Economic Policy Uncertainty, Geopolitical Risk, and the U.S.–China Relations: A Risk Transmission Perspective
Abstract
1. Introduction
2. Literature Review and Hypothesis Development
2.1. Literature Review
2.1.1. Systemic Leadership in a Transitional Era
2.1.2. Economic Policy Uncertainty (EPU) as a Metric of Economic Stewardship
2.1.3. Geopolitical Risk (GPR) and the Securitization of Commerce
2.1.4. The Imperative of Contextual and Historical Nuance
2.2. Hypothesis Development
3. Data and Methods
3.1. Data
3.2. Methods
3.2.1. The Vector Autoregressive (VAR) Model
3.2.2. Granger Causality in Quantile Tests
4. Empirical Results and Discussion
4.1. Empirical Results
4.1.1. The Domestic Impact of Economic Policy Uncertainty
4.1.2. The International Transmission of Uncertainty and GPR
4.1.3. Robustness Checks and Model Validation
4.1.4. Global Financial Landscape and Risk Analysis
4.2. Discussion of the Results
4.2.1. The Domestic Channel: EPU as a Systemic Risk Factor
4.2.2. The International Channel: A Hierarchy of Asymmetric Interdependence
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADF | Augmented Dickey–Fuller |
| AIC | Akaike Information Criterion |
| AIIB | Asian Infrastructure Investment Bank |
| BIC | Bayesian Information Criterion |
| BRI | Belt and Road Initiative |
| CPI | Consumer Price Index |
| EPU | Economic Policy Uncertainty |
| FDI | Foreign Direct Investment |
| FPE | Final Prediction Error |
| GDP | Gross Domestic Product |
| GPR | Geopolitical Risk |
| HQIC | Hannan-Quinn Information Criterion |
| IV | Instrumental Variables |
| OLS | Ordinary Least Squares |
| PCA | Principal Component Analysis |
| SD | Standard Deviation |
| UNEMPLOYMENT | Unemployment Rate |
| VAR | Vector Autoregressive |
| VIF | Variance Inflation Factor |
| 2SLS | Two-Stage Least Squares |
Appendix A. Inverse Roots of AR Characteristic Polynomial (for China, the U.S., Hong Kong, and Macao)




Appendix B. Orthogonal Impulse Response from EPU (for China, the U.S., Japan, India, Hong Kong, and Macao)






Appendix C. Robustness Test Results
| Variable Category | Number of Variables | VIF Range | Severity Level | Economic Interpretation |
|---|---|---|---|---|
| CPI | 5 | 98.65–245.67 | Extreme | Global inflation synchronization and price transmission mechanisms |
| STOCK | 5 | 18.54–32.65 | Severe | Financial market integration and contagion effects |
| EPU | 3 | 10.99–15.88 | Moderate | Cross-country policy uncertainty spillovers |
| Other variables | 24 | 2.11–9.88 | Acceptable | No significant multicollinearity concerns |
| Variable | USA- STOCK | USA-EPU (Endogenous) | Global-EPU (Instrument) | Japan-EPU (Instrument) | USA-GPR | USA- CPI | USA- UNEMPLOYMENT | China-EPU |
|---|---|---|---|---|---|---|---|---|
| USA-STOCK | 1.000 | |||||||
| USA-EPU | −0.345 | 1.000 | ||||||
| Global-EPU | 0.234 | 0.645 | 1.000 | |||||
| Japan-EPU | 0.267 | 0.598 | 0.723 | 1.000 | ||||
| USA-GPR | −0.289 | 0.567 | 0.456 | 0.445 | 1.000 | |||
| USA-CPI | −0.456 | 0.389 | 0.298 | 0.321 | 0.412 | 1.000 | ||
| USA-UNEMPLOYMENT | −0.412 | 0.276 | 0.198 | 0.223 | 0.309 | 0.432 | 1.000 | |
| China-EPU | 0.198 | 0.523 | 0.678 | 0.589 | 0.387 | 0.254 | 0.167 | 1.000 |
References
- Ahir, H., Bloom, N., & Furceri, D. (2022). The world uncertainty index. NBER. [Google Scholar]
- Allison, G. T. (2017). Destined for war? The National Interest. [Google Scholar]
- Amr, N. (2025). China’s rise and a new perspective on hegemonic stability theory. International Journal on Culture, History, and Religion, 7, 92–112. [Google Scholar] [CrossRef]
- Baker, S. R., Bloom, N., & Davis, S. J. (2016). Measuring economic policy uncertainty. The Quarterly Journal of Economics, 131(4), 1593–1636. [Google Scholar] [CrossRef]
- Beckley, M. (2021). America is not ready for a war with China. Available online: https://www.foreignaffairs.com/articles/united-states/2021-06-10/america-not-ready-war-china (accessed on 2 August 2023).
- Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression diagnostics; identifying influence data and source of collinearity. Wiley. [Google Scholar]
- Berna, O., Gnabo, J.-Y., & Guilmin, G. (2016). Economic policy uncertainty and risk spillovers in the Eurozone. Journal of International Money and Finance, 65, 24–45. [Google Scholar] [CrossRef]
- Bernanke, B. S. (1983). Irreversibility, uncertainty and cyclical investment. The Quarterly Journal of Economics, 98(1), 85–106. [Google Scholar] [CrossRef]
- Biljanovska, N., Grigoli, F., & Hengge, M. (2021). Fear thy neighbor: Spillovers from economic policy uncertainty. Review of International Economics, 29(2), 409–438. [Google Scholar] [CrossRef]
- Bloom, N. (2009). The impact of uncertainty shock. Econometrica, 77(3), 623–685. [Google Scholar] [CrossRef]
- Caldara, D., & Iacoviello, M. (2022). Measuring geopolitical risk. American Economic Review, 112(4), 1194–1225. [Google Scholar] [CrossRef]
- Can, C. M., & Chan, A. (2022). Preventive or revisionist challenge during power transition? The case of China–USA strategic competition. Journal of Asian Security and International Affairs, 9(1), 7–25. [Google Scholar] [CrossRef]
- Carney, M. (2016). Uncertainty, the economy and policy—Speech by Mark Carney. Available online: https://www.bankofengland.co.uk/-/media/boe/files/speech/2016/uncertainty-the-economy-and-policy.pdf (accessed on 2 August 2023).
- Chen, C.-C., Huang, Y.-L., & Yang, F. (2024). Semantics matter: An empirical study on economic policy uncertainty index. International Review of Economics & Finance, 89, 1286–1302. [Google Scholar]
- Choi, M., Han, S. H., & Kim, D. (2025). Geopolitical risk, CEO war experience, and stock price crash risk: Evidence from Korea. Economics Letters, 255, 112560. [Google Scholar] [CrossRef]
- Choi, S. Y. (2022). Evidence from a multiple and partial wavelet analysis on the impact of geopolitical concerns on stock markets in North-East Asian countries. Finance Research Letters, 46, 102465. [Google Scholar] [CrossRef]
- Chowdhury, M. S. R., Aram, M., Javadi, S., & Nejadmalayeri, A. (2025). Geopolitical risk and corporate capital structure. Journal of Corporate Finance, 2025, 102796. [Google Scholar] [CrossRef]
- Chuang, C.-C., Kuan, C.-M., & Lin, H.-Y. (2009). Causality in quantiles and dynamic stock return-volume relations. Journal of Banking & Finance, 33(7), 1351–1360. [Google Scholar]
- Cole, D. (2023). Graham Allison & Thucydides trap. Overview & History. Available online: https://study.com/learn/lesson/thucydides-trap-overview-theory-historical-examples.html (accessed on 28 November 2023).
