Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (496)

Search Parameters:
Keywords = anchor force

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 320 KiB  
Article
Absent Presence: Religious Materiality, the Order of St John, and the Counter-Reformation
by Matthias Ebejer
Religions 2025, 16(8), 988; https://doi.org/10.3390/rel16080988 - 29 Jul 2025
Viewed by 181
Abstract
Within the Catholic liturgy and devotion, there exists a seemingly paradoxical notion of spirituality through materiality, religious practices that are equally tangible and intangible, concurrently present and absent. This paper explores the concept of ‘absent-presence’ in early modern Catholic devotional practices, with a [...] Read more.
Within the Catholic liturgy and devotion, there exists a seemingly paradoxical notion of spirituality through materiality, religious practices that are equally tangible and intangible, concurrently present and absent. This paper explores the concept of ‘absent-presence’ in early modern Catholic devotional practices, with a focus on the Order of St John during the Counter-Reformation. Drawing on case studies from Malta and across the Hospitaller world, it investigates how religious materiality (sacred objects, spaces, and rituals) expresses divine agency. Anchored in the kinetic approach to religious history, the study examines how the movement of relics, the staging of processions, and the construction of sacred spaces fostered emotional and spiritual transformation among devotees. While belief may be elusive for historians, the devotional actions of the Hospitallers demonstrate a faith deeply intertwined with motion, matter, and memory as external forces that sought to move the soul through tangible forms. Full article
(This article belongs to the Special Issue Casta Meretrix: The Paradox of the Christian Church Through History)
34 pages, 12831 KiB  
Article
Behavior of Large-Diameter Circular Deep Excavation Under Asymmetric Surface Surcharge
by Ping Zhao, Youqiang Qiu, Feng Liu, Zhanqi Wang and Panpan Guo
Symmetry 2025, 17(8), 1194; https://doi.org/10.3390/sym17081194 - 25 Jul 2025
Viewed by 215
Abstract
Circular deep excavations, characterized by their symmetrical geometry, are commonly employed in constructing foundations for large-span suspension bridges and as launching shafts for shield tunneling. However, the mechanical behavior of such excavations under asymmetric surface surcharge remains inadequately understood due to a paucity [...] Read more.
Circular deep excavations, characterized by their symmetrical geometry, are commonly employed in constructing foundations for large-span suspension bridges and as launching shafts for shield tunneling. However, the mechanical behavior of such excavations under asymmetric surface surcharge remains inadequately understood due to a paucity of relevant investigations. This study addresses this knowledge gap by establishing a three-dimensional finite element model (3D-FEA) based on the anchor deep excavation project of a specific bridge. The model is utilized to investigate the influence of asymmetric surcharge on the forces and deformations within the supporting structure. The results show that both the internal force and displacement cloud diagrams of the support structure exhibit asymmetric characteristics. The distribution of displacement and internal forces has spatial effects, and the maximum values all occur in the areas where asymmetric loads are applied. The maximum values of the displacement, axial force, and shear force of underground continuous walls increase with the increase in the excavation depth. The total displacement curves all show the feature of a “bulging belly”. The maximum displacement is 13.3 mm. The axial force is mainly compression, with a maximum value of −9514 kN/m. The maximum positive and negative values of the shear force are 333 kN/m and −705 kN/m, respectively. The bending moment diagram of different monitoring points shows the characteristics of “bow knot”. The maximum values of the positive bending moment and negative bending moment are 1509.4 kN·m/m and −2394.3 kN·m/m, respectively. The axial force of the ring beam is mainly compression, with a maximum value of −5360 kN, which occurs in ring beams 3, 4, and 5. The displacement cloud diagram of the support structure under symmetrical loads shows symmetrical characteristics. Under different load conditions, the displacement curve of the diaphragm wall shows the characteristics of “bulge belly”. The forms of loads with displacements from largest to smallest at the same position are as follows: asymmetric loads, symmetrical loads, and no loads. These findings provide valuable insights for optimizing the structural design of similar deep excavation projects and contribute to promoting sustainable urban underground development. Full article
(This article belongs to the Special Issue Symmetry, Asymmetry and Nonlinearity in Geomechanics)
Show Figures

