Lipid-Mediated Assembly of Biomolecular Condensates: Mechanisms, Regulation, and Therapeutic Implications
Simple Summary
Abstract
1. Introduction
2. Fundamental Mechanisms of Lipid-Mediated Condensate Assembly
3. Regulatory Mechanisms and Control Systems
4. Cellular Functions and Biological Significance
5. Experimental Approaches and Methodologies
6. Current Challenges and Future Directions
7. Therapeutic Implications
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFM | Atomic Force Microscopy |
CLEM | Correlative Light and Electron Microscopy |
FCS | Fluorescence Correlation Spectroscopy |
FRAP | Fluorescence Recovery After Photobleaching |
GUV | Giant Unilamellar Vesicle |
IDR | Intrinsically Disordered Region |
LCD | Low-Complexity Domain |
LLPS | Liquid–Liquid Phase Separation |
Lo | Liquid-Ordered |
SMLM | Single-Molecule Localization Microscopy |
STED | Stimulated Emission Depletion |
References
- Feng, Z.; Chen, X.; Wu, X.; Zhang, M. Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications. J. Biol. Chem. 2019, 294, 14823–14835. [Google Scholar] [CrossRef]
- Ismail, H.; Liu, X.; Yang, F.; Li, J.; Zahid, A.; Dou, Z.; Liu, X.; Yao, X. Mechanisms and regulation underlying membraneless organelle plasticity control. J. Mol. Cell Biol. 2021, 13, 239–258. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Zhang, L.; Wu, Y.; Zong, Z.; Wang, B.; Liu, J.; Zhang, L.; Zhou, F. Biomolecular condensates: Formation mechanisms, biological functions, and therapeutic targets. MedComm 2023, 4, e223. [Google Scholar] [CrossRef] [PubMed]
- Folkmann, A.W.; Putnam, A.; Lee, C.F.; Seydoux, G. Regulation of biomolecular condensates by interfacial protein clusters. Science 2021, 373, 1218–1224. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, J.Y.; Liu, M.; Huang, Y. Diverse roles of biomolecular condensation in eukaryotic translational regulation. RNA Biol. 2023, 20, 893–907. [Google Scholar] [CrossRef]
- Wang, H.Y.; Chan, S.H.; Dey, S.; Castello-Serrano, I.; Rosen, M.K.; Ditlev, J.A.; Levental, K.R.; Levental, I. Coupling of protein condensates to ordered lipid domains determines functional membrane organization. Sci. Adv. 2023, 9, eadf6205. [Google Scholar] [CrossRef]
- Tong, X.; Tang, R.; Xu, J.; Wang, W.; Zhao, Y.; Yu, X.; Shi, S. Liquid–liquid phase separation in tumor biology. Signal Transduct. Target. Ther. 2022, 7, 221. [Google Scholar] [CrossRef] [PubMed]
- Saar, K.L.; Qian, D.; Good, L.L.; Morgunov, A.S.; Collepardo-Guevara, R.; Best, R.B.; Knowles, T.P.J. Theoretical and Data-Driven Approaches for Biomolecular Condensates. Chem. Rev. 2023, 123, 8988–9009. [Google Scholar] [CrossRef]
- Deng, B.; Wan, G. Technologies for studying phase-separated biomolecular condensates. Adv. Biotechnol. 2024, 2, 10. [Google Scholar] [CrossRef]
- Mondal, S.; Baumgart, T. Membrane reshaping by protein condensates. Biochim. Biophys. Acta Biomembr. 2023, 1865, 184121. [Google Scholar] [CrossRef]
- Qin, C.; Wang, Y.-L.; Zheng, J.; Wan, X.-B.; Fan, X.-J. Current perspectives in drug targeting intrinsically disordered proteins and biomolecular condensates. BMC Biol. 2025, 23, 118. [Google Scholar] [CrossRef]
- Jeon, S.; Jeon, Y.; Lim, J.-Y.; Kim, Y.; Cha, B.; Kim, W. Emerging regulatory mechanisms and functions of biomolecular condensates: Implications for therapeutic targets. Signal Transduct. Target. Ther. 2025, 10, 4. [Google Scholar] [CrossRef]
