing Totemic Identity in Early Neolithic Egypt and the Near East
by Antonio Muñoz Herrera
Religions 2025, 16(10), 1312; https://doi.org/10.3390/rel16101312 - 15 Oct 2025
Viewed by 337
Abstract
This study examines the construction of individual and collective identity in pre-Neolithic Egypt and the Levant through the post mortem manipulation of human remains. Focusing on funerary rituals and skull reuse, interpreted using recent anthropological theory frameworks, we propose a totemic framework of [...] Read more.
This study examines the construction of individual and collective identity in pre-Neolithic Egypt and the Levant through the post mortem manipulation of human remains. Focusing on funerary rituals and skull reuse, interpreted using recent anthropological theory frameworks, we propose a totemic framework of ontological identity, in which clans associated with specific animals structured their ritual and spatial practices. Based on archaeological, taphonomic, and ethnohistorical evidence, it is possible to identify how these practices reflect clan-based social units, seasonal mobility, and a reciprocal relationship with the environment, integrating corporeal and mental continuity. Plastered skulls in the Levant acted as intergenerational anchors of communal memory, while early Egyptian dismemberment practices predate the standardization of mummification and reveal the function of some structures of pre-Neolithic sanctuaries. By interpreting these mortuary rituals, we argue that selective body treatment served as a deliberate mechanism to reinforce totemic identity, transmit ancestry, and mediate ontological transitions in response to sedentarization and environmental change. Full article
Show Figures

Figure 1

12 pages, 2569 KB  
Article
A MOF-Mediated Strategy for In Situ Niobium Doping and Synthesis of High-Performance Single-Crystal Ni-Rich Cathodes
by Yinkun Gao, Huazhang Zhou, Shumin Liu, Shuyun Guan, Mingyang Liu, Peng Gao, Yongming Zhu and Xudong Li
Batteries 2025, 11(10), 368; https://doi.org/10.3390/batteries11100368 - 5 Oct 2025
Viewed by 688
Abstract
The development of single-crystal Ni-rich layered cathode materials (SC-NCMs) is regarded as an effective strategy to address the mechanical failure issues commonly associated with polycrystalline counterparts. However, the industrial production of SC-NCM faces challenges such as lengthy processing steps, high manufacturing costs, and [...] Read more.
The development of single-crystal Ni-rich layered cathode materials (SC-NCMs) is regarded as an effective strategy to address the mechanical failure issues commonly associated with polycrystalline counterparts. However, the industrial production of SC-NCM faces challenges such as lengthy processing steps, high manufacturing costs, and inconsistent product quality. In this study, we innovatively propose a metal/organic framework (MOF)-mediated one-step synthesis strategy to achieve controllable structural preparation and in situ Nb5+ doping in SC-NCM. Using a Ni–Co–Mn-based MOF as both precursor and self-template, we precisely regulated the thermal treatment pathway to guide the nucleation and oriented growth of high-density SC-NCM particles. Simultaneously, Nb5+ was pre-anchored within the MOF framework, enabling atomic-level homogeneous doping into the transition metal layers during crystal growth. Exceptional electrochemical performance is revealed in the in situ Nb-doped SC-NCM, with an initial discharge capacity reaching 176 mAh/g at a 1C rate and a remarkable capacity retention of 86.36% maintained after 200 cycles. This study paves a versatile and innovative pathway for the design of high-stability, high-energy-density cathode materials via a MOF-mediated synthesis strategy, enabling precise manipulation of both morphology and chemical composition. Full article
Show Figures