Figure 1

14 pages, 7478 KiB  
Article
Constructing a Ta3N5/Tubular Graphitic Carbon Nitride Van Der Waals Heterojunction for Enhanced Photocatalytic Hydrogen Production
by Junbo Yu, Guiming Ba, Fuhong Bi, Huilin Hu, Jinhua Ye and Defa Wang
Catalysts 2025, 15(7), 691; https://doi.org/10.3390/catal15070691 - 20 Jul 2025
Viewed by 370
Abstract
Constructing a heterojunction is considered one of the most effective strategies for enhancing photocatalytic activity. Herein, we employ Ta3N5 and tubular graphitic carbon nitride (TCN) to construct a Ta3N5/TCN van der Waals heterojunction via electrostatic self-assembly [...] Read more.
Constructing a heterojunction is considered one of the most effective strategies for enhancing photocatalytic activity. Herein, we employ Ta3N5 and tubular graphitic carbon nitride (TCN) to construct a Ta3N5/TCN van der Waals heterojunction via electrostatic self-assembly for enhanced photocatalytic H2 production. SEM and TEM results show that Ta3N5 particles (~300 nm in size) are successfully anchored onto the surface of TCN. The light absorption capability of the Ta3N5/TCN heterojunction is between those of Ta3N5 and TCN. The strong interaction between Ta3N5 and TCN with different energy structures (Fermi levels) by van der Waals force renders the formation of an interfacial electric field to drive the separation and transfer of photogenerated charge carriers in the Ta3N5/TCN heterojunction, as evidenced by the photoluminescence (PL) and photoelectrochemical (PEC) characterization results. Consequently, the optimal Ta3N5/TCN heterojunction exhibits a remarkable H2 production rate of 12.73 mmol g−1 h−1 under visible light irradiation, which is 3.3 and 16.8 times those of TCN and Ta3N5, respectively. Meanwhile, the cyclic experiment demonstrates excellent stability of the Ta3N5/TCN heterojunction upon photocatalytic reaction. Notably, the photocatalytic performance of 15-TaN/TCN outperforms the most previously reported CN-based and Ta3N5-based heterojunctions for H2 production. This work provides a new avenue for the rational design of CN-based van der Waals heterojunction photocatalysts with enhanced photocatalytic activity. Full article
Show Figures

Figure 1

23 pages, 9408 KiB  
Article
Pullout Behaviour of Snakeskin-Inspired Sustainable Geosynthetic Reinforcements in Sand: An Experimental Study
by Xin Huang, Fengyuan Yan and Jia He
Sustainability 2025, 17(14), 6502; https://doi.org/10.3390/su17146502 - 16 Jul 2025
Viewed by 262
Abstract
In recent years, there has been a growing interest in the frictional anisotropy of snake scale-inspired surfaces, especially its potential applications in enhancing the bearing capacity of foundations (piles, anchor elements, and suction caissons) and reducing materials consumption and installation energy. This study [...] Read more.
In recent years, there has been a growing interest in the frictional anisotropy of snake scale-inspired surfaces, especially its potential applications in enhancing the bearing capacity of foundations (piles, anchor elements, and suction caissons) and reducing materials consumption and installation energy. This study first investigated the frictional properties and surface morphologies of the ventral scales of Cantor’s rat snakes (Ptyas dhumnades). Based on the findings on the snake scales, a novel snakeskin-inspired geosynthetic reinforcement (SIGR) is developed using 3D-printed polylactic acid (PLA). A series of pullout tests under different normal loads (25 kPa, 50 kPa, and 75 kPa) were performed to analyze the pullout behavior of SIGR in sandy soil. Soil deformation and shear band thickness were measured using Particle Image Velocimetry (PIV). The results revealed that the ventral scales of Ptyas dhumnades have distinct thorn-like micro-protrusions pointing towards the tail, which exhibit frictional anisotropy. A SIGR with a unilateral (one-sided) layout scales (each scale 1 mm in height and 12 mm in length) could increase the peak pullout force relative to a smooth-surface reinforcement by 29% to 67%. Moreover, the peak pullout force in the cranial direction (soil moving against the scales) was found to be 13% to 20% greater than that in the caudal direction (soil moving along the scales). The pullout resistance, cohesion, and friction angle of SIGR all showed significant anisotropy. The soil deformation around the SIGR during pullout was more pronounced than that observed with smooth-surface reinforcement, which suggests that SIGR can mobilize a larger volume of soil to resist external loads. This study demonstrates that SIGR is able to enhance the pullout resistance of reinforcements, thereby improving the stability of reinforced soil structures, reducing materials and energy consumption, and is important for the sustainability of geotechnical engineering. Full article
Show Figures