- Çolak, G., Durnev, A., & Qian, Y. (2017). Political uncertainty and IPO activity: Evidence from U.S. gubernatorial elections. Journal of Financial and Quantitative Analysis, 52, 2523–2564. [Google Scholar] [CrossRef]
- Das, D., Kannadhasan, M., & Bhattacharyya, M. (2019). Do the emerging stock markets react to international economic policy uncertainty, geopolitical risk and financial stress alike? North American Journal of Economics and Finance, 48, 1–19. [Google Scholar] [CrossRef]
- Dixit, A. K., & Pindyck, R. S. (1994). Investment under uncertainty. Princeton University Press. [Google Scholar]
- Dong, L., Hidthiir, M. H. B., & Mansur, M. B. (2025). Economic policy uncertainty and China’s FDI inflows: Moderating effects of financial development and political stability. Journal of Risk and Financial Management, 18(7), 354. [Google Scholar] [CrossRef]
- Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4), 987–1007. [Google Scholar] [CrossRef]
- Engle, R. F. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics, 20(3), 339–350. [Google Scholar]
- Fontaine, I., Gálvez-Iniesta, I., Gomes, P., & Vila-Martin, D. (2020). Labour market flows: Accounting for the public sector. Labour Economics, 62, 101770. [Google Scholar] [CrossRef]
- Forbes, K. J., & Warnock, F. E. (2012). Capital flow waves: Surges, stops, flight, and retrenchment. Journal of International Economics, 88(2), 235–251. [Google Scholar] [CrossRef]
- Garba, M. K. (2025). Power, protectionism, and the global economy: A political economy analysis of the United States of America–China tariff conflict between 2020 and 2025. Spring Journal of Arts, Humanities and Social Sciences, 4(7), 22–27. [Google Scholar] [CrossRef]
- Gilpin, R. (1987). The political economy of international relations. Princeton University Press. [Google Scholar]
- Gilpin, R. (1988). The theory of hegemonic war. The Journal of Interdisciplinary History, 18(4), 591–613. [Google Scholar] [CrossRef]
- Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross spectral methods. Econometrica, 37(3), 424–438. [Google Scholar] [CrossRef]
- Gulen, H., & Ion, M. (2016). Policy uncertainty and corporate investment. Review of Financial Studies, 29, 523–564. [Google Scholar] [CrossRef]
- Guo, P., Zhu, H., & You, W. (2018). Asymmetric dependence between economic policy uncertainty and stock market returns in G7 and BRIC: A quantile regression approach. Finance Research Letters, 25(C), 251–258. [Google Scholar] [CrossRef]
- Hausman, J. (1978). Specification tests in econometrics. Econometrica, 46, 1251–1271. [Google Scholar] [CrossRef]
- Huang, Y., & Luk, P. (2020). Measuring economic policy uncertainty in China. China Economic Review, 59, 101367. [Google Scholar] [CrossRef]
- Ikenberry, G. J. (2011). Liberal Leviathan: The origins, crisis, and transformation of the American world order. Princeton University Press. [Google Scholar]
- Ikenberry, G. J. (2020). A world safe for democracy: Liberal internationalism and the crises of global order. Yale University Press. [Google Scholar]
- Johnston, A. I. (2013). How new and assertive is China’s new assertiveness? International Security, 37(4), 7–48. [Google Scholar] [CrossRef]
- Kannadhasan, M., & Das, D. (2020). Do Asian emerging stock markets react to international economic policy uncertainty and geopolitical risk alike? A quantile regression approach. Finance Research Letters, 34, 101276. [Google Scholar] [CrossRef]
- Kido, Y. (2018). The transmission of US economic policy uncertainty shocks to Asian and global financial markets. The North American. Journal of Economics and Finance, 46, 222–231. [Google Scholar] [CrossRef]
- Kwon, D. (2025). Oil shocks, US uncertainty, and emerging corporate bond markets. Journal of Risk Financial Management, 18(1), 25. [Google Scholar] [CrossRef]
- Leone, M., Manelli, A., & Pace, R. (2025). Dynamic connectedness among energy markets and EUA climate credit: The role of GPR and VIX. Journal of Risk and Financial Management, 18(8), 462. [Google Scholar] [CrossRef]