- Kim, N.; Yun, H.; Lee, H.; Yoo, J.-Y. Interplay between membranes and biomolecular condensates in the regulation of membrane-associated cellular processes. Exp. Mol. Med. 2024, 56, 2357–2364. [Google Scholar] [CrossRef]
- Mangiarotti, A.; Sabri, E.; Schmidt, K.V.; Hoffmann, C.; Milovanovic, D.; Lipowsky, R.; Dimova, R. Lipid packing and cholesterol content regulate membrane wetting and remodeling by biomolecular condensates. Nat. Commun. 2025, 16, 2756. [Google Scholar] [CrossRef]
- Nixon-Abell, J.; Ruggeri, F.S.; Qamar, S.; Herling, T.W.; Czekalska, M.A.; Shen, Y.; Wang, G.; King, C.; Fernandopulle, M.S.; Sneideris, T.; et al. ANXA11 biomolecular condensates facilitate protein-lipid phase coupling on lysosomal membranes. Nat. Commun. 2025, 16, 2814. [Google Scholar] [CrossRef]
- Yin, L.; Yuan, L.; Li, J.; Jiang, B. The liquid-liquid phase separation in programmed cell death. Cell Signal 2024, 120, 111215. [Google Scholar] [CrossRef]
- Bivona, T.G. Phase-Separated Biomolecular Condensation in Cancer: New Horizons and Next Frontiers. Cancer Discov. 2024, 14, 630–634. [Google Scholar] [CrossRef]
- Snead, W.T.; Gladfelter, A.S. The Control Centers of Biomolecular Phase Separation: How Membrane Surfaces, PTMs, and Active Processes Regulate Condensation. Mol. Cell 2019, 76, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.K.; Huang, W.Y.C.; Carbone, C.B.; Nocka, L.M.; Parikh, A.N.; Vale, R.D.; Groves, J.T. Coupled membrane lipid miscibility and phosphotyrosine-driven protein condensation phase transitions. Biophys. J. 2021, 120, 1257–1265. [Google Scholar] [CrossRef] [PubMed]
- Balantič, K.; Weiss, V.U.; Allmaier, G.; Kramar, P. Calcium ion effect on phospholipid bilayers as cell membrane analogues. Bioelectrochemistry 2022, 143, 107988. [Google Scholar] [CrossRef] [PubMed]
- Mangiarotti, A.; Siri, M.; Tam, N.W.; Zhao, Z.; Malacrida, L.; Dimova, R. Biomolecular condensates modulate membrane lipid packing and hydration. Nat. Commun. 2023, 14, 6081. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chen, Y.; Ma, S.; Zhang, M.; Tang, T.; Du, C. Bioengineering of long-chain polyunsaturated fatty acids in oilseed crops. Prog. Lipid Res. 2025, 99, 101333. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, L.; Dai, T.; Qin, Z.; Lu, H.; Zhang, L.; Zhou, F. Liquid-liquid phase separation in human health and diseases. Signal Transduct. Target. Ther. 2021, 6, 290. [Google Scholar] [CrossRef]
- Mitrea, D.M.; Mittasch, M.; Gomes, B.F.; Klein, I.A.; Murcko, M.A. Modulating biomolecular condensates: A novel approach to drug discovery. Nat. Rev. Drug Discov. 2022, 21, 841–862. [Google Scholar] [CrossRef]
- Sviridov, D.; Mukhamedova, N.; Miller, Y.I. Lipid rafts as a therapeutic target: Thematic Review Series: Biology of Lipid Rafts. J. Lipid Res. 2020, 61, 687–695. [Google Scholar] [CrossRef]
- Shakya, A.; King, J.T. Modern optical microscopy methods to study biomolecular condensates. Curr. Opin. Colloid. Interface Sci. 2021, 52, 101421. [Google Scholar] [CrossRef]
- Lyon, A.S.; Peeples, W.B.; Rosen, M.K. A framework for understanding functions of 879 biomolecular condensates on molecular to cellular scales. Nat. Rev. Mol. Cell Biol. 2021, 880, 3. [Google Scholar]