Graphical abstract

40 pages, 4433 KB  
Article
Economic Convergence Analyses in Perspective: A Bibliometric Mapping and Its Strategic Implications (1982–2025)
by Geisel García-Vidal, Néstor Alberto Loredo-Carballo, Reyner Pérez-Campdesuñer and Gelmar García-Vidal
Economies 2025, 13(10), 289; https://doi.org/10.3390/economies13100289 - 4 Oct 2025
Viewed by 599
Abstract
This study presents a bibliometric and thematic analysis of economic convergence analysis from 1982 to 2025, based on a corpus of 2924 Scopus-indexed articles. Using VOSviewer and the bibliometrix R package, this research maps the field’s intellectual structure, identifying five main thematic clusters: [...] Read more.
This study presents a bibliometric and thematic analysis of economic convergence analysis from 1982 to 2025, based on a corpus of 2924 Scopus-indexed articles. Using VOSviewer and the bibliometrix R package, this research maps the field’s intellectual structure, identifying five main thematic clusters: (1) formal statistical models, (2) institutional-contextual approaches, (3) theoretical–statistical foundations, (4) nonlinear historical dynamics, and (5) normative and policy assessments. These reflect a shift from descriptive to explanatory and prescriptive frameworks, with growing integration of sustainability, spatial analysis, and institutional factors. The most productive journals include Journal of Econometrics (121 articles), Applied Economics (117), and Journal of Cleaner Production (81), while seminal contributions by Quah, Im et al., and Levin et al. anchor the co-citation network. International collaboration is significant, with 25.99% of publications involving cross-country co-authorship, particularly in European and North American networks. The field has grown at a compound annual rate of 14.4%, accelerating after 2000 and peaking in 2022–2024, indicating sustained academic interest. These findings highlight the maturation of convergence analysis as a multidisciplinary domain. Practically, this study underscores the value of composite indicators and spatial econometric models for monitoring regional, environmental, and technological convergence—offering policymakers tools for inclusive growth, climate resilience, and innovation strategies. Moreover, the emergence of clusters around sustainability and digital transformation reveals fertile ground for future research at the intersection of transitions in energy, digital, and institutional domains and sustainable development (a broader sense of structural change). Full article
(This article belongs to the Special Issue Regional Economic Development: Policies, Strategies and Prospects)
Show Figures

Figure 1

16 pages, 1473 KB  
Review
Lipid-Mediated Assembly of Biomolecular Condensates: Mechanisms, Regulation, and Therapeutic Implications
by Shijie Ma, Zheng Yang, Chang Du, Binjie Gan and Tong Tang
Biology 2025, 14(9), 1232; https://doi.org/10.3390/biology14091232 - 10 Sep 2025
Viewed by 1076
Abstract
Cellular organization relies on both membrane-bound organelles and membraneless biomolecular condensates formed through liquid–liquid phase separation. Recent discoveries reveal intricate coupling between lipid membrane organization and condensate assembly, reshaping our understanding of cellular compartmentalization. This review synthesizes multidisciplinary research using advanced techniques including [...] Read more.
Cellular organization relies on both membrane-bound organelles and membraneless biomolecular condensates formed through liquid–liquid phase separation. Recent discoveries reveal intricate coupling between lipid membrane organization and condensate assembly, reshaping our understanding of cellular compartmentalization. This review synthesizes multidisciplinary research using advanced techniques including super-resolution microscopy, fluorescence recovery after photobleaching, and in vitro reconstitution to examine lipid-condensate interactions. Lipid membranes serve as nucleation platforms that reduce critical concentrations for condensate formation by orders of magnitude through membrane anchoring and thermodynamic coupling, creating specialized microenvironments that substantially enhance enzymatic activities. Key regulatory mechanisms include phosphorylation-driven assembly and disassembly, membrane composition effects from cholesterol content and fatty acid saturation, and environmental factors such as calcium and pH. These interactions drive signal transduction through receptor clustering, membrane trafficking via organized domains, and stress responses through protective condensate formation. Dysregulation of lipid-condensate coupling, including aberrant phase transitions and membrane dysfunction, underlies metabolic disorders and neurodegenerative diseases. This coupling represents a fundamental organizing principle with significant therapeutic potential. Current challenges include developing quantitative methods for characterizing condensate dynamics in complex cellular environments and translating molecular mechanisms into clinical applications. Future progress requires interdisciplinary approaches combining advanced experimental techniques, computational modeling, and standardized protocols to advance both fundamental understanding and therapeutic innovations. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