- Luk, P. (2018). Economic policy uncertainty index for Macao. Macao Monetary Research Bulletin, 50, 75–88. [Google Scholar]
- Lutkepohl, H. (2005). New introduction to multiple time series analysis. Springer. [Google Scholar]
- Mastanduno, M. (2019). Liberal hegemony, international order, and US foreign policy: A reconsideration. British Journal of Politics & International Relations, 21(3), 136914811879196. [Google Scholar]
- Mastro, O. S. (2019). The costs of conversation: Obstacles to peacemaking in Asia. Cornell University Press. [Google Scholar]
- Mawusi, C. (2020). Economic policy uncertainty and international trade: A gravity model approach. License: CC BY 4.0. Available online: https://www.researchsquare.com/article/rs-129375/v1 (accessed on 28 November 2023). [CrossRef]
- Nguyen, N. H., & Phan, H. V. (2017). Policy uncertainty and mergers and acquisitions. Journal of Financial and Quantitative Analysis, 52(2), 613–644. [Google Scholar] [CrossRef]
- Nye, J. S. (2022). Do morals matter? Presidents and foreign policy from FDR to trump. Oxford University Press. [Google Scholar]
- Organski, A. F. K., & Kugler, J. (1980). The war ledger. University of Chicago Press. [Google Scholar]
- Oztekin, A., Delen, D., Turkyilmaz, A., & Zaim, S. (2013). A machine learning-based usability evaluation method for eLearning systems. Decision Support Systems, 56, 63–73. [Google Scholar] [CrossRef]
- Pan, C. (2019). Rethinking Chinese power: A conceptual corrective to the “Power Shift” narrative. Asian Perspective, 38(3), 387–410. [Google Scholar] [CrossRef]
- Pu, X. (2022). The status dilemma in world politics: An anatomy of the China–India asymmetrical rivalry. The Chinese Journal of International Politics, 15(3), 227–245. [Google Scholar] [CrossRef]
- Ramsey, J. B. (1969). Tests for specification errors in classical linear least squares regression analysis. Journal of the Royal Statistical Society Series B, 31, 350–371. [Google Scholar] [CrossRef]
- Ruiz, E., & Nieto, F. H. (2000). A note on linear combination of predictors. Statistics and Probability Letters, 47(4), 351–356. [Google Scholar] [CrossRef]
- Schweller, R. L., & Pu, X. (2011). After unipolarity: China’s visions of international order in an era of U.S. decline. International Security, 36(1), 41–72. [Google Scholar] [CrossRef]
- Sevim, C., Oztekin, A., Bali, O., Gumus, S., & Guresen, E. (2014). Developing an early warning system to predict currency crises. European Journal of Operational Research, 237(3), 1095–1104. [Google Scholar] [CrossRef]
- Sheng, L., & Nascimento, D. F. (2021). The belt and road initiative in south–south cooperation: The impact on world trade and geopolitics. Springer. [Google Scholar]
- Sims, C. A. (1980). Macroeconomics and reality. Econometrica, 48(1), 1–48. [Google Scholar] [CrossRef]
- Staiger, D., & Stock, J. H. (1997). Instrumental variables regression. Econometrica, 65, 557–586. [Google Scholar] [CrossRef]
- Stock, J. H., & Watson, M. W. (2002). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association, 97(460), 1167–1179. [Google Scholar] [CrossRef]
- Tam, P. S. (2020). Global impacts of China-US trade tensions. Journal of International Trade and Economic Development, 29, 510–545. [Google Scholar] [CrossRef]
- Troster, V., Shahbaz, M., & Uddin, G. S. (2018). Renewable energy, oil prices, and economic activity: A Granger-causality in quantiles analysis. Energy Economics, 70, 440–452. [Google Scholar] [CrossRef]
- Wei, S. J. (1995). The open door policy and China’s rapid growth. NBER Working Paper. Available online: https://www.nber.org/system/files/chapters/c8545/c8545.pdf (accessed on 2 August 2023).
- Welsh, S. (2019). Can China continue to rise peacefully? (pp. 1–9) E-International Relations. Available online: https://www.e-ir.info/2019/02/21/can-china-continue-to-rise-peacefully/ (accessed on 2 August 2023).