Figure 1

21 pages, 10296 KiB  
Article
Spatiotemporal Mechanical Effects of Framework–Slope Systems Under Frost Heave Conditions
by Wendong Li, Xiaoqiang Hou, Jixian Ren and Chaoyang Wu
Appl. Sci. 2025, 15(14), 7877; https://doi.org/10.3390/app15147877 - 15 Jul 2025
Viewed by 261
Abstract
To investigate the slope instability caused by differential frost heaving mechanisms from the slope crest to the toe during frost heave processes, this study takes a typical silty clay slope in Xinjiang, China, as the research object. Through indoor triaxial consolidated undrained shear [...] Read more.
To investigate the slope instability caused by differential frost heaving mechanisms from the slope crest to the toe during frost heave processes, this study takes a typical silty clay slope in Xinjiang, China, as the research object. Through indoor triaxial consolidated undrained shear tests, eight sets of natural and frost-heaved specimens were prepared under confining pressure conditions ranging from 100 to 400 kPa. The geotechnical parameters of the soil in both natural and frost-heaved states were obtained, and a spatiotemporal thermo-hydro-mechanical coupled numerical model was established to reveal the dynamic evolution law of anchor rod axial forces and the frost heave response mechanism between the frame and slope soil. The analytical results indicate that (1) the frost heave process is influenced by slope boundaries, resulting in distinct spatial variations in the temperature field response across the slope surface—namely pronounced responses at the crest and toe but a weaker response in the mid-slope. (2) Under the coupled drive of the water potential gradient and gravitational potential gradient, the ice content in the toe area increases significantly, and the horizontal frost heave force exhibits exponential growth, reaching its peak value of 92 kPa at the toe in February. (3) During soil freezing, the reverse stress field generated by soil arching shows consistent temporal variation trends with the temperature field. Along the height of the soil arch, the intensity of the reverse frost heave force field displays a nonlinear distribution characteristic of initial strengthening followed by attenuation. (4) By analyzing the changes in anchor rod axial forces during frost heaving, it was found that axial forces during the frost heave period are approximately 1.3 times those under natural conditions, confirming the frost heave period as the most critical condition for frame anchor design. Furthermore, through comparative analysis with 12 months of on-site anchor rod axial force monitoring data, the reliability and accuracy of the numerical simulation model were validated. These research outcomes provide a theoretical basis for the design of frame anchor support systems in seasonally frozen regions. Full article
Show Figures