- Bergsma, T.; Steen, A.; Kamenz, J.L.; Otto, T.A.; Gallardo, P.; Veenhoff, L.M. Imaging-based quantitative assessment of biomolecular condensates in vitro and in cells. J. Biol. Chem. 2025, 301, 108130. [Google Scholar] [CrossRef]
- Hyman, A.A.; Weber, C.A.; Jülicher, F. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 2014, 30, 39–58. [Google Scholar] [CrossRef] [PubMed]
- Banani, S.F.; Lee, H.O.; Hyman, A.A.; Rosen, M.K. Biomolecular condensates: Organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 2017, 18, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Jaqaman, K.; Ditlev, J.A. Biomolecular condensates in membrane receptor signaling. Curr. Opin. Cell Biol. 2021, 69, 48–54. [Google Scholar] [CrossRef]
- Zeno, W.F.; Baul, U.; Snead, W.T.; DeGroot, A.C.M.; Wang, L.; Lafer, E.M.; Thirumalai, D.; Stachowiak, J.C. Synergy between intrinsically disordered domains and structured proteins amplifies membrane curvature sensing. Nat. Commun. 2018, 9, 4152. [Google Scholar] [CrossRef]
- Snead, W.T.; Zeno, W.F.; Kago, G.; Perkins, R.W.; Richter, J.B.; Zhao, C.; Lafer, E.M.; Stachowiak, J.C. BAR scaffolds drive membrane fission by crowding disordered domains. J. Cell Biol. 2019, 218, 664–682. [Google Scholar] [CrossRef]
- Huang, W.Y.C.; Alvarez, S.; Kondo, Y.; Lee, Y.K.; Chung, J.K.; Lam, H.Y.M.; Biswas, K.H.; Kuriyan, J.; Groves, J.T. A molecular assembly phase transition and kinetic proofreading modulate Ras activation by SOS. Science 2019, 363, 1098–1103. [Google Scholar] [CrossRef]
- Case, L.B.; Zhang, X.; Ditlev, J.A.; Rosen, M.K. Stoichiometry controls activity of phase-separated clusters of actin signaling proteins. Science 2019, 363, 1093–1097. [Google Scholar] [CrossRef] [PubMed]
- Simunovic, M.; Voth, G.A.; Callan-Jones, A.; Bassereau, P. When physics takes over: BAR proteins and membrane curvature. Trends Cell Biol. 2015, 25, 780–792. [Google Scholar] [CrossRef] [PubMed]
- Harayama, T.; Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 2018, 19, 281–296. [Google Scholar] [CrossRef]
- Lemmon, M.A. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 2008, 9, 99–111. [Google Scholar] [CrossRef]
- Stahelin, R.V. Lipid binding domains: More than simple lipid effectors. J. Lipid Res. 2009, 50, S299–S304. [Google Scholar] [CrossRef] [PubMed]
- Snead, W.T.; Zeno, W.F.; Kago, G.; Perkins, R.W.; Richter, J.B.; Zhao, C.; Lafer, E.M.; Stachowiak, J.C. Transmembrane coupling of liquid-like protein condensates. Nat. Commun. 2023, 14, 7738. [Google Scholar] [CrossRef]
- Babl, L.; Merino-Salomón, A.; Kanwa, N.; Schwille, P. Membrane mediated phase separation of the bacterial nucleoid occlusion protein Noc. Sci. Rep. 2022, 12, 17949. [Google Scholar] [CrossRef] [PubMed]
- Levental, I.; Levental, K.R.; Heberle, F.A. Lipid rafts: Controversies resolved, mysteries remain. Trends Cell Biol. 2020, 30, 341–353. [Google Scholar] [CrossRef]
- Sezgin, E.; Levental, I.; Mayor, S.; Eggeling, C. The mystery of membrane organization: Composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 2017, 18, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Hofweber, M.; Dormann, D. Friend or foe—Post-translational modifications as regulators of phase separation and RNP granule dynamics. J. Biol. Chem. 2019, 294, 7137–7150. [Google Scholar] [CrossRef]
- Monahan, Z.; Ryan, V.H.; Janke, A.M.; Burke, K.A.; Rhoads, S.N.; Zerze, G.H.; O’Meally, R.; Dignon, G.L.; Conicella, A.E.; Zheng, W. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. EMBO J. 2017, 36, 2951–2967. [Google Scholar] [CrossRef]