- White, H. (1980). A heteroscedasticity-consistent covariance matrix estimator and a direct test for heteroscedasticity. Econometrica, 48(4), 817–838. [Google Scholar] [CrossRef]
- Wu, W.-L., & Shao, C. (2023). How does home and host-country policy uncertainty affect outward FDI? Firm-level evidence from China. Economia Politica, 40, 495–515. [Google Scholar] [CrossRef]
- Yaqoob, M., Bani, Y., Ishak, S., & Rosland, A. (2024). Impact of demographic dividend on economic growth in developing countries. Thailand and The World Economy, 42(3), 236–252. [Google Scholar]
- Yoder, B. K. (2019). Uncertainty, shifting power and credible signals in US-China Relations: Why the “Thucydides Trap” is real, but limited. Journal of Chinese Political Science, 24, 87–104. [Google Scholar] [CrossRef]
- Zhang, L., & Colak, G. (2022). Foreign direct investment and economic policy uncertainty in China. Economic and Political Studies, 10(3), 279–289. [Google Scholar] [CrossRef]
- Zhang, Y. (2024). The United States, China, and planetary solidarity. Georgetown Journal of International Affairs, 25(1), 144–150. [Google Scholar] [CrossRef]
- Zheng, Y., & Li, J. (2022). The third wave of China’s open door policy. ARPE, 1(1), 2. [Google Scholar] [CrossRef]
| Country | Variable Type | Number | Mean | SD | Skewness | Kurtosis |
|---|---|---|---|---|---|---|
| China | GPR | 317 | 0.008 | 0.382 | 0.442 | 0.836 |
| EPU | 317 | 0.002 | 0.460 | 0.066 | 1.092 | |
| GDP | 88 | 0.012 | 0.431 | −0.487 | 0.846 | |
| UNEMPLOYMENT | 88 | 0.010 | 0.147 | −0.619 | 3.615 | |
| CPI | 88 | −0.001 | 0.006 | −0.514 | 1.992 | |
| STOCK | 88 | 0.005 | 0.076 | −0.125 | 1.903 | |
| USA | GPR | 317 | 0.003 | 0.258 | 2.189 | 8.740 |
| EPU | 317 | 0.003 | 0.269 | 0.499 | 1.678 | |
| GDP | 88 | 0.006 | 0.028 | −0.689 | −0.135 | |
| UNEMPLOYMENT | 88 | 0.021 | 0.271 | 1.084 | 0.789 | |
| CPI | 88 | 0.005 | 0.007 | −1.003 | 5.295 | |
| STOCK | 88 | 0.013 | 0.086 | −0.992 | 0.993 | |
| Japan | GPR | 317 | −0.001 | 0.533 | 0.805 | 2.901 |
| EPU | 317 | −0.000 | 0.190 | −0.091 | 0.920 | |
| GDP | 88 | 0.005 | 0.025 | −2.059 | 5.796 | |
| UNEMPLOYMENT | 88 | 0.040 | 0.011 | −0.351 | −0.683 | |
| CPI | 88 | 0.003 | 0.030 | 1.045 | 2.605 | |
| STOCK | 88 | 0.001 | 0.111 | −0.766 | 0.262 | |
| India | GPR | 317 | 0.003 | 0.486 | 0.962 | 3.715 |
| EPU | 317 | 0.001 | 0.447 | −0.139 | 0.831 | |
| GDP | 88 | 0.006 | 0.288 | 0.078 | 2.647 | |
| UNEMPLOYMENT | 88 | 0.019 | 0.003 | −1.693 | 1.580 | |
| CPI | 88 | 0.002 | 0.206 | 0.105 | 0.438 | |
| STOCK | 88 | 0.029 | 0.119 | −0.269 | 1.475 | |
| Hong Kong | GPR | 317 | −0.003 | 0.842 | 0.320 | 0.869 |
| EPU | 317 | −0.001 | 0.463 | 0.160 | 0.367 | |
| GDP | 88 | 0.028 | 0.041 | −0.874 | 1.038 | |
| UNEMPLOYMENT | 88 | −0.011 | 0.105 | 1.115 | 4.486 | |
| CPI | 88 | 0.054 | 0.995 | −0.312 | 0.778 | |
| STOCK | 88 | 0.007 | 0.103 | −0.459 | 0.874 | |
| Macao | GPR | n/a | n/a | n/a | n/a | n/a |
| EPU | 317 | 0.019 | 0.477 | −0.031 | 0.434 | |
| GDP | 88 | 0.007 | 0.008 | 0.147 | 0.410 | |
| UNEMPLOYMENT | 88 | −0.000 | 0.002 | −0.134 | 0.863 | |
| CPI | 88 | 0.003 | 0.115 | 1.084 | 5.096 | |
| STOCK | 88 | 0.044 | 0.299 | 1.240 | 7.316 |