28 pages, 2707 KB  
Article
Dark Matter Carried by Sinorhizobium meliloti phiLM21-like Prophages
by Maria E. Vladimirova, Marina L. Roumiantseva, Alla S. Saksaganskaia, Alexandra P. Kozlova, Victoria S. Muntyan and Sergey P. Gaponov
Int. J. Mol. Sci. 2025, 26(17), 8704; https://doi.org/10.3390/ijms26178704 - 6 Sep 2025
Viewed by 1355
Abstract
A comprehensive comparative analysis was conducted on the nucleotide and amino acid sequences of intact phiLM21-like prophages (phiLM21-LPhs), which currently represent the most prevalent prophages in Sinorhizobium meliloti—a symbiotic partner of Fabaceae plants. Remarkably, the nucleotide sequences of 25 phiLM21-LPhs, identified across [...] Read more.
A comprehensive comparative analysis was conducted on the nucleotide and amino acid sequences of intact phiLM21-like prophages (phiLM21-LPhs), which currently represent the most prevalent prophages in Sinorhizobium meliloti—a symbiotic partner of Fabaceae plants. Remarkably, the nucleotide sequences of 25 phiLM21-LPhs, identified across 36 geographically dispersed S. meliloti strains, covered no more than 34% of the phiLM21 phage genome. All prophages were integrated into specific isoacceptor tRNA genes and carried a tyrosine-type integrase gene; however, this integration did not exhibit features of tRNA-dependent lysogeny. Only one-fifth of phiLM21-LPhs encoded the minimal set of regulators for lysogenic/lytic cycle transitions, while the remainder contained either uncharacterized regulatory elements or appeared to be undergoing genomic “anchoring” within the host bacterium. The phiLM21-LPhs harbored open reading frames (ORFs) of diverse origins (phage-derived, bacterial, and unknown), yet over half of these ORFs had undeterminable functions, representing genetic “dark matter”. The observed diversification of intact phiLM21-like prophages likely stems from recombination events involving both virulent/temperate phages and phylogenetically remote bacterial taxa. The evolutionary and biological significance of the substantial genetic “dark matter” within these prophages in soil saprophytic bacteria remains an unresolved question. Full article
(This article belongs to the Special Issue Bacteriophage: Molecular Ecology and Pharmacology, 2nd Edition)
Show Figures

Figure 1

20 pages, 6318 KB  
Article
Numerical Simulation on Anchored Load-Bearing Characteristics of Suction Caisson for Floating Offshore Wind Power
by Shangle Xie, Chaoyi Sun, Bo Liu, Liji Huang, Huiyuan Deng, Mingxing Zhu, Xiaojuan Li and Guoliang Dai
J. Mar. Sci. Eng. 2025, 13(9), 1653; https://doi.org/10.3390/jmse13091653 - 28 Aug 2025
Viewed by 906
Abstract
Suction caisson anchor foundations have been widely applied in oil and gas platforms but remain in the exploratory stage for floating offshore wind power applications, where research on their anchor load-bearing characteristics is insufficient. This study focuses on the influence of length-to-diameter ratio, [...] Read more.
Suction caisson anchor foundations have been widely applied in oil and gas platforms but remain in the exploratory stage for floating offshore wind power applications, where research on their anchor load-bearing characteristics is insufficient. This study focuses on the influence of length-to-diameter ratio, loading angle, and loading point depth on the anchor load-bearing characteristics of suction caisson anchor foundations. Through numerical simulation, the load–displacement curves, internal force distribution along the caisson body, movement mode transitions, and soil failure characteristics were obtained. The results indicate that loading point depth and loading angle alter the movement mode of the suction caisson anchor foundation, directly affecting its bearing capacity. Smaller loading angles result in higher bearing capacity, which initially increases with loading point depth, peaks at 0.6 L, and then decreases at 0.8 L due to a transition in the foundation’s movement mode. Similarly, as the length-to-diameter ratio decreases, the bearing capacity and overall movement amplitude of the foundation decrease, leading to a shift in the optimal loading point position. The circumferential soil pressure and horizontal soil resistance distributions vary significantly with loading angle and depth. The findings of this study provide valuable reference for the design and application of suction caisson anchor foundations. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