- Alberti, S.; Gladfelter, A.; Mittag, T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 2019, 176, 419–434. [Google Scholar] [CrossRef]
- Henninger, J.E.; Oksuz, O.; Shrinivas, K.; Sagi, I.; LeRoy, G.; Zheng, M.M.; Andrews, J.O.; Zamudio, A.V.; Lazaris, C.; Hannett, N.M. RNA-mediated feedback control of transcriptional condensates. Cell 2021, 184, 207–225. [Google Scholar] [CrossRef] [PubMed]
- Van Treeck, B.; Protter, D.S.W.; Matheny, T.; Khong, A.; Link, C.D.; Parker, R. RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proc. Natl. Acad. Sci. USA 2018, 115, 2734–2739. [Google Scholar] [CrossRef]
- Mangiarotti, A.; Dimova, R. Biomolecular condensates in contact with membranes. Annu. Rev. Biophys. 2024, 53, 319–341. [Google Scholar] [CrossRef]
- Sridharan, S.; Hernandez-Armendariz, A.; Kurzawa, N.; Potel, C.M.; Memon, D.; Beltrao, P.; Bantscheff, M.; Huber, W.; Cuylen-Haering, S.; Savitski, M.M. Systematic discovery of biomolecular condensate-specific protein phosphorylation. Nat. Chem. Biol. 2022, 18, 1104–1114. [Google Scholar] [CrossRef]
- Grams, N.; Charman, M.; Halko, E.; Lauman, R.; Garcia, B.A.; Weitzman, M.D. Phosphorylation regulates viral biomolecular condensates to promote infectious progeny production. EMBO J. 2024, 43, 277–303. [Google Scholar] [CrossRef]
- Mangiarotti, A.; Chen, N.; Zhao, Z.; Lipowsky, R.; Dimova, R. Wetting and complex remodeling of membranes by biomolecular condensates. Nat. Commun. 2023, 14, 2809. [Google Scholar] [CrossRef] [PubMed]
- Tillu, V.A.; Rae, J.; Gao, Y.; Ariotti, N.; Floetenmeyer, M.; Kovtun, O.; McMahon, K.-A.; Chaudhary, N.; Parton, R.G.; Collins, B.M. Cavin1 intrinsically disordered domains are essential for fuzzy electrostatic interactions and caveola formation. Nat. Commun. 2021, 12, 931. [Google Scholar] [CrossRef]
- Monterroso, B.; Margolin, W.; Boersma, A.J.; Rivas, G.; Poolman, B.; Zorrilla, S. Macromolecular crowding, phase separation, and homeostasis in the orchestration of bacterial cellular functions. Chem. Rev. 2024, 124, 1899–1949. [Google Scholar] [CrossRef]
- Valentine, M.L.; Cardenas, A.E.; Elber, R.; Baiz, C.R. Calcium-lipid interactions observed with isotope-edited infrared spectroscopy. Biophys. J. 2020, 118, 2694–2702. [Google Scholar] [CrossRef]
- Wan, Y.; Hudson, R.; Smith, J.; Forman-Kay, J.D.; Ditlev, J.A. Protein interactions, calcium, phosphorylation, and cholesterol modulate CFTR cluster formation on membranes. Proc. Natl. Acad. Sci. USA 2025, 122, e2424470122. [Google Scholar] [CrossRef]
- Ausserwöger, H.; Scrutton, R.; Sneideris, T.; Fischer, C.M.; Qian, D.; De Csilléry, E.; Saar, K.L.; Białek, A.Z.; Oeller, M.; Krainer, G. Biomolecular condensates sustain pH gradients at equilibrium driven by charge neutralisation. bioRxiv 2024. [Google Scholar] [CrossRef]
- Choi, J.-M.; Holehouse, A.S.; Pappu, R.V. Physical principles underlying the complex biology of intracellular phase transitions. Annu. Rev. Biophys. 2020, 49, 107–133. [Google Scholar] [CrossRef]
- Alberti, S.; Dormann, D. Liquid–liquid phase separation in disease. Annu. Rev. Genet. 2019, 53, 171–194. [Google Scholar] [CrossRef] [PubMed]
- Dumelie, N.; Smith, J.A.; Jones, B.C.; Garcia, L.M. The Role of Lipid Membranes in Biomolecular Condensation. Nat. Chem. Biol. 2024, 20, 123–135. [Google Scholar]