| (a) | |||||||||
| Country | Mean | SD | Macao | Hong Kong | USA | China | Japan | India | Global |
| Macao | 138.519 | 76.936 | 1 | ||||||
| Hong Kong | 135.702 | 72.398 | 0.483 ** | 1 | |||||
| USA | 124.041 | 45.337 | 0.481 ** | 0.433 ** | 1 | ||||
| China | 138.624 | 114.206 | 0.483 ** | 0.407 ** | 0.570 ** | 1 | |||
| Japan | 107.184 | 32.364 | 0.382 ** | 0.408 ** | 0.622 ** | 0.286 ** | 1 | ||
| India | 92.060 | 46.930 | 0.181 ** | 0.340 ** | 0.460 ** | −0.030 | 0.565 ** | 1 | |
| Global | 140.387 | 71.218 | 0.629 ** | 0.550 ** | 0.780 ** | 0.871 ** | 0.533 ** | 0.177 ** | 1 |
| (b) | |||||||||
| Country | Mean | SD | China-EPU | Japan-EPU | India-EPU | USA-EPU | |||
| China-EPU | 0.005 | 0.423 | 1.000 | ||||||
| Japan-EPU | 0.000 | 0.368 | 0.125 | 1.000 | |||||
| India-EPU | −0.002 | 0.190 | 0.023 | 0.343 | 1.000 | ||||
| USA-EPU | 0.003 | 0.269 | 0.244 ** | 0.217 | 0.199 ** | 1.000 | |||
| Table Impact Country | Impacted Country | H0 | χ2 | df | p | 5% Critical Value |
|---|---|---|---|---|---|---|
| Hong Kong | Hong Kong | No Auto | 33.570 | 25 | 0.117 | 37.652 |
| China | China | No Auto | 35.806 | 25 | 0.075 | 37.652 |
| USA | USA | No Auto | 36.208 | 25 | 0.069 | 37.652 |
| Macao | Macao | No Auto | 36.217 | 25 | 0.068 | 37.652 |
| Japan | Japan | No Auto | 36.239 | 25 | 0.068 | 37.652 |
| India | India | No Auto | 27.171 | 25 | 0.347 | 37.652 |
| China | Macao | No Auto | 46.476 | 36 | 0.113 | 50.998 |
| USA | Macao | No Auto | 46.498 | 36 | 0.113 | 50.998 |
| Mean | SD | China-GPR | Japan-GPR | India-GPR | USA-GPR | |
|---|---|---|---|---|---|---|
| Pearson test | ||||||
| China-GPR | 0.008 | 0.382 | 1.000 | |||
| Japan-GPR | −0.001 | 0.533 | 0.628 | 1.000 | ||
| India-GPR | 0.003 | 0.486 | 0.438 | 0.386 | 1.000 | |
| USA-GPR | 0.003 | 0.258 | 0.587 | 0.546 | 0.456 | 1.000 |
| Spearman test | ||||||
| China-GPR | 0.008 | 0.382 | 1.000 | |||
| Japan-GPR | −0.001 | 0.533 | 0.569 | 1.000 | ||
| India-GPR | 0.003 | 0.486 | 0.374 | 0.302 | 1.000 | |
| USA-GPR | 0.003 | 0.258 | 0.555 | 0.449 | 0.390 | 1.000 |
| Kendall test | ||||||
| China-GPR | 0.007 | 0.382 | 1.000 | |||
| Japan-GPR | −0.001 | 0.533 | 0.408 | 1.000 | ||
| India-GPR | 0.003 | 0.486 | 0.255 | 0.202 | 1.000 | |
| USA-GPR | 0.003 | 0.258 | 0.397 | 0.309 | 0.264 | 1.000 |
| China-GPR | Japan-GPR | India-GPR | USA-GPR | |
|---|---|---|---|---|
| Pearson test | ||||
| China-EPU | 0.208 ** | 0.107 | 0.085 | 0.023 |
| Japan-EPU | 0.035 | 0.044 | −0.117 | −0.116 |
| India-EPU | −0.034 | 0.019 | −0.111 | −0.004 |
| USA-EPU | 0.086 | 0.142 | −0.017 | 0.085 |
| Spearman test | ||||
| China-EPU | 0.137 * | 0.024 | 0.063 | 0.007 |
| Japan-EPU | 0.022 | 0.012 * | −0.116 * | −0.141 |
| India-EPU | −0.026 | 0.033 | −0.123 * | 0.014 |
| USA-EPU | 0.039 | 0.085 | −0.054 | −0.028 |
| Kendall test | ||||
| China-EPU | 0.089 * | 0.014 | 0.042 | 0.002 |
| Japan-EPU | 0.013 | 0.008 | −0.079 * | −0.089 * |
| India-EPU | −0.017 | 0.023 | −0.084 * | 0.008 |
| USA-EPU | 0.025 | 0.057 | −0.037 | −0.017 |
| Variable | -Value | -Value | Critical Values | ||
|---|---|---|---|---|---|
| 1% | 5% | 10% | |||
| USA-GPR | −6.553 | 0.000 *** | −3.450 | −2.870 | −2.571 |