19 pages, 5746 KB  
Article
A Dual-Functional Intelligent Felt-like Label from Cationic Rice Straw Fibers Loaded with Alizarin Red S for Monitoring Al(III) and the Freshness of Fish
by Huiyan Feng, Yikun Li, Qian Cheng and Zhiming Liu
Foods 2025, 14(16), 2914; https://doi.org/10.3390/foods14162914 - 21 Aug 2025
Viewed by 552
Abstract
To achieve dual functionality that can monitor both Al3+ levels in food and the freshness of fish, rice straw fibers (RSFs) were treated in NaOH solutions and then cationized with 2,3-epoxypropyltrimethylammonium chloride, onto which alizarin red S molecules were immobilized through electrostatic [...] Read more.
To achieve dual functionality that can monitor both Al3+ levels in food and the freshness of fish, rice straw fibers (RSFs) were treated in NaOH solutions and then cationized with 2,3-epoxypropyltrimethylammonium chloride, onto which alizarin red S molecules were immobilized through electrostatic interaction to develop a smart felt-like label. An optimized treatment in 5 wt% NaOH solution effectively removed lignin and hemicellulose, facilitating quaternary ammonium group grafting and stable ARS anchoring. The ARS@BRSF-5NaOH exhibited high pH sensitivity, showing visually discernible color changes (ΔE > 5, perceptible to the naked eye) under acidic (pH ≤ 6) and strongly alkaline (pH > 12) conditions. During the storage of the fish, the label transformed from yellow to dark purple (ΔE increase) as TVB-N levels approached 20 mg/100 g, enabling real-time freshness monitoring for protein-rich products. Additionally, the label achieved a detection threshold of 1 × 10−5 mol·L−1 for Al3+ through a coordination-induced chromatic transition (purple to pale pink). This research highlights the feasibility of utilizing an agricultural waste-derived material to develop cost-effective, visually responsive, dual-functional intelligent labels for food safety, offering significant advancements in on-site quality assessment. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

33 pages, 732 KB  
Article
China’s Legal Protection System for Pangolins: Past, Present, and Future
by Da Su, Kai Wu and Anzi Nie
Animals 2025, 15(16), 2422; https://doi.org/10.3390/ani15162422 - 18 Aug 2025
Viewed by 1083
Abstract
This article examines the historical evolution, contemporary dynamics, and future trajectory of China’s legal and judicial framework for pangolin protection. By reviewing over seventy years of regulatory changes, case law, and policy implementation, it outlines three distinct phases: the early emphasis on pangolins [...] Read more.
This article examines the historical evolution, contemporary dynamics, and future trajectory of China’s legal and judicial framework for pangolin protection. By reviewing over seventy years of regulatory changes, case law, and policy implementation, it outlines three distinct phases: the early emphasis on pangolins as medicinal and export resources (1949–1989); the phase of conflicted protection and utilization under regulatory expansion (1989–2020); and the post-2020 shift toward judicial activism and ecological civil litigation. We then highlight the long-standing contradiction between legislative protection and continued medicinal use, particularly the centuries-old use of pangolins and their derivatives in traditional Chinese medicine, a practice still acknowledged within certain state policies and regulatory frameworks, showing how these inconsistencies enabled persistent illegal exploitation despite regulatory controls. Through systematic analysis of public court records and case databases, the policy historical records reveal a marked increase in environmental public interest litigation since 2020. These lawsuits, often attached to criminal prosecutions, signal a transition from merely punitive approaches to restorative ones—anchored in ecological valuation of species and their services. Case studies illustrate how courts now impose not only wildlife resource loss fees, but also punitive damages and compensation for ecological service function loss. The article will elaborate in detail on the distinctions and interrelations among these types of compensation. The landmark Case No.17 also demonstrates this paradigm shift, wherein courts recognized pangolins’ role in balancing forest ecosystems. However, significant challenges persist. Valuation methodologies lack uniform standards; while the ecological value of pangolins has been recognized, their inherent value as individuals has not been emphasized within the legal system; judicial discretion varies across jurisdictions; and public interest organizations remain underutilized in litigation. Moreover, while the crackdown on organized crime succeeded in curbing mass trafficking, smaller-scale violations tied to cultural consumption for medicine use persist. The article concludes that judicial innovations, such as ecological judicial restoration bases and integration into China’s draft Ecological Environment Code, offer promising pathways forward. To enhance efficacy, it calls for standardization in ecological valuation, strengthened civil society participation, and nuanced differentiation in penal strategies between minor and serious offenses. This study ultimately positions judicial reform as the cornerstone of China’s evolving pangolin conservation strategy. Full article
(This article belongs to the Special Issue Wild Animal Welfare: Science, Ethics and Law)
Show Figures