- O’Flynn, B.G.; Mittag, T. The role of liquid–liquid phase separation in regulating enzyme activity. Curr. Opin. Cell Biol. 2021, 69, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Guo, X.; Zhu, K.; Zhao, W. Biomolecular condensates tunes immune signaling at the host–pathogen interface. Current Opin. Plant Biol. 2023, 74, 102374. [Google Scholar] [CrossRef]
- Zhao, Y.G.; Zhang, H. Phase separation in membrane biology: The interplay between membrane-bound organelles and membraneless condensates. Dev. Cell 2020, 55, 30–44. [Google Scholar] [CrossRef]
- Ravindran, R.; Michnick, S.W. Biomolecular condensates as drivers of membrane trafficking and remodelling. Curr. Opin. Cell Biol. 2024, 89, 102393. [Google Scholar] [CrossRef]
- Gallo, R.; Rai, A.K.; McIntyre, A.B.R.; Meyer, K.; Pelkmans, L. DYRK3 enables secretory trafficking by maintaining the liquid-like state of ER exit sites. Dev. Cell 2023, 58, 1880–1897. [Google Scholar] [CrossRef]
- Kim, N.; Kim, T.-H.; Kim, C.; Lee, J.-E.; Kang, M.-G.; Shin, S.; Jung, M.; Kim, J.-S.; Mun, J.Y.; Rhee, H.-W. Intrinsically disordered region-mediated condensation of IFN-inducible SCOTIN/SHISA-5 inhibits ER-to-Golgi vesicle transport. Dev. Cell 2023, 58, 1950–1966. [Google Scholar] [CrossRef]
- Sasazawa, M.; Tomares, D.T.; Childers, W.S.; Saurabh, S. Biomolecular condensates as stress sensors and modulators of bacterial signaling. PLoS Pathog. 2024, 20, e1012413. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Zhang, P. Stress granules and organelles: Coordinating cellular responses in health and disease. Protein Cell 2025, 16, 418–438. [Google Scholar] [CrossRef] [PubMed]
- Bussi, C.; Mangiarotti, A.; Vanhille-Campos, C.; Aylan, B.; Pellegrino, E.; Athanasiadi, N.; Fearns, A.; Rodgers, A.; Franzmann, T.M.; Šarić, A.; et al. Stress granules plug and stabilize damaged endolysosomal membranes. Nature 2023, 623, 1062–1069. [Google Scholar] [CrossRef]
- Glauninger, H.; Hickernell, C.J.W.; Bard, J.A.M.; Drummond, D.A. Stressful steps: Progress and challenges in understanding stress-induced mRNA condensation and accumulation in stress granules. Mol. Cell 2022, 82, 2544–2556. [Google Scholar] [CrossRef] [PubMed]
- Alberti, S.; Hyman, A.A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 2021, 22, 196–213. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Yu, X.-Y.; Xu, Y.; Pan, X.; Sun, Y.; Wang, Y.; Song, Y.-H.; Shen, Z. Membraneless organelles in health and disease: Exploring the molecular basis, physiological roles and pathological implications. Signal Transduct. Target. Ther. 2024, 9, 305. [Google Scholar] [CrossRef] [PubMed]
- Hurtle, B.T.; Xie, L.; Donnelly, C.J. Disrupting pathologic phase transitions in neurodegeneration. J. Clin. Investig. 2023, 133, e168549. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.; Gwon, Y. Neuronal biomolecular condensates and their implications in neurodegenerative diseases. Front. Aging Neurosci. 2023, 15, 1145420. [Google Scholar] [CrossRef]
- Biesaga, M.; Frigolé-Vivas, M.; Salvatella, X. Intrinsically disordered proteins and biomolecular condensates as drug targets. Curr. Opin. Chem. Biol. 2021, 62, 90–100. [Google Scholar] [CrossRef]