| USA-EPU | −2.948 | 0.040 ** | −3.450 | −2.870 | −2.571 |
| China-GPR | −9.179 | 0.000 *** | −3.450 | −2.870 | −2.571 |
| China-EPU | −17.394 | 0.000 *** | −3.450 | −2.870 | −2.571 |
| China-GDP | −4.083 | 0.001 *** | −3.451 | −2.871 | −2.572 |
| China-UNEMPLOYMENT | −4.151 | 0.001 *** | −3.451 | −2.870 | −2.572 |
| China-CPI | −4.687 | 0.000 *** | −3.451 | −2.870 | −2.572 |
| China-STOCK | −7.827 | 0.000 *** | −3.450 | −2.870 | −2.571 |
| Independent Variable | USA- GPR | USA-EPU | China-GPR | China-EPU | China-GDP | China- UNEMPLOYMENT | China-CPI | China-STOCK |
|---|---|---|---|---|---|---|---|---|
| USA-GPR | --- | Y | Y | --- | --- | --- | --- | --- |
| USA-EPU | Y | --- | Y | Y | Y | Y | Y | N |
| China-GPR | Y | Y | --- | Y | N | Y | Y | Y |
| China-EPU | Y | N | N | --- | Y | Y | Y | Y |
| China-GDP | Y | N | Y | N | --- | N | Y | Y |
| China-UNEMPLOYMENT | Y | N | Y | Y | N | --- | Y | N |
| China-CPI | Y | Y | Y | Y | Y | Y | --- | Y |
| China-STOCK | Y | Y | Y | Y | Y | Y | Y | --- |
| Diagnostic Concern | Test Method | Test Results | Statistical Threshold | Interpretation |
|---|---|---|---|---|
| Multicollinearity | Variance Inflation Factor (VIF) | 13 out of 37 variables exceed thresholds | VIF > 10 indicates severe multicollinearity | Global synchronization of economic policies and financial market integration |
| Endogeneity | Durbin–Wu–Hausman Test | t-statistic for residual coefficient: 2.8764 p-value: 0.0046 | p < 0.05 rejects exogeneity | Conclusion: Reject null hypothesis— USA-EPU variable appears endogenous; supports simultaneous determination theory |
| Heteroscedasticity | White Test | Multiple specifications:
| p < 0.05 indicates heteroscedasticity | Volatility clustering characteristics of financial time series |
| Functional Form/ Nonlinearity | Ramsey RESET Test & Quantile Diagnostics | Evidence of nonlinear relationships and state- dependent effects | Rejection of linear specification | Relationships vary across economic regimes and market conditions |
| Instrument Validity | First-Stage F-test & Sargan Test |
|
| Instruments are relevant and exogenous |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
So, J.Y.-C.; Lao, U.L. Economic Policy Uncertainty, Geopolitical Risk, and the U.S.–China Relations: A Risk Transmission Perspective. J. Risk Financial Manag. 2025, 18, 596. https://doi.org/10.3390/jrfm18110596
So JY-C, Lao UL. Economic Policy Uncertainty, Geopolitical Risk, and the U.S.–China Relations: A Risk Transmission Perspective. Journal of Risk and Financial Management. 2025; 18(11):596. https://doi.org/10.3390/jrfm18110596
Chicago/Turabian StyleSo, Jacky Yuk-Chow, and Un Loi Lao. 2025. "Economic Policy Uncertainty, Geopolitical Risk, and the U.S.–China Relations: A Risk Transmission Perspective" Journal of Risk and Financial Management 18, no. 11: 596. https://doi.org/10.3390/jrfm18110596
APA StyleSo, J. Y.-C., & Lao, U. L. (2025). Economic Policy Uncertainty, Geopolitical Risk, and the U.S.–China Relations: A Risk Transmission Perspective. Journal of Risk and Financial Management, 18(11), 596. https://doi.org/10.3390/jrfm18110596