Figure 1

37 pages, 8085 KiB  
Review
Scaling Amphiphilicity with Janus Nanoparticles: A New Frontier in Nanomaterials and Interface Science
by Mirela Honciuc and Andrei Honciuc
Nanomaterials 2025, 15(14), 1079; https://doi.org/10.3390/nano15141079 - 11 Jul 2025
Viewed by 378
Abstract
Janus nanoparticles (JNPs) extend the concept of amphiphilicity beyond classical molecular surfactants into the nanoscale. Amphiphilic behavior is defined by the presence of hydrophobic and hydrophilic moieties within a single molecular structure. Traditionally, such molecular structures are known as surfactants or amphiphiles and [...] Read more.
Janus nanoparticles (JNPs) extend the concept of amphiphilicity beyond classical molecular surfactants into the nanoscale. Amphiphilic behavior is defined by the presence of hydrophobic and hydrophilic moieties within a single molecular structure. Traditionally, such molecular structures are known as surfactants or amphiphiles and are capable of reducing interfacial tension, adsorbing spontaneously at interfaces, stabilizing emulsions and foams, and forming micelles, bilayers, or vesicles. Recent experimental, theoretical, and computational studies demonstrate that these behaviors are scalable to nanostructured colloids such as JNPs. Amphiphilic JNPs, defined by anisotropic surface chemistry on distinct hemispheres, display interfacial activity driven by directional wetting, variable interfacial immersion depth, and strong interfacial anchoring. They can stabilize liquid/liquid and liquid/gas interfaces, and enable templated or spontaneous self-assembly into supra-structures, such as monolayer sheets, vesicles, capsules, etc., both in bulk and at interfaces. Their behavior mimics the “soft” molecular amphiphiles but also includes additional particularities given by their “hard” structure, as well as contributions from capillary, van der Waals, hydrophobic, and shape-dependent forces. This review focuses on compiling the evidence supporting amphiphilicity as a scalable property, discussing how JNPs function as colloidal amphiphiles and how geometry, polarity contrast, interfacial interactions, and environmental parameters influence their behavior. By comparing surfactant behavior and JNP assembly, this work aims to clarify the transferable principles, the knowledge gap, as well as the emergent properties associated with amphiphilic Janus colloids. Full article
(This article belongs to the Special Issue Morphological Design and Synthesis of Nanoparticles (Second Edition))
Show Figures

Graphical abstract

16 pages, 281 KiB  
Article
The Love That Kills: Phaedra’s Challenges to a Philosophy of Eros
by Joseph S. O’Leary
Philosophies 2025, 10(4), 81; https://doi.org/10.3390/philosophies10040081 - 9 Jul 2025
Viewed by 450
Abstract
Focusing on the legend of Phaedra and Hippolytus as developed in Euripides and Seneca and especially in Racine’s Phèdre and taking into account as well its further development in works by Camillo Boito, Luchino Visconti, and Yukio Mishima, I make the following arguments: [...] Read more.
Focusing on the legend of Phaedra and Hippolytus as developed in Euripides and Seneca and especially in Racine’s Phèdre and taking into account as well its further development in works by Camillo Boito, Luchino Visconti, and Yukio Mishima, I make the following arguments: (1) Contrary to many theologians and philosophers of love, a pathological form of love that issues in murder and suicide should not be regarded as unworthy of serious attention. Racine’s tragedy provides a catharsis for universal experiences of unrequited love and jealousy, a major human phenomenon. (2) Contrary to Paul Valéry, Phèdre’s love cannot be called merely animal, since the analytical insight she develops into her morbid passion carries tremendous moral force and lies at the origin of the European psychological novel, as launched by Madame de La Fayette a year later. (3) Contrary to François Mauriac, even if she is a heroine of desire or concupiscence rather than of “true love” (in contrast to the relatively innocent affections of Hippolyte and Aricie), the incredible beauty of her language resists such an easy categorization. (4) Study of concrete presentations of “love” in literature confirms that the meaning and use of this word is marked by an irreducible pluralism. Philosophical and theological analysis of love has to come to terms with this. (5) The role of a work of art, in crystallizing archetypical emotions and situations in a way that carries authority, is to provide the middle ground between the abstractions of philosophy on the one hand and the uncontrollable diversity of the empirical on the other. Even psychologies or sociologies of love, which claim to be close to the concrete data, need to be anchored in and corrected by the special concrete vision that only great literature can bring. Full article
(This article belongs to the Special Issue Philosophies of Love)
24 pages, 4556 KiB  
Article
Simulation of Rock Failure Cone Development Using a Modified Load-Transferring Anchor Design
by Kamil Jonak, Robert Karpiński, Andrzej Wójcik and Józef Jonak
Appl. Sci. 2025, 15(14), 7653; https://doi.org/10.3390/app15147653 - 8 Jul 2025
Viewed by 359
Abstract
This study investigates a novel anchor-based method for controlled rock fragmentation, designed as an alternative to conventional excavation or explosive techniques. The proposed solution utilizes a specially modified undercut anchor that induces localized failure within the rock mass through radial expansion rather than [...] Read more.
This study investigates a novel anchor-based method for controlled rock fragmentation, designed as an alternative to conventional excavation or explosive techniques. The proposed solution utilizes a specially modified undercut anchor that induces localized failure within the rock mass through radial expansion rather than traditional pull-out forces. Finite Element Method simulations, performed in ABAQUS with an extended fracture mechanics approach, were used to model the initiation and propagation of failure zones in sandstone. The results revealed a two-phase cracking process starting beneath the anchor’s driving element and progressing toward the rock’s free surface, forming a breakout cone. This behavior significantly deviates from conventional prediction models, such as the 45° cone or Concrete Capacity Design methods (cone 35°). The simulations were supported by field tests, confirming both the feasibility and practical advantages of the proposed anchor system, especially in confined or safety-critical environments. The findings offer valuable insights for the development of compact and efficient rock fragmentation technologies suitable for mining, rescue operations, and civil engineering applications. Full article
(This article belongs to the Special Issue Advances and Techniques in Rock Fracture Mechanics)
Show Figures