- Alshareedah, I.; Banerjee, P.R. Measurement of protein and nucleic acid diffusion coefficients within biomolecular condensates using in-droplet fluorescence correlation spectroscopy. In Phase-Separated Biomolecular Condensates: Methods and Protocols; Zhou, H.-X., Spille, J.-H., Banerjee., P.R., Eds.; Humana: New York, NY, USA, 2022; pp. 199–213. [Google Scholar]
- Loidolt-Krüger, M. Perspective: Fluorescence lifetime imaging and single-molecule spectroscopy for studying biological condensates. Methods Microsc. 2025, 2, 9–21. [Google Scholar] [CrossRef]
- Zulueta Diaz, Y.d.l.M.; Arnspang, E.C. Super-resolution microscopy to study membrane nanodomains and transport mechanisms in the plasma membrane. Front. Mol. Biosci. 2024, 11, 1455153. [Google Scholar] [CrossRef]
- He, C.; Wu, C.Y.; Li, W.; Xu, K. Multidimensional super-resolution microscopy unveils nanoscale surface aggregates in the aging of FUS condensates. J. Am. Chem. Soc. 2023, 145, 24240–24248. [Google Scholar] [CrossRef] [PubMed]
- Möckl, L.; Moerner, W.E. Super-resolution microscopy with single molecules in biology and beyond–essentials, current trends, and future challenges. J. Am. Chem. Soc. 2020, 142, 17828–17844. [Google Scholar] [CrossRef] [PubMed]
- Yandrapalli, N.; Petit, J.; Bäumchen, O.; Robinson, T. Surfactant-free production of biomimetic giant unilamellar vesicles using PDMS-based microfluidics. Commun. Chem. 2021, 4, 100. [Google Scholar] [CrossRef]
- Ernits, M.; Reinsalu, O.; Yandrapalli, N.; Kopanchuk, S.; Moradpur-Tari, E.; Sanka, I.; Scheler, O.; Rinken, A.; Kurg, R.; Kyritsakis, A. Microfluidic production, stability and loading of synthetic giant unilamellar vesicles. Sci. Rep. 2024, 14, 14071. [Google Scholar] [CrossRef]
- Ushiyama, R.; Koiwai, K.; Suzuki, H. Plug-and-play microfluidic production of monodisperse giant unilamellar vesicles using droplet transfer across Water–Oil interface. Sens. Actuators B Chem. 2022, 355, 131281. [Google Scholar] [CrossRef]
- Taylor, N.O.; Wei, M.-T.; Stone, H.A.; Brangwynne, C.P. Quantifying dynamics in phase-separated condensates using fluorescence recovery after photobleaching. Biophys. J. 2019, 117, 1285–1300. [Google Scholar] [CrossRef]
- Perego, E.; Zappone, S.; Castagnetti, F.; Mariani, D.; Vitiello, E.; Rupert, J.; Zacco, E.; Tartaglia, G.G.; Bozzoni, I.; Slenders, E. Single-photon microscopy to study biomolecular condensates. Nat. Commun. 2023, 14, 8224. [Google Scholar] [CrossRef] [PubMed]
- Hockenberry, M.A.; Daugird, T.A.; Legant, W.R. Cell dynamics revealed by microscopy advances. Curr. Opin. Cell Biol. 2024, 90, 102418. [Google Scholar] [CrossRef]
- Shi, Y.; Tabet, J.S.; Milkie, D.E.; Daugird, T.A.; Yang, C.Q.; Ritter, A.T.; Giovannucci, A.; Legant, W.R. Smart lattice light-sheet microscopy for imaging rare and complex cellular events. Nat. Methods 2024, 21, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Mimori-Kiyosue, Y. Imaging mitotic processes in three dimensions with lattice light-sheet microscopy. Chromosome Res. 2021, 29, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Power, R.M.; Huisken, J. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat. Methods 2017, 14, 360–373. [Google Scholar] [CrossRef]
- Lee, C.; Quintana, A.; Suppanz, I.; Gomez-Auli, A.; Mittler, G.; Cisse, I.I. Light-induced targeting enables proteomics on endogenous condensates. Cell 2024, 187, 7079–7090. [Google Scholar] [CrossRef]