Figure 1

20 pages, 4627 KB  
Article
Research on Vehicle–Bridge-Coupled Vibration of Multi-Tower High-Pier Partially Cable-Stayed Bridge Based on a Single Vehicle
by Ke Wu, Lingbo Wang, Wei Ge, Hao Shu, Yixiang Liu and Kefan Chen
Buildings 2025, 15(16), 2865; https://doi.org/10.3390/buildings15162865 - 13 Aug 2025
Viewed by 549
Abstract
High-pier partially cable-stayed bridges, with their significant pier heights and relatively low structural stiffness and stability, experience pronounced vehicle–bridge coupling effects during vehicle transit, influencing their dynamic response and safety. This study developed a co-simulation analysis program using easy language and ANSYS to [...] Read more.
High-pier partially cable-stayed bridges, with their significant pier heights and relatively low structural stiffness and stability, experience pronounced vehicle–bridge coupling effects during vehicle transit, influencing their dynamic response and safety. This study developed a co-simulation analysis program using easy language and ANSYS to investigate the dynamic behavior of a prestressed concrete five-tower partially cable-stayed bridge under vehicle–bridge interaction, considering factors such as vehicle speed, bridge deck grade, and cable force. The research findings indicate that a reduction in bridge deck grade leads to increases in peak dynamic responses and impact factors, with the dynamic amplification factor showing a deteriorating trend across all cross-sections. Structural responses fluctuate with vehicle speed and exhibit sensitivity to speed variations, with the maximum response observed at a speed of 80 km/h. Adjusting cable forces can reduce the impact factor: a 5% change in cable tension causes the mid-span impact factor to drop sharply from 0.38 to 0.04, a substantial decrease of 89.5%. The structural system can exert an impact on the impact factor by as much as several times: while the dynamic displacement and bending moment of the fixed system are smaller than those of the continuous beam system, its impact factor is as high as 4.22 times that of the continuous beam system. Additionally, dynamic responses are closely related to the position of the fixed bearing, with responses near the fixed bearing being reduced. Notably, the maximum impact factors of critical sections all exceed the 0.05 limit specified in the code for this type of bridge, with values of 0.54 at the mid-span, 0.91 at the pier top, and 0.43 at the tower top anchor zone. This indicates that the provisions regarding dynamic amplification factors in the current code are inappropriate for such bridges. The difference in impact factors between bridge components can reach 2.12 times, this indicates that specific impact factors should be assigned to individual components to achieve an optimal balance between safety and economic performance. Full article
Show Figures

Figure 1

Back to TopTop