Figure 1

30 pages, 9068 KiB  
Article
Dynamic Behavior of Lighting GFRP Pole Under Impact Loading
by Mahmoud T. Nawar, Ahmed Elbelbisi, Mostafa E. Kaka, Osama Elhosseiny and Ibrahim T. Arafa
Buildings 2025, 15(13), 2341; https://doi.org/10.3390/buildings15132341 - 3 Jul 2025
Viewed by 245
Abstract
Vehicle collisions with street lighting poles generate extremely high impact forces, often resulting in serious injuries or fatalities. Therefore, enhancing the structural resilience of pole bases is a critical engineering objective. This study investigates a comprehensive dynamic analysis conducted with respect to base [...] Read more.
Vehicle collisions with street lighting poles generate extremely high impact forces, often resulting in serious injuries or fatalities. Therefore, enhancing the structural resilience of pole bases is a critical engineering objective. This study investigates a comprehensive dynamic analysis conducted with respect to base material behavior and energy absorption of GFRP lighting pole structures under impact loads. A finite element (FE) model of a 5 m-tall tapered GFRP pole with a steel base sleeve, base plate, and anchor bolts was developed. A 500 kg drop-weight impact at 400 mm above the base simulated vehicle collision conditions. The model was validated against experimental data, accurately reproducing the observed failure mode and peak force within 6%. Parametric analyses explored variations in pole diameter, wall thickness, base plate size and thickness, sleeve height, and anchor configuration. Results revealed that geometric parameters—particularly wall thickness and base plate dimensions—had the most significant influence on energy absorption. Doubling the wall thickness reduced normalized energy absorption by approximately 76%, while increases in base plate size and thickness reduced it by 35% and 26%, respectively. Material strength and anchor bolt configuration showed minimal impact. These findings underscore the importance of optimizing pole geometry to enhance crashworthiness. Controlled structural deformation improves energy dissipation, making geometry-focused design strategies more effective than simply increasing material strength. This work provides a foundation for designing safer roadside poles and highlights areas for further exploration in base configurations and connection systems. Full article
(This article belongs to the Special Issue Extreme Performance of Composite and Protective Structures)
Show Figures

Figure 1

18 pages, 2021 KiB  
Article
Analysis of Anchoring Muscles for Pipe Crawling Robots
by Frank Cianciarulo, Jacek Garbulinski, Jonathan Chambers, Thomas Pillsbury, Norman Wereley, Andrew Cross and Deepak Trivedi
Actuators 2025, 14(7), 331; https://doi.org/10.3390/act14070331 - 2 Jul 2025
Viewed by 262
Abstract
Pneumatic artificial muscles (PAMs) consist of an elastomeric bladder wrapped in a Kevlar braid. When inflated, PAMs expand radially and contract axially, producing large axial forces. PAMs are often utilized for their high specific work and specific power, as well as their ability [...] Read more.
Pneumatic artificial muscles (PAMs) consist of an elastomeric bladder wrapped in a Kevlar braid. When inflated, PAMs expand radially and contract axially, producing large axial forces. PAMs are often utilized for their high specific work and specific power, as well as their ability to produce large axial displacements. Although the axial behavior of PAMs is well studied, the radial behavior has remained underutilized and is poorly understood. Modeling was performed using a force balance approach to capture the effects that bladder strain and applied axial load have on the anchoring force. Radial expansion testing was performed to validate the model. Force due to anchoring was recorded using force transducers attached to sections of aluminum pipe using an MTS servo-hydraulic testing machine. Data from the test were compared to the predicted anchoring force. Radial expansion in large-diameter (over 50.8 mm) PAMs was then used in worm-like robots to create anchoring forces that allow for a peristaltic wave, which creates locomotion through acrylic pipes. By radially expanding, the PAM presses itself into the pipe, creating an anchor point. The previously anchored PAM then deflates, which propels the robot forward. Modeling of the radial expansion forces and anchoring was necessary to determine the pressurization required for proper anchoring before slipping occurs due to the combined robot and payload weight. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

21 pages, 4313 KiB  
Article
Heat Shock Protein and Disaggregase Influencing the Casein Structuralisation
by Irena Roterman, Katarzyna Stapor, Dawid Dułak and Leszek Konieczny
Int. J. Mol. Sci. 2025, 26(13), 6360; https://doi.org/10.3390/ijms26136360 - 1 Jul 2025
Viewed by 282
Abstract
The contribution of the environment to protein folding seems obvious. The aqueous environment directs protein folding towards generating a centric hydrophobic core with a polar shell. The cell membrane environment—in which numerous proteins are anchored—to stabilise the arrangement, expects the exposure of hydrophobic [...] Read more.
The contribution of the environment to protein folding seems obvious. The aqueous environment directs protein folding towards generating a centric hydrophobic core with a polar shell. The cell membrane environment—in which numerous proteins are anchored—to stabilise the arrangement, expects the exposure of hydrophobic residues and the concentration of polar residues in the central part—a channel for the transport of numerous molecules. The influence of these environments seems evident due to the persistent residence of proteins in their surroundings providing an external force field for structure stabilisation. Structural forms are also obtained with the participation of supporting proteins—such as proteins from the heat shock protein group—which accompany the folding process and temporarily provide an appropriate external force field in which the protein, having obtained the correct structure for its activity, is released from interaction with the supporting protein. This paper discusses an example of the contribution of Hsp104 to casein folding and the effect of disaggregase preventing inappropriate aggregation. For this purpose, a model called the fuzzy oil drop (FOD-M) was used, which takes hydrophobic interactions into account in the assessment of protein structure status. Their distribution in the protein body highlights the contribution and influence of the external force field—originating from Hsp104 and the disaggregase in this case. Full article
Show Figures

Figure 1

26 pages, 6219 KiB  
Article
A Multi-Method Approach to the Stability Evaluation of Excavated Slopes with Weak Interlayers: Insights from Catastrophe Theory and Energy Principles
by Tao Deng, Xin Pang, Jiwei Sun, Chengliang Zhang, Daochun Wan, Shaojun Zhang and Xiaoqiang Zhang
Appl. Sci. 2025, 15(13), 7304; https://doi.org/10.3390/app15137304 - 28 Jun 2025
Viewed by 246
Abstract
As open-pit mining extends to greater depths, slope stability is becoming a critical factor in ensuring safe production. This issue is particularly pronounced in geological settings with weak interlayers, where sudden slope failures are more likely to occur, demanding precise and reliable stability [...] Read more.
As open-pit mining extends to greater depths, slope stability is becoming a critical factor in ensuring safe production. This issue is particularly pronounced in geological settings with weak interlayers, where sudden slope failures are more likely to occur, demanding precise and reliable stability assessment methods. In this study, a typical open-pit slope with weak interlayers was investigated. Acoustic testing and ground-penetrating radar were employed to identify rock mass structural features and delineate loose zones, enabling detailed rock mass zoning and the development of numerical simulation models for stability analysis. The results indicate that (1) the slope exhibits poor overall integrity, dominated by blocky to fragmented structures with well-developed joints and significant weak interlayers, posing a severe threat to stability; (2) in the absence of support, the slope’s dissipated energy, displacement, and plastic zone volume all exceeded the failure threshold (Δ < 0), and the safety factor was only 0.962, indicating a near-failure state; after implementing support measures, the safety factor increased to 1.31, demonstrating a significant improvement in stability; (3) prior to excavation, the energy damage index (ds) in the 1195–1240 m platform zone reached 0.82, which dropped to 0.48 after reinforcement, confirming the effectiveness of support in reducing energy damage and enhancing slope stability; (4) field monitoring data of displacement and anchor rod forces further validated the stabilizing effect of the support system, providing strong assurance for safe mine operation. By integrating cusp catastrophe theory with energy-based analysis, this study establishes a comprehensive evaluation framework for slope stability under complex geological conditions, offering substantial practical value for deep open-pit mining projects. Full article
(This article belongs to the Special Issue Slope Stability and Earth Retaining Structures—2nd Edition)
Show Figures

Figure 1

21 pages, 7734 KiB  
Article
Parametric Finite Element Simulations of Different Configurations of Partial-Strength Exposed Column Base Plate Connections
by Reza Khani, Mario D’Aniello, Roberto Tartaglia and Yousef Hosseinzadeh
Buildings 2025, 15(13), 2255; https://doi.org/10.3390/buildings15132255 - 27 Jun 2025
Viewed by 293
Abstract
The present study investigates the influence of the configurations of anchor bolts and stiffeners on the monotonic response under moment conditions in the major axis and compression force of partial-strength exposed column base plate connections in order to ameliorate their response, limiting the [...] Read more.
The present study investigates the influence of the configurations of anchor bolts and stiffeners on the monotonic response under moment conditions in the major axis and compression force of partial-strength exposed column base plate connections in order to ameliorate their response, limiting the number of welded details. Parametric finite element simulations were performed based on models calibrated against experimental results available from the recent literature. The results show the efficiency of the investigated configurations, namely, (i) the presence of rib stiffener results in high stiffness and strength with a reduction in ductility; (ii) the linear pattern of anchor bolts (e.g., rectangular distribution) is characterized by the limited contribution of the outer anchor bolts to the overall resistance of the connection; (iii) the trapezoidal pattern of the anchor bolts exhibit a better mechanical performance as well as their efficiency; and (iv) the increase in compression force influences the mechanical response of the base connection with an increase in both resistance and rigidity until the column is stable against the moment–axial force interaction. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 3788 KiB  
Article
Identification of Streptococcus pneumoniae Sortase A Inhibitors and the Interactive Mechanism
by Guizhen Wang, Jiahui Lu, Jingyao Wen, Yifan Duan, Hanbing Zhou, Xinli Peng and Zhandong Li
Crystals 2025, 15(7), 594; https://doi.org/10.3390/cryst15070594 - 24 Jun 2025
Viewed by 362
Abstract
Streptococcus pneumoniae (S. pneumoniae) Sortase A (SrtA) anchors virulence proteins to the surface of the cell wall by recognizing and cleaving the LPXTG motif. These toxins help bacteria adhere to and colonize host cells, promote biofilm formation, and trigger host inflammatory [...] Read more.
Streptococcus pneumoniae (S. pneumoniae) Sortase A (SrtA) anchors virulence proteins to the surface of the cell wall by recognizing and cleaving the LPXTG motif. These toxins help bacteria adhere to and colonize host cells, promote biofilm formation, and trigger host inflammatory responses. Therefore, SrtA is an ideal target for the development of new preparations for S. pneumoniae. In this study, we found that phloretin (pht) and phlorizin (phz) exhibited excellent affinities for SrtA based on virtual screening experiments. We analyzed the interactive mechanism between pht, phz, and alnusone (aln, a reported S. pneumoniae SrtA inhibitor) and SrtA based on molecular dynamics simulation experiments. The results showed that these inhibitors bound to the active pocket of SrtA, and the root mean square deviation (RMSD) and distance analyses showed that these compounds and SrtA maintained stable configuration and binding during the assay. The binding free energy analysis showed that both electrostatic forces (ele), van der Waals forces (vdw), and hydrogen bonds (Hbonds) promoted the binding between pht, phz, and SrtA; however, for the binding of aln and SrtA, the vdw force was much stronger than ele, and Hbonds were not found. The binding free energy decomposition showed that HIS141, ILE143, and PHE119 contributed more energy to promote pht and SrtA binding; ARG215, ASP188, and LEU210 contributed more energy to promote phz and SrtA binding; and HIS141, ASP209, and ARG215 contributed more energy to promote aln and SrtA binding. Finally, the transpeptidase activity of SrtA decreased significantly when treated with different concentrations of pht, phz, or aln, which inhibited S. pneumoniae biofilm formation and adhesion to A549 cells without affecting normal bacterial growth. These results suggest that pht, phtz, and aln are potential materials for the development of novel inhibitors against S. pneumoniae infection. Full article
Show Figures

Figure 1

31 pages, 9138 KiB  
Article
Tension Force Estimation of Cable-Stayed Bridges Based on Computer Vision Without the Need for Direct Measurement of Mechanical Parameters of the Cables
by German Michel Guzman-Acevedo, Juan A. Quintana-Rodriguez, Guadalupe Esteban Vazquez-Becerra, Luis Alvaro Martinez-Trujano, Francisco J. Carrion-Viramontes and Jorge Garcia-Armenta
Sensors 2025, 25(13), 3910; https://doi.org/10.3390/s25133910 - 23 Jun 2025
Viewed by 524
Abstract
Commonly, accelerometers are used to determine the tension force in cables through an indirect process; however, it is necessary to know the mechanical parameters of each element, such as mass and length. Typically, obtaining or measuring these parameters is not feasible. Therefore, this [...] Read more.
Commonly, accelerometers are used to determine the tension force in cables through an indirect process; however, it is necessary to know the mechanical parameters of each element, such as mass and length. Typically, obtaining or measuring these parameters is not feasible. Therefore, this research proposed an alternative methodology to indirectly estimate them based on historical information about the so-called classic instruments (accelerometers and hydraulic jack). This case study focused on the Rio Papaloapan Bridge located in Veracruz, Mexico, a structure that has experienced material casting issues due to inadequate heat treatment in some cable top anchor over its lifespan. Thirteen cables from the structure were selected to evaluate the proposed methodology, yielding results within 3.8% of difference compared to direct tension estimation generated by a hydraulic jack. Furthermore, to enhance data collection, this process was complemented using a computer vision methodology. This involved remotely measuring the vibration frequency of cables from high-resolution videos recorded with a smartphone. The non-contact method was validated in a laboratory using a vibrating table, successfully estimating oscillation frequencies from video-recording with a fixed camera. A field test on eight cables of a bridge was also conducted to assess the performance and feasibility of the proposed method. The results demonstrated an RMS Error of approximately 2 mHz and a percentage difference in the tension force estimation below 3% compared to an accelerometer measurement approach. Finally, it was determined that this composed methodology for indirect tension force determination is a viable option when: (1) cables are challenging to access; (2) there is no line of sight between the camera and cables outside the bridge; (3) there is a lack of information about the mechanical parameters of the cables. Full article
(This article belongs to the Special Issue Recent Advances in Structural Health Monitoring of Bridges)
Show Figures

Figure 1

Back to TopTop