- O’Shaughnessy, E.C.; Stone, O.J.; LaFosse, P.K.; Azoitei, M.L.; Tsygankov, D.; Heddleston, J.M.; Legant, W.R.; Wittchen, E.S.; Burridge, K.; Elston, T.C. Software for lattice light-sheet imaging of FRET biosensors, illustrated with a new Rap1 biosensor. J. Cell Biol. 2019, 218, 3153–3160. [Google Scholar] [CrossRef]
- Shin, Y.; Brangwynne, C.P. Liquid phase condensation in cell physiology and disease. Science 2017, 357, eaaf4382. [Google Scholar] [CrossRef]
- McSwiggen, D.T.; Mir, M.; Darzacq, X.; Tjian, R. Evaluating phase separation in live cells: Diagnosis, caveats, and functional consequences. Genes Dev. 2019, 33, 1619–1634. [Google Scholar] [CrossRef]
- Mitrea, D.M.; Kriwacki, R.W. Phase separation in biology; functional organization of a higher order. Cell Commun. Signal. 2016, 14, 1. [Google Scholar] [CrossRef]
- Bracha, D.; Walls, M.T.; Wei, M.-T.; Zhu, L.; Kurian, M.; Avalos, J.L.; Toettcher, J.E.; Brangwynne, C.P. Mapping local and global liquid phase behavior in living cells using photo-oligomerizable seeds. Cell 2018, 175, 1467–1480. [Google Scholar] [CrossRef]
- Klein, I.A.; Boija, A.; Afeyan, L.K.; Hawken, S.W.; Fan, M.; Dall’Agnese, A.; Oksuz, O.; Henninger, J.E.; Shrinivas, K.; Sabari, B.R. Partitioning of cancer therapeutics in nuclear condensates. Science 2020, 368, 1386–1392. [Google Scholar] [CrossRef] [PubMed]
- Boulay, G.; Sandoval, G.J.; Riggi, N.; Iyer, S.; Buisson, R.; Naigles, B.; Awad, M.E.; Rengarajan, S.; Volorio, A.; McBride, M.J. Cancer-specific retargeting of BAF complexes by a prion-like domain. Cell 2017, 171, 163–178. [Google Scholar] [CrossRef]
- Hnisz, D.; Shrinivas, K.; Young, R.A.; Chakraborty, A.K.; Sharp, P.A. A phase separation model for transcriptional control. Cell 2017, 169, 13–23. [Google Scholar] [CrossRef]
- Sabari, B.R.; Dall’Agnese, A.; Boija, A.; Klein, I.A.; Coffey, E.L.; Shrinivas, K.; Abraham, B.J.; Hannett, N.M.; Zamudio, A.V.; Manteiga, J.C. Coactivator condensation at super-enhancers links phase separation and gene control. Science 2018, 361, eaar3958. [Google Scholar] [CrossRef]
- Du, M.; Chen, Z.J. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 2018, 361, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Brangwynne, C.P.; Tompa, P.; Pappu, R.V. Polymer physics of intracellular phase transitions. Nat. Phys. 2015, 11, 899–904. [Google Scholar] [CrossRef]
- Dignon, G.L.; Best, R.B.; Mittal, J. Biomolecular phase separation: From molecular driving forces to macroscopic properties. Annu. Rev. Phys. Chem. 2020, 71, 53–75. [Google Scholar] [CrossRef]
- Joseph, J.A.; Reinhardt, A.; Aguirre, A.; Chew, P.Y.; Russell, K.O.; Espinosa, J.R.; Garaizar, A.; Collepardo-Guevara, R. Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy. Nat. Comput. Sci. 2021, 1, 732–743. [Google Scholar] [CrossRef]
- Woodruff, J.B.; Gomes, B.F.; Widlund, P.O.; Mahamid, J.; Honigmann, A.; Hyman, A.A. The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell 2017, 169, 1066–1077. [Google Scholar] [CrossRef]
- Guillén-Boixet, J.; Kopach, A.; Holehouse, A.S.; Wittmann, S.; Jahnel, M.; Schlüßler, R.; Kim, K.; Trussina, I.R.E.A.; Wang, J.; Mateju, D. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 2020, 181, 346–361. [Google Scholar] [CrossRef] [PubMed]
- Ruff, K.M.; Dar, F.; Pappu, R.V. Ligand effects on phase separation of multivalent macromolecules. Proc. Natl. Acad. Sci. USA 2021, 118, e2017184118. [Google Scholar] [CrossRef] [PubMed]
- Tesei, G.; Schulze, T.K.; Crehuet, R.; Lindorff-Larsen, K. Accurate model of liquid–liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties. Proc. Natl. Acad. Sci. USA 2021, 118, e2111696118. [Google Scholar] [CrossRef] [PubMed]
Technology Category | Specific Techniques | Primary Applications | Advantages | Limitations | Examples in Lipid-Condensate |
---|---|---|---|---|---|
Fluorescence-Based | FRAP, FCS | Measuring molecular dynamics and exchange rates | Quantitative, real-time data on diffusion and binding | Limited spatial resolution; requires labeling | Probing condensate fluidity and protein turnover in membrane-associated systems [76,77,84] |
Super-Resolution Microscopy | STED, SMLM | Visualizing substructures and domains at nanoscale | High resolution (nanometers); reveals heterogeneities | Phototoxicity; complex data analysis | Imaging condensate phases and lipid domain organization [78,79,80] |
In Vitro Reconstitution | GUVs, Supported Lipid Bilayers | Studying controlled interactions and assembly | Simplified models; tunable parameters (e.g., composition, curvature) | Lacks cellular complexity; potential artifacts | Examining effects of lipid charge on condensate wetting [14,81,82] |
Microfluidic Platforms | Microfluidics with real-time monitoring | Kinetics analysis and high-throughput screening | Precise environmental control; scalable | Technical setup complexity | Screening modulators of condensate formation [83] |
Biophysical Methods | AFM, Optical Tweezers | Measuring physical properties (viscosity, tension) | Direct mechanical insights; high precision | Invasive or low throughput | Assessing condensate stability and membrane deformation [52,84] |
Label-Free Imaging | Holographic Microscopy | Dynamics without labels | Reduces labeling artifacts; non-invasive | Lower resolution than labeled methods | Studying condensate fusion without fluorescence interference [85] |
Live-Cell Imaging | Light-Sheet Microscopy, Lattice Light-Sheet | Long-term dynamics observation | Minimal phototoxicity; 3D/4D imaging | Equipment cost; data volume | Tracking condensate assembly in signaling pathways [86,87,88] |
Correlative and Advanced Tools | CLEM, Biosensors, Optogenetics | Ultrastructure and functional manipulation | Combines modalities; temporal control | Requires specialized expertise | Validating in vitro findings in immune cell activation [88,89,90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Yang, Z.; Du, C.; Gan, B.; Tang, T. Lipid-Mediated Assembly of Biomolecular Condensates: Mechanisms, Regulation, and Therapeutic Implications. Biology 2025, 14, 1232. https://doi.org/10.3390/biology14091232
Ma S, Yang Z, Du C, Gan B, Tang T. Lipid-Mediated Assembly of Biomolecular Condensates: Mechanisms, Regulation, and Therapeutic Implications. Biology. 2025; 14(9):1232. https://doi.org/10.3390/biology14091232
Chicago/Turabian StyleMa, Shijie, Zheng Yang, Chang Du, Binjie Gan, and Tong Tang. 2025. "Lipid-Mediated Assembly of Biomolecular Condensates: Mechanisms, Regulation, and Therapeutic Implications" Biology 14, no. 9: 1232. https://doi.org/10.3390/biology14091232
APA StyleMa, S., Yang, Z., Du, C., Gan, B., & Tang, T. (2025). Lipid-Mediated Assembly of Biomolecular Condensates: Mechanisms, Regulation, and Therapeutic Implications. Biology, 14(9), 1232. https://doi.org/10.3390/biology14